Размеры органоидов клетки. Органоиды клетки, их строение и функции

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?


Растительные клетки - эукариотические клетки, однако несколькими своими свойствами они отличаются от клеток остальных эукариот. К их отличительным чертам относят:
  • Крупная центральная вакуоль, пространство, заполненное клеточным соком и ограниченное мембраной - тонопластом. Вакуоль играет ключевую роль в поддержании клеточного тургора, контролирует перемещение молекул из цитозоля в выделения клетки, хранит полезные вещества и расщепляет отслужившие старые белки и органеллы.
  • Есть клеточная стенка, состоящая главным образом из целлюлозы, а также гемицеллюлозы, пектина и во многих случаях лигнина. Она образуется протопластом поверх клеточной мембраны. Она отлична от клеточной стенки грибов, состоящей из хитина, и бактерий, построенной из пептидогликана (муреина).
  • Специализированные пути связи между клетками - плазмодесмы, цитоплазматические мостики: цитоплазма и эндоплазматический ретикулум (ЭПР) соседних клеток сообщаются через поры в клеточных стенках.
  • Пластиды, из которых наиболее важны хлоропласты. Хлоропласты содержат хлорофилл, зелёный пигмент, поглощающий солнечный цвет. В них осуществляется фотосинтез, в ходе которого клетка синтезирует органические вещества из неорганических. Другими пластидами являются лейкопласты: амилопласты, запасающие крахмал, элайопласты, хранящие жиры и др., а также хромопласты, специализирующиеся на синтезе и хранении пигментов. Как и митохондрии, чей геном у растений содержит 37 генов, пластиды имеют собственные геномы (пластомы), состоящие из около 100-120 уникальных генов. Как предполагается, пластиды и митохондрии возникли как прокариотические эндосимбионты, поселившиеся в эукариотических клетках.
  • Деление клеток (митоз) наземных растений и некоторых водорослей, особенно харовых (Charophyta) и порядка Trentepohliales характеризуется наличием дополнительной стадии - препрофазы. Помимо этого цитокинез у них осуществляется при помощи фрагмопласта - «формы» для строящейся клеточной пластинки.
  • Мужские половые клетки мхов и папоротниковидных имеют жгутик, схожий со жгутиком сперматозоидов животных, но у семенных растений - голосеменных и цветковых - они лишены жгутика и называются спермиями.
  • Из присущих животной клетке органелл у растительной отсутствуют только центриоли.

Функции органоидов клетки

Органоиды клетки и их функции:

1. Клеточная оболочка - состоит из 3 слоев:

Клеточная оболочка обеспечивает механическую опору и защиту, скрепляет друг с другом соседние клетки, объединяет протопласты соседних клеток в единую систему.

2. Плазматическая мембрана - имеет сложную структуру, состоит из расположенных определенным образом слоев липидов и белков. Обеспечивает избирательно проницаемый барьер, регулирующий обмен между клеткой и средой.

3. Цитоплазма - внутренняя полужидкая среда клетки. В цитоплазме протекают процессы обмена веществ, она объединяет органоиды клетки в единое целое и обеспечивает их взаимодействие.

4. Ядро - заключено в оболочку из двух мембран, компоненты ядра - клеточный сок, хроматин и ядрышко. Хромосомы ядра регулируют все виды клеточной активности: деление ядра лежит в основе самовоспроизведения.

5. Ядрышко - небольшая структура, включенная в ядро. Ядрышко - это место образования рибосом.

6. Эндоплазматический ретикулум (ЭР) - система уплощенных мембранных мешочков - цистерн. Поверхность шероховатого ЭР покрыта рибосомами, гладкого ЭР - нет. По цистернам шероховатого ЭР транспортируется белок, синтезированный на рибосомах. Гладкий ЭР - место синтеза липидов и стероидов.

7. Рибосомы - состоят из 2 субчастиц - большой и малой. Могут быть связаны с ЭР или свободно лежать в цитоплазме. Рибосомы - место синтеза белков.

8. Митохондрии - окружены оболочками из двух мембран. Внутренние мембраны образуют складки (кристы), внутреннее содержимое митохондрии - матрикс. Участвуют в процессах внутриклеточного окисления, обеспечивают энергетический запас.

9. Аппарат Гольджи - стопка уплощенных мембранных мешочков цистерн с непрерывно отделяющимися пузырьками. Участвует в процессе секреции, в нем образуются лизосомы.

10. Лизосомы - одномембранный мешочек, заполненный пищеварительными ферментами. Выполняют функции, связанные с распадом структур или молекул в клетке.

11. Клеточный центр - состоит из 2 мельчайших частиц - центриолей. Участвует в образовании веретена деления.

12. Пластиды - двухмембранный органоид растительной клетки. Хромопласты содержат пигменты, лейкопласты - запасное вещество (крахмал). Выполняют сигнальную (хромопласты) и запасную (лейкопласты) функции.

13. Хлоропласты - крупная пластида, содержащая хлорофилл. Участвует в процессе фотосинтеза.

14. Вакуоль - органоид содержит клеточный сок, ограничен одной мембраной. Выполняет запасающую функцию.



Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-1.jpg" alt=">Строение и функции органоидов клетки. ">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-2.jpg" alt=">Органоиды – постоянные клеточные структуры, имеющие определенное строение, химический состав и выполняющие специфические функции.">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-3.jpg" alt=">Включения цитоплазмы - это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности"> Включения цитоплазмы - это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности и характера обмена веществ в клетке и от условий существования организма. Включения имеют вид зерен, глыбок, капель, вакуолей, гранул различной величины и формы. Их химическая природа очень разнообразна. В зависимости от функционального назначения включения объединяют в группы. ГРУППЫ: ТРОФИЧЕСКИЕ ЭКСКРЕТЫ И ДР. СЕКРЕТЫ СПЕЦИАЛЬНЫЕ ВКЛЮЧЕНИЯ (ГЕМОГЛОБИН) ИНКРЕТЫ ПИГМЕНТЫ

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-4.jpg" alt=">Растительная клетка ">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-5.jpg" alt=">Роль ядра в жизни клетки Между ядром и окружающей его цитоплазмой происходит постоянный обмен"> Роль ядра в жизни клетки Между ядром и окружающей его цитоплазмой происходит постоянный обмен веществ. Это хорошо видно на примере взаимодействия ДНК и РНК ядра и цитоплазмы. Ядро играет огромную роль в жизни клетки. Его роль очень велика не только процессах созидания живой материи, но и во всех других проявлениях жизнедеятельности клетки.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-6.jpg" alt=">Животная клетка ">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-7.jpg" alt=">Сравнение ">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-8.jpg" alt=">Органоиды клетки ">

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-9.jpg" alt="> Органоиды клетки Органоиды общего Специальные назначения органоиды "> Органоиды клетки Органоиды общего Специальные назначения органоиды Характерные для специализированных клеток Присутствующие во многоклеточного всех клетках эукариот организма или клеток одноклеточного организма Пластиды, митохондрии, Реснички, жгутики и т. д. лизосомы и т. д.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-10.jpg" alt="> Классификация органоидов Органоиды Немембранные Мембранные"> Классификация органоидов Органоиды Немембранные Мембранные Рибосомы Одномембранные Двухмембранные Клеточный центр Микротрубочки ЭПС Митохондрии Микрофиламенты Комплекс пластиды Хромосомы Гольджи Лизосомы Вакуоли

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-12.jpg" alt="> Нуклеиновых кислот нет. Метаболизм"> Нуклеиновых кислот нет. Метаболизм липидов Синтез белка на ШЭР

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-13.jpg" alt=">ЭПС (эндоплазматическая сеть) - непрерывная трехмерная сеть канальцев и цистерн. Начинается как выпячивание внешней"> ЭПС (эндоплазматическая сеть) - непрерывная трехмерная сеть канальцев и цистерн. Начинается как выпячивание внешней мембраны ядра и заканчивается у цитоплазматической мембраны. Различают гладкий и шероховатый ретикулум. На шероховатом находятся рибосомы. Это место синтеза большинства белков и липидов клетки. Гладкий используется для перемещения синтезированных веществ.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-14.jpg" alt=">Участвует в накоплении продуктов, синтезированных в эндоплазматической сети, в их химической перестройке и"> Участвует в накоплении продуктов, синтезированных в эндоплазматической сети, в их химической перестройке и созревании. В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами. Одна из главных функций комплекса Гольджи - формирование готовых секреторных продуктов, которые выводятся за пределы клетки путем экзоцитоза. Важнейшими для клетки функциями комплекса Гольджи также являются обновление клеточных мембран, в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки. Комплекс Гольджи считается источником образования первичных лизосом, хотя их ферменты синтезируются и в гранулярной сети.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-15.jpg" alt=">Митохондрии Митохондрия - симбиотический организм. Предшественницей была "> Митохондрии Митохондрия - симбиотический организм. Предшественницей была бактерия. Имеется собственные ДНК, рибосомы, двойная мембрана. Внутренняя мембрана имеет большое количество впячиваний - крист. Осуществляет процесс дыхания в клетке. Синтезирует АТФ из АДФ и обеспечивает таким образом клетку энергией.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-16.jpg" alt=">Лизосомы Лизосома - небольшое тельце, ограниченное от цитоплазмы одинарной мембраной. В ней находятся литические"> Лизосомы Лизосома - небольшое тельце, ограниченное от цитоплазмы одинарной мембраной. В ней находятся литические ферменты, способные расщепить все биополимеры. Основная функция - автолиз - то есть расщепление отдельных органоидов, участков цитоплазмы клетки.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-17.jpg" alt=">Пероксисомы Пероксисомы- или микротельца. Округлой формы. Содержат одну "> Пероксисомы Пероксисомы- или микротельца. Округлой формы. Содержат одну мембрану, не содержат ДНК и рибосом. Утилизируют кислород в клетке. (кислород очень вреден для клетки. Кислородом отбеливают)

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-18.jpg" alt=">Рибосомы - мельчайшие органоиды. Находятся в ЭПР, цитоплазме, хлоропластах, митохондриях. Синтезируют белки,"> Рибосомы - мельчайшие органоиды. Находятся в ЭПР, цитоплазме, хлоропластах, митохондриях. Синтезируют белки, необходимые клетке, отдельным органоидам. К мембранам эндоплазматической сети прикреплено большое число рибосом - мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм и состоящих из РНК и белка. На рибосомах и происходит синтез белков. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. В цитоплазме клетки есть и свободные, не прикрепленные к мембранам эндоплазматической сети рибосомы. Как правило, они располагаются группами, на них тоже синтезируются белки, используемые самой клеткой.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-19.jpg" alt="> Цитоскелет - трехмерная сеть нитей, которая пронизывает клетку. Поддерживает"> Цитоскелет - трехмерная сеть нитей, которая пронизывает клетку. Поддерживает форму клетки, не позволяет органоидам перемещаться, защищает их от повреждения, является амортизатором. Состоит из микротрубочек и более мелких микрофиламентов. Микротрубочки построены из белка тубулина, микрофиламенты - из актина. Могут собираться и разбираться.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-20.jpg" alt=">Клеточная стенка Клеточная стенка- твердая оболочка растительной клетки. Придает"> Клеточная стенка Клеточная стенка- твердая оболочка растительной клетки. Придает форму клетке. Защищает от повреждений. Она прозрачна, пропускает солнечный свет и воду. В ней есть поры, которые обеспечивают взаимосвязь клеток. Состоит из целлюлозы и матрикса. В матриксе содержится гемицеллюлоза и пектиновые вещества.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-21.jpg" alt=">Вакуоль - органоид, отделенный от цитоплазмы. Вакуоль заполнена клеточным"> Вакуоль - органоид, отделенный от цитоплазмы. Вакуоль заполнена клеточным соком. Вакуоль обеспечивает хранение различных веществ - ионов, пигментов, органических кислот; лизис веществ, защита от травоядных, т. к. в ней может находится большое количество токсичных веществ; обеспечивает пигментацию - пигменты находятся в вакуоли; изолирование токсичных веществ.

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-22.jpg" alt=">Пластиды- найдены только в клетках высших растений и водорослей. Предшественницей была"> Пластиды- найдены только в клетках высших растений и водорослей. Предшественницей была цианобактерия, которая стала симбиотическим организмом. Имеет двойную мембрану. Внутри находится кольцевая молекула ДНК, рибосомы. Выделяют: 1)хлоропласты- зеленые пластиды, в которых осуществляется фотосинтез. 2) Хромопласты - желтые, оранжевые и красные пластиды. Образуются при разрушении хлорофилла (листья осенью, помидоры, морковь)

Src="https://present5.com/presentation/3/3887616_437514243.pdf-img/3887616_437514243.pdf-23.jpg" alt=">3)Амилопласты 3) Амилопласты - неокрашенные пластиды. Заполнены крахмалом. "> 3)Амилопласты 3) Амилопласты - неокрашенные пластиды. Заполнены крахмалом. Выполняют запасающую функцию. (клубень картофеля). 4) Этиопласты - развиваются у растений, находящихся в темноте. Под воздействием света превращаются в хлоропласты Новые пластиды образуются за счет деления уже имеющихся пластид. При мутации нескольких пластид образуются химеры. У химер один лист может быть белым, а другой - зеленым или только часть листа будет белой.

Наука, изучающая строение и функции клеток, называется цитология .

Клетка - элементарная структурная и функциональная единица живого.

Клетки, несмотря на свои малые размеры, устроены очень сложно. Внутреннее полужидкое содержимое клетки получило название цитоплазмы .

Цитоплазма является внутренней средой клетки, где проходят различные процессы и расположены компоненты клетки - органеллы (органоиды).

Клеточное ядро

Клеточное ядро - это важнейшая часть клетки.
От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. В оболочке ядра имеются многочисленные поры для того, чтобы различные вещества могли попадать из цитоплазмы в ядро, и наоборот.
Внутреннее содержимое ядра получило название кариоплазмы или ядерного сока . В ядерном соке расположены хроматин и ядрышко .
Хроматин представляет собой нити ДНК. Если клетка начинает делиться, то нити хроматина плотно накручиваются спиралью на особые белки, как нитки на катушку. Такие плотные образования хорошо видны в микроскоп и называются хромосомами .

Ядро содержит генетическую информацию и управляет жизнедеятельностью клетки.

Ядрышко представляет собой плотное округлое тело внутри ядра. Обычно в ядре клетки бывает от одного до семи ядрышек. Они хорошо видны между делениями клетки, а во время деления - разрушаются.


Функция ядрышек - синтез РНК и белков, из которых формируются особые органоиды - рибосомы .
Рибосомы участвуют в биосинтезе белка. В цитоплазме рибосомы чаще всего расположены на шероховатой эндоплазматической сети . Реже они свободно взвешены в цитоплазме клетки.

Эндоплазматическая сеть (ЭПС) участвует в синтезе белков клетки и транспортировке веществ внутри клетки.

Значительная часть синтезируемых клеткой веществ (белков, жиров, углеводов) не расходуется сразу, а по каналам ЭПС поступает для хранения в особые полости, уложенные своеобразными стопками, “цистернами”, и отграниченные от цитоплазмы мембраной. Эти полости получили название аппарат (комплекс) Гольджи . Чаще всего цистерны аппарата Гольджи расположены вблизи от ядра клетки.
Аппарат Гольджи принимает участие в преобразовании белков клетки и синтезирует лизосомы - пищеварительные органеллы клетки.
Лизосомы представляют собой пищеварительные ферменты, “упаковываются” в мембранные пузырьки, отпочковываются и разносятся по цитоплазме.
В комплексе Гольджи также накапливаются вещества, которые клетка синтезирует для нужд всего организма и которые выводятся из клетки наружу.

Митохондрии - энергетические органоиды клеток. Они преобразуют питательные вещества в энергию (АТФ), участвуют в дыхании клетки.

Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы - кристы.

Плазматическая мембрана

Чтобы клетка представляла собой единую систему, необходимо, чтобы все ее части (цитоплазма, ядро, органоиды) удерживались вместе. Для этого в процессе эволюции развилась плазматическая мембрана , которая, окружая каждую клетку, отделяет ее от внешней среды. Наружная мембрана защищает внутреннее содержимое клетки - цитоплазму и ядро - от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.

Строение мембраны одинаково у всех клеток. Основу мембраны составляет двойной слой молекул липидов, в котором расположены многочисленные молекулы белков. Некоторые белки находятся на поверхности липидного слоя, другие - пронизывают оба слоя липидов насквозь.

Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из нее могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы (молекулы пищевых веществ - белки, углеводы, липиды) через мембранные каналы пройти не могут и попадают в клетку при помощи фагоцитоза или пиноцитоза:

  • В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. Этот процесс называется фагоцитозом (клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки (клеточной оболочкой) и не могут захватывать вещества при помощи фагоцитоза).
  • Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твердые частицы, а капельки жидкости с растворенными в ней веществами. Это один из основных механизмов проникновения веществ в клетку.

Мельчайшими единицами живого. Однако многие высокодифференцированные клетки эту способность утратили. Цитология как наука В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли как важнейших единиц, обеспечивающих физическую основу наследственности и процесса развития. Развитие новых методов. Вначале при...

Как «прекрасный май, который цветет лишь однажды, и никогда более» (И. Гете), исчерпала себя и была смещена христианским Средневековьем . 2. Клетка как структурная и функциональная единица живого. Состав и строение клетки Современная клеточная теория включает следующие положения: 1. Все живые организмы состоят из клеток. Клетка – структурная, функциональная единица живого, ...

0,05 - 0,10 Кальций Магний Натрий Железо Цинк Медь Йод Фтор 0,04 - 2,00 0,02 - 0,03 0,02 - 0,03 0,01 - 0,015 0,0003 0,0002 0,0001 0,0001 Содержание в клетке химических соединений Соединения (в %) Неорганические Органические Вода Неорганические вещества 70 - 80 1,0 - 1,5 Белки Углеводы Жиры Нуклеиновые кислоты 10 - 20 0,2 ...

И эти два органоида, как отмечено выше, представляют единый аппарат синтеза и транспортировки образующихся в клетке белков. Комплекс Гольджи. Комплекс Гольджи – органоид клетки, названный так по имени итальянского ученого К. Гольджи, который впервые увидел его в цитоплазме нервных клеток (1898) и обозначил как сетчатый аппарат. Сейчас комплекс Гольджи обнаружен во всех клетках растительных и...


Растение, как и всякий живой организм, состоит из клеток, причем каждая клетка порождается тоже клеткой. Клетка - это простейшая и обязательная единица живого, это его элемент, основа строения, развития и всей жизнедеятельности организма.

Существуют растения, построенные из одной-единственной клетки. К ним относятся одноклеточные водоросли и одноклеточные грибы. Обычно это микроскопические организмы, но есть и довольно крупные одноклеточные (длина одноклеточной морской водоросли ацетабулярии достигает 7 см). Большинство растений, с которыми мы сталкиваемся в повседневной жизни, - это многоклеточные организмы, построенные из большого числа клеток. Например, в одном листе древесного растения их около 20 000 000. Если дерево имеет 200 000 листьев (а это вполне реальная цифра), то число клеток во всех них составляет 4 000 000 000 000. Дерево в целом содержит еще раз в 15 больше клеток.

Растения, за исключением некоторых низших, состоят из органов, каждый из которых выполняет свою функцию в организме. Например, у цветковых растений органами являются корень, стебель, лист, цветок. Каждый орган обычно построен из нескольких тканей. Ткань - это собрание клеток, сходных по строению и функциям. Клетки каждой ткани имеют свою специальность. Выполняя работу по своей специальности, они вносят вклад в жизнь целого растения, которая состоит в сочетании и взаимодействии разных видов работы различных клеток, органов, тканей.

Основными, самыми общими компонентами, из которых построены клетки, являются ядро, цитоплазма с многочисленными органоидами различного строения и функций, оболочка, вакуоль. Оболочка покрывает клетку снаружи, под ней находится цитоплазма, в ней - ядро и одна или несколько вакуолей. Как строение, так и свойства клеток разных тканей в связи с их разной специализацией резко различаются. Перечисленные основные компоненты и органоиды развиты в них в различной степени, имеют неодинаковое строение, а иногда тот или иной компонент может вовсе отсутствовать.

Главнейшими группами тканей, из которых построены вегетативные (непосредственно не связанные с размножением) органы высшего растения, являются следующие: покровные, основные, механические, проводящие, выделительные, меристематические. В каждую группу обычно входит несколько тканей, имеющих сходную специализацию, но построенных каждая по-своему из определенного вида клеток. Ткани в органах не изолированы друг от друга, а составляют системы тканей, в которых элементы отдельных тканей чередуются. Так, древесина - это система из механической и проводящей, а иногда и основной ткани.

В растительной клетке следует различать клеточную оболочку и содержимое. Основные жизненные свойства присуши именно содержимому клетки - протопласту. Кроме того, для взрослой растительной клетки характерно наличие вакуоли - полости, заполненной клеточным соком. Протопласт состоит из ядра, цитоплазмы и включенных в нее крупных органелл, видимых в световой микроскоп: пластид, митохондрий. В свою очередь цитоплазма представляет собой сложную систему с многочисленными мембранными структурами, такими, как аппарат Гольджи, эндоплазматический ретикулум, лизосомы, и немембранными структурами-микротрубочки, рибосомы и др. Все указанные органеллы погружены в матрикс цитоплазмы - гиалоплазму, или основную плазму.

Каждая из органелл имеет свою структуру и ультраструктуру. Под ультраструктурой понимается расположение в пространстве отдельных молекул, составляющих данную органеллу. Даже с помощью электронного микроскопа далеко не всегда можно увидеть ультраструктуру более мелких органелл (рибосом). По мере развития науки открываются все новые структурные образования, находящиеся в цитоплазме, и в этой связи наши современные представления о ней ни в коей мере не являются окончательными. Размеры клеток и отдельных органелл приблизительно следующие: клетка 10 мкм, ядро 5-30 мкм, хлоропласт 2-6 мкм, митохондрии 0,5-5 мкм, рибосомы 25 нм. В создании надмолекулярных структур отдельных органоидов клетки большое значение имеют так называемые слабые химические связи.

Наиболее важную роль играют водородные, вандерваальсовы и ионные связи. Важнейшей особенностью является то, что энергия образования этих связей незначительна и лишь немного превышает кинетическую энергию теплового движения молекул. Именно поэтому слабые связи легко возникают и легко разрушаются. Средняя продолжительность жизни слабой связи составляет лишь долю секунды. Наряду со слабыми химическими связями большое значение имеют гидрофобные взаимодействия. Обусловлены они тем, что гидрофобные молекулы или части молекул, находящиеся в водной среде, располагаются так, чтобы не контактировать с водой. При этом молекулы воды, объединяясь друг с другом, как бы выталкивают неполярные группы, сближая их. Именно слабые связи определяют в большой степени конформацию (форму) таких макромолекул, как белки и нуклеиновые кислоты, лежат в основе взаимодействия молекул и, как следствие, в образовании и самосборке субклеточных структур, в том числе органелл клетки.

Для поддержания сложной структуры цитоплазмы необходима энергия. Согласно второму закону термодинамики всякая система стремится к уменьшению упорядоченности, к энтропии. Поэтому любое упорядоченное расположение молекул требует притока энергии извне. Выяснение физиологических функций отдельных органелл связано с разработкой метода их изоляции (выделения из клетки). Таков метод дифференциального центрифугирования, который основан на разделении отдельных компонентов протопласта. В зависимости от ускорения удается выделить все более и более мелкие фракции органелл. Совместное применение методов электронной мик-роскопии и дифференциального центрифугирования дало возможность наметить связи между структурой и функциями отдельных органелл.

Растительная клетка. Её строение, функции, химический состав. Органоиды клетки.

Название органоида

Строение

Функции

Мембрана

Состоит из клетчатки. Она очень упругая (это ее физическое св-во). Состоит из 3-х слоев: внутренний и внешний из которых состоят из молекул белка; средний - из двухслойной молекулы фосфолипидов. Внешняя оболочка – мягкая, образована из молекул гликокаликса.

Опорная функция

Плазмалемма

Очень тонкая (10 мм). Внешняя сторона образована из углеводов, внутренняя – из толстой белковой молекулы. Покрыта молекулами углеводо-гликоликса толщиной 3- 4 мм. Химическую основу мембраны составляют: белки - 60%, жиры - 40% и углеводы - 2-10%.

*Проницаемость;

*Транспортная ф-я;

*Защитная ф-я.

Цитоплазма

Полужидкое вещество, окружающее ядро-клетки. Основа - гиоплазма. Ее состав разнообразен. В ее составе содержатся гранулированные тела, белки, ферменты, нуклеиновые кислоты, углеводы, молекулы АТФ; содержит молекулы белка тубулина.

Может переходить из 1 состояния (жидкого) в другое - твердое и наоборот.

МЕМБРАННЫЕ ОРГАНОИДЫ

ЭПС (эндоплазматическая сеть)

Состоит из полостей и копальцев. Делится на 2 вида - гранулярную и гладкую. Гранулярная - продолговатые копальца и полости; имеются плотные гранулы. Поры ЭПС взаимосвязаны с порами ядерной мембраны.

*Уч-ет в синтезе молекул гликолипидов и их транспортировке;

*Уч-ет в биосинтезе белка, транспортировке синтезирующих веществ.

Комплекс Гольджи

Находится в нервных клетках. Его мембрана очень хорошо впитывает раствор осмия. Комплекс Гольджи входит в состав всех эукариотических клеток. Иногда встречается в виде сети, соединенной между собой системой полостей. Бывает овальной или сердцевидной.

*Уч-ет в формировании продуктов жизнедеятельности клетки;

*Распадается до диктиосомы (при делении);

*Выделительная функция.

Лизосома

Означает растворитель вещ-в. Встречается во всех клетках эукариот (больше в лейкоцитах). В составе содержатся ферменты гидролиза. Лизосома окружена липопротеидной мембраной, при ее разрушении ферменты лизосом воздействуют на внешнюю среду. В состав лизосом входит около 60 гидролизных ферментов.

*Ф-я всасывания;

*Ф-я выделения;

*Функция защитная.

Митохондрия

В клетке имеет форму зерна, гранулы и встречается в кол-ве от 1 до 100 тысяч. Кол-во зависит от активности клетки. Иногда мит-рия находится в непрерывном движении. Ее ср. длина 10 мкм, диаметр 0,2-1 мкм. Она относится к друмембранным органоидам и сост. из: а) наружной мембраны, б) внутренней мембраны, в) межмембранного пространства. В матриксе митохондрии встречаются кольцевидные ДНК и РНК, рибосомы, гранулы, тельца. Синтезируются белки и жиры. Мит-рия состоит на 65-70% из белка, 25-30% из липидов, нуклеиновых кислот и витаминов. Митохондрия - это система синтеза белка.

*Ф-ю мит-рии иногда выполняют хлоропласты;

*Транспортная ф-я;

*Синтез белка;

*Синтез АТФ.

Пластиды - мембранные органоиды

Это основной органоид растит. клетки.

1) хлоропласты - зеленые, по форме овальные, длина 5 мкм, ширина 2-4 мкм, толщина – 7 мкм. Внутри много широко мембранных тилакоидов и составляющих его массу белков стром. Имеются нуклеиновые кислоты - ДНК, РНК, рибосомы. Размножаются делением.

2) хромопласты - разного цвета. В них находятся различные пигменты. Их роль велика.

3) лейкопласты - бесцветные. Находятся в тканях половых клеток, цитоплазмах спор и материнских гамет, семенах, плодах, корнях. В них идет синтез и накопление крахмала.

*Выполняют процесс фотосинтеза

НЕМЕМБРАННЫЕ ОРГАНОИДЫ

Рибосома

Сост. из двух частей: большая и малая. Имеет яйцеобразную форму, ср. диаметр-15-35нм. Бывают 2-х видов: эукариотические и прокариотические. Общ. Размер эукариотических: 80s, малой - 20s, большой - 60s. Прокариотических: от 30s до 70s (колеблется). Рибосома сост. из РНК (на 50-60% из белков).

*Тут происходит биосинтез белка;

*Синтез молекулы белка;

*Транспортная ф-я.

Клеточный центр

Сост. из 2-х центриолей, кот имеют цилиндрическую форму, длина из 1 мкм. Центр делится пополам перед делением клетки и подтягивается от экватора к полюсам. Кл. центр удваивается путем деления.

*Уч-ет в мейозе и митозе

Клеточное ядро

Имеет сложное строение. Ядерная оболочка сост. из 2-х трехслойных мембран. Поры ядерной мембраны открываются подобно порам ЭПС. В период клетки мембрана ядра исчезает и вновь образуется в новых клетках. Мембранам св-нна полупроницаемость. Ядро сост. из хромосом, сока ядра, ядрышка, РНК и др. частей, сохраняющих наследственную инф-ию и св-ва живого организма.

*Защитная ф-я



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии