История открытия телескопа. Краткая история телескопов. Нужна помощь по изучению какой-либы темы

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Мечта каждого астронома – открыть новую планету. Раньше это случалось редко: одна-две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких – по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.

Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.

Книга:

Эволюция телескопа

<<< Назад
Вперед >>>

Эволюция телескопа

Итак, в XVIII в. вперед вырвался рефлектор с металлическим зеркалом. Но в эти же годы постепенно совершенствовалась и конструкция рефрактора. Важнейшим событием в оптике стало открытие ахроматического объектива. Это сделал в 1729 г. адвокат Честер Мур Холл, заметивший, что объектив, составленный из двух линз – выпуклой из легкого стекла крона и вогнутой из тяжелого флинта (соответственно с ничтожной и с большой примесью окиси свинца), – не окрашивает изображений. Такой «дублет» имел значительно меньшую хроматическую аберрацию, чем длиннофокусные одиночные линзы. Холл никак не закрепил за собой это изобретение. Знавший об открытии Холла Джон Доллонд в 1760 г. взял патент и стал выпускать ахроматические объективы. Но они были небольшого размера, не более 10–13 см, и качество стекла, особенно флинта, было невысоким. Поэтому конкурировать с зеркалами Шорта и Гершеля они не могли.

Однако ситуация изменилась после того, как швейцарец Пьер Луи Гинан после многих экспериментов, проводившихся в 1784–1790 гг., научился отливать заготовки линз из флинта великолепного качества. Сначала их диаметр был 13–15 см, но к 1820-м гг. он достиг 30–45 см. Одним из секретов успеха, ревностно охраняемых Гинаном, например, было то, что значительно более высокая однородность стеклянной массы достигалась при ее размешивании мешалкой из огнеупорной глины, а не из дерева. С 1806 по 1814 гг. Гинан работал в Германии, где его учеником был Йозеф фон Фраунгофер (1787–1826), быстро постигший искусство стекловарения и ставший ведущим оптиком Германии. Один из его лучших рефракторов диаметром 24 см в 1824 г. приобрела Россия для Дерптской обсерватории (ныне г. Тарту, Эстония), где этот телескоп до сих пор и находится. В нем впервые была применена современная экваториальная установка с двумя осями – осью склонения и перпендикулярной к ней полярной осью, вокруг которой инструмент непрерывно поворачивался часовым механизмом со скоростью вращения Земли, но в обратном направлении. После введения в астрономию фотографии, требовавшей длительных экспозиций, такая монтировка телескопов стала абсолютно необходимой. На рефракторе Фраунгофера впервые был установлен и окулярный микрометр, с помощью которого В. Я. Струве в 1837 г. первым измерил параллакс звезды, Веги. Таким образом, дерптский рефрактор Фраунгофера стал прообразом современных телескопов и позволил осуществить прорыв в астрономии – впервые измерить расстояния до звезд.



К середине XIX в. все обсерватории мира стали пользоваться рефракторами, оказавшимися для астрометрических целей значительно удобнее рефлекторов с их быстро тускнеющими бронзовыми зеркалами. Да и проницающая способность рефракторов оказалась более высокой: в 1848 г. спутник Сатурна Гиперион позволили заметить только два телескопа – 24-дюймовый рефлектор Ласселла и 15-дюймовый рефрактор Бондов, в то время крупнейший в мире. Можно сказать, что в этот момент рефлекторы уступили свое первенство по «зоркости». Лишь отдельные энтузиасты продолжали строить крупные рефлекторы. Уже знакомый нам Уильям Парсонс (лорд Росс) построил несколько 91-сантиметровых ньютоновских рефлекторов, а в 1845 г. создал колоссальный 182-сантиметровый рефлектор «Парсонстаунский левиафан», с помощью которого открыл множество новых деталей в туманностях, в частности спиральную структуру некоторых из них, оказавшихся галактиками.

Перелом в судьбе телескопов-рефлекторов наступил в 1853 г., когда Юстус фон Либих предложил метод выделения металлического серебра из раствора нитрата серебра для наружного покрытия стекла тонкой отражающей пленкой. В 1856 г. немецкий физик Карл Август фон Штейнгейль и независимо от него французский физик Леон Фуко применили этот метод для изготовления астрономических зеркал. С этого момента почти без исключений зеркала телескопов делали из стекла, которое легче бронзы и проще в обработке. К тому же серебряная пленка лучше отражает свет, чем полированный спекулум. Когда слой серебра тускнеет, его просто смывают и наносят новый; металлическое же зеркало в этом случае необходимо заново полировать.



Развив метод Хэдли, Фуко предложил новый способ проверки сферической формы зеркала. Он освещал его через маленькое отверстие, помещенное чуть в стороне от центра кривизны сферы, и рассматривал изображение этого отверстия, образованное рядом с ним отраженными лучами. Это же делал 200 лет назад и Хэдли. Но Фуко рассматривал изображение не на экране, как Хэдли, а глазом, поместив перед ним пластинку с острым и ровным прямолинейным краем – «нож». Двигая ее, Фуко наблюдал, как изменяется освещенность поверхности зеркала, и по форме тени легко определял отклонение поверхности от идеальной сферы. Этот метод настолько прост и чувствителен, что «нож Фуко» до сих пор применяется при изготовлении зеркал.



В то время как технология изготовления рефлекторов во второй половине XIX в. быстро совершенствовалась, эволюция рефрактора практически остановилась. Современные рефракторы мало изменились с эпохи Фраунгофера. Правда, улучшились качество и ассортимент оптического стекла, но полностью победить хроматическую аберрацию все равно не удалось. Ее сводят к минимуму лишь в небольшой области спектра: в желто-зеленой, если телескоп предназначен для визуальных наблюдений, и в голубой, если для фотографических. Оба крупнейших в мире рефрактора, Ликский и Йерксский, – визуальные, с объективами диаметром около 1 м. Оба были построены в конце XIX в. и установлены на экваториальных монтировках немецкого типа, какие делал Фраунгофер. Заготовки для линз их объективов были отлиты во Франции, а сами объективы изготовила знаменитая американская фирма «Алван Кларк и сыновья».



Хотя ахроматические объективы уже применялись, рефракторы все равно делали весьма длинными. Отчасти это диктовалось желанием окончательно устранить хроматическую аберрацию, но были и другие соображения. Дело в том, что размер изображения в фокальной плоскости объектива зависит от его фокусного расстояния. У 40-дюймового Йерксского рефрактора фокусное расстояние 19 м, при котором угол в 0,5?, соответствующий высочайшей четкости изображений при абсолютно спокойной атмосфере, эквивалентен расстоянию 37 мкм в фокальной плоскости. Примерно такого же размера и зерно фотоэмульсии. Поэтому такой телескоп мог фиксировать на фотопластинках самые четкие изображения. Да и визуально рассматривать в него крупные изображения тесных двойных звезд и мелких деталей на поверхности планет было очень удобно. У Йерксского рефрактора диаметр лунного диска в фокусе получается около 17 см. Размер фотопластинок у этого телескопа 20x25 см, так что полная Луна легко умещается на них. Длиннофокусные рефракторы позволили получить прекрасные фотографии целиком всего лунного диска. Заметим, что астрономы для съемки неба всегда использовали не пленку, а именно стеклянные фотопластинки из-за их высокой жесткости: даже через 100 лет хранения они не деформируются и позволяют измерять относительное положение звездных изображений с точностью до 3 мкм, что для крупных рефракторов, подобных Йерксскому, соответствует на небе дуге в 0,03?.



Представление о крупнейшем в мире рефракторе дают следующие цифры: основание монтировки Йерксского телескопа имеет высоту Ими весит 50 т. Полярная и экваториальная оси вместе весят 5 т. Часовой механизм с приводом на большую шестерню в верхней части полярной оси весит 20 т. Труба телескопа имеет в длину 18,5 м и весит 6 т. У Ликского телескопа труба при длине 17,4 м и диаметре 1,22 м весит около 12 т.





Попытки создать рефракторы крупнее Йерксского оказались неудачными. Более крупные объективы для полноповоротных телескопов вообще никогда не изготавливались. На Парижской выставке 1900 г. демонстрировался неподвижный горизонтальный телескоп-рефрактор с объективом 125 см и сидеростатом (система из двух плоских вращающихся зеркал) для наведения на объекты, но для научной работы он не использовался. До тех пор, пока линзы делаются из стекла, изготовить объективы большего размера не удастся. Даже если оптическое качество стеклянного диска окажется превосходным, огромные линзы будут прогибаться под собственным весом.

Хотя в XX в. строительство рефракторов продолжалось, все они имели скромный диаметр (20–40 см) и предназначались либо для публичных обсерваторий, либо для фотографирования больших площадок неба, поскольку линзовый объектив легче сделать широкоугольным, чем зеркальный.







Но зеркальные объективы имеют несколько важных преимуществ. Поскольку свет отражается от их наружной поверхности, оптическое качество стекла не имеет значения. К тому же зеркало можно поддерживать снизу, чтобы оно не гнулось. Его вес можно значительно снизить, придав ему форму пчелиных сот. Труба и монтировка у рефлектора, в котором тяжелое зеркало находится снизу, значительно проще, чем у рефрактора сравнимого размера, у которого объектив вынесен далеко от осей вращения. Все это определило победу крупных рефлекторов над достигшими своего предела рефракторами.

Сейчас в мире работают сотни крупных рефлекторов; около 30 из них имеют апертуру (полезный диаметр зеркала) более 4 м. Как правило, это телескопы со сменными вторичными зеркалами, что позволяет, в зависимости от задачи, вести наблюдения в первичном фокусе главного зеркала или по оптической схеме Ньютона, Кассегрена, Несмита или куде? (от фр. coude – изгиб).





Каждая из них имеет свои преимущества. В первичном (главном) фокусе минимальны потери света, но неудобно работать, так как он находится на вершине телескопа, да и громоздкую аппаратуру там расположить нельзя. В фокусе Кассегрена больше масштаб изображения и удобнее работать (он внизу). Фокус Несмита, выведенный в ось склонений, и особенно фокус куде, выведенный в полярную ось, позволяют использовать тяжелую светоприемную аппаратуру, например спектрографы высокого разрешения.



XX век стал эпохой триумфа больших рефлекторов. В первой половине века ими располагала обсерватория Маунт-Вилсон, созданная вблизи Лос-Анджелеса по инициативе Джорджа Эллери Хейла (1868–1938), блестящего астронома и организатора науки.



Именно он в начале своей карьеры стимулировал создание 40-дюймового рефрактора и сам с 1895 по 1905 гг. возглавлял Йерксскую обсерваторию. Убедившись в ограниченных возможностях равнинных обсерваторий и рефракторов, Хейл с помощью Фонда Карнеги основал горную обсерваторию Маунт-Вилсон на юге штата Калифорния, на высоте 1742 м. Для изучения Солнца на ней были созданы крупнейшие в мире башенные телескопы, а первым «ночным» инструментом стал 60-дюймовый (1,5 м) рефлектор «Хейл», названный так в честь отца астронома, Уильяма Хейла, финансировавшего изготовление зеркала. Этот телескоп с 1908 по 1917 гг. дер жал мировое первенство и прославился выполненными на нем важными работами в области звездной спектроскопии и изучения галактик. Ныне этот инструмент завершил свою работу для науки и стал доступным для публики (в июне 2009 г. за полночи наблюдений на нем нужно было заплатить 900 долларов).

В 1917 г. на обсерватории Маунт-Вилсон начал работать 100-дюймовый (2,5 м) рефлектор «Хукер», остававшийся крупнейшим в мире до 1948 г. Его зеркало, оплаченное американским меценатом Дж. Хукером, отлили во Франции, а полировал его с 1910 по 1915 гг. знаменитый американский оптик и конструктор телескопов Джордж Ричи (1864–1945). Труба телескопа была укреплена во вращающейся прямоугольной раме, игравшей роль полярной оси. Имеющая две опоры – на северном и южном концах, такая монтировка (ее называют английской) обладает высокой прочностью, но не позволяет наблюдать звезды вблизи полюса. Этот телескоп знаменит тем, что на нем впервые был измерен размер некоторых звезд (А. Майкельсон и Ф. Пиз, 1920–1923 гг.) и с его помощью Э. Хаббл осуществил большинство своих исследований в «царстве туманностей». В 1985 г. работа на телескопе была прекращена, но его решили сохранить как реликвию. Однако в 1992 г. он был модернизирован и вновь стал использоваться.



В 1948 г. с помощью Рокфеллеровского фонда был создан и до 1975 г. оставался крупнейшим в мире 200-дюймовый (5 м) рефлектор «Хейл» на обсерватории Маунт-Паломар в Калифорнии. На этот раз телескоп был назван именем сына-астронома, Джорджа Эллери Хейла, организовавшего его строительство. Полярная ось телескопа тоже выполнена в виде рамы, но ее северная сторона сделана в форме подковы, что позволяет наблюдать околополярные звезды. Плавное вращение 540-тонного телескопа обеспечивается тем, что подковообразная опора «плавает» на тонком слое масла, нагнетаемом под давлением 20 атмосфер. На верхнем конце ферменной трубы телескопа находится небольшая кабина, в которой астроном ведет наблюдения в фокусе главного зеркала, на расстоянии 17 м от него. С помощью сменных вторичных зеркал телескоп может работать в системах Кассегрена или куде с эквивалентными фокусными расстояниями соответственно 81 или 152 м.

С 1975 по 1991 гг. крупнейшим был 6-метровый рефлектор БТА (Большой телескоп альт-азимутальный) Российской академии наук, установленный в Специальной астрофизической обсерватории (САО) близ станицы Зеленчукская на Северном Кавказе, на высоте 2170 м. Фокусное расстояние главного зеркала этого телескопа 24 м, масса главного зеркала – 42 т, а весь телескоп весит 850 т. Этот колоссальный инструмент был спроектирован Б. К. Иоаннисиани и построен в Ленинграде на фирме ЛОМО. Телескоп БТА завершил эволюцию классических рефлекторов с жесткими монолитными зеркалами. Требование жесткости при диаметре более 6 м делает их безнадежно тяжелыми. Уже создатели телескопа БТА в борьбе с весом были вынуждены искать нетрадиционные решения. БТА стал первым современным телескопом, установленным на альт-азимутальной монтировке, имеющей вертикальную и горизонтальную оси вращения. Это существенно упростило конструкцию телескопа (рис. 3.21) и уменьшило размер его башни, хотя для компенсации суточного вращения Земли приходится вращать инструмент вокруг двух осей с переменной скоростью. Теперь по такой схеме строят все крупные телескопы.

Нужно заметить, что зеркала телескопов давно уже не покрывают серебром. В 1930-е гг. Р. Уильямс, Дж. Стронг и Ч. Картрайт разработали технику алюминирования зеркал. Их помещают в вакуумную камеру, где под действием электрического тока испаряются алюминиевые проволочки, и тонкая алюминиевая пленка покрывает поверхность зеркала, сообщая ей лучшие отражающие свойства, чем это делало серебро. На воздухе отражающая поверхность тотчас же покрывается прозрачной пленкой окиси алюминия толщиной всего в один атом, которая не дает зеркальному слою тускнеть. Но все же раз в несколько лет зеркало приходится алюминировать заново, поэтому рядом с каждым крупным телескопом есть вакуумная камера соответствующего диаметра.



Мы еще вернемся к современным большим телескопам, а сейчас обсудим специализированные инструменты среднего калибра, играющие очень важную роль в исследовании Солнечной системы. Одна из проблем ее изучения заключается в том, что мы находимся внутри нее. Поэтому, чтобы искать новые объекты Солнечной системы и изучать уже открытые, астрономы должны наблюдать все небо, во всех направлениях. К сожалению, с помощью обычного рефлектора можно сфотографировать лишь маленькую область на небе. Основная причина в том, что эти телескопы страдают двумя аберрациями – комой и астигматизмом, которые сильно искажают изображения звезд при удалении от оптической оси телескопа. Например, в главном фокусе 5-метрового Паломарского рефлектора поле с хорошим изображением имеет размер почтовой марки и покрывает на небе площадку с угловым размером 2,5?х2,5?. Разместив перед фотопластинкой специальный линзовый корректор, можно частично исправить искажения на краях, увеличив размер хорошего поля зрения в 10–15 раз. Но и при этом классический рефлектор имеет небольшое поле зрения, едва достигающее углового размера Луны. С таким телескопом невозможно проводить поисковые или патрульные работы, когда за короткое время требуется сфотографировать значительную часть неба.

Широкоугольный телескоп был создан в 1932 г. эстонским оптиком Бернхардом Шмидтом (1879–1935) на Гамбургской обсерватории. Он использовал сферическое главное зеркало, поставив перед ним для исправления сферической аберрации тонкую линзу сложной формы, так называемую коррекционную пластину. Она очень трудна в изготовлении и, будучи размещена в центре кривизны, на удвоенном фокусном расстоянии от зеркала, делает трубу инструмента довольно длинной. Но преимущества этой системы так велики, что в мире уже создано немало подобных телескопов; их называют камерами Шмидта, поскольку используют только для фотографирования неба. Крупнейшая изготовлена фирмой «Карл Цейсс» и находится в обсерватории им. К. Шварцшильда близ Йены (Германия). Построенная в 1960 г., она имеет сферическое зеркало диаметром 200 см с фокусным расстояние 400 см и коррекционную пластину диаметром 134 см (рис. 3.22). Поле зрения хорошего качества при этом 4,7°х4,7°. Любопытно, что этот телескоп может также работать по схеме Несмита и куде.

Вторая по размеру камера Шмидта работает с 1948 г. на обсерватории Маунт-Паломар и имеет зеркало диаметром 183 см и пластину 122 см. На фотопластинке 35x35 см она фотографирует область неба размером 6°х6°. С помощью этого инструмента создан знаменитый Паломарский атлас неба и обнаружено множество астероидов и спутников планет.



Но поскольку эта камера находится в Северном полушарии, ей недоступны наиболее южные части неба. Поэтому в 1973 г. в Австралии, на англо-австралийской обсерватории в Сайдинг Спринг была построена точно такая же камера для обзоров южного неба. Одним из крупнейших телескопов этого типа является также космический телескоп «Кеплер» (NASA), запущенный в марте 2009 г. Он имеет зеркало диаметром 1,4 м и пластину 0,95 м. Этот инструмент предназначен для поиска планет земного типа у других звезд.

Рис. 3.23. Телескоп системы Максутова-Кассегрена диаметром 102 мм на складном штативе с полувилочной монтировкой и автоматическим наведением. Мечта начинающего любителя астрономии! Телескоп снабжен искателем и окулярной призмой, позволяющей наблюдать в удобном положении. Максимальное штатное увеличение 240х. Прекрасно подходит для наблюдения Луны и планет. Изготовитель – фирма «Celestron»; цена – около 600 долларов.

Эта конструкция в разных модификациях нашла широкое применение при производстве как телескопов, так и длиннофокусных фотообъективов. Крупные камеры Максутова используют для массовой спектральной классификации звезд, помещая перед мениском тонкую стеклянную призму, превращающую изображение каждой звезды в ее маленький спектр. А среди любителей астрономии весьма популярны телескопы системы Максутова – Кассегрена, у которых вторичным зеркалом служит центральная часть мениска, покрытая отражающим слоем алюминия. У таких телескопов много преимуществ: при большом диаметре они короткие, обладают большим полем зрения и удобны в эксплуатации, поскольку мениск защищает зеркало от пыли и повреждений.

<<< Назад
Вперед >>>

Телескоп - это уникальный оптический прибор, предназначенный для наблюдения за небесными телами. Использование приборов позволяет рассмотреть самые разные объекты, не только те, которые располагаются недалеко от нас, но и те, которые находятся за тысячи световых лет от нашей планеты. Так что такое телескоп и кто его придумал?

Первый изобретатель

Телескопические устройства появились в семнадцатом веке. Однако по сей день ведутся дебаты, кто изобрел телескоп первым - Галилей или Липперсхей. Эти споры связаны с тем, что оба ученых примерно в одно время вели разработки оптических устройств.

В 1608 году Липперсхей разработал очки для знати, позволяющие видеть удаленные объекты вблизи. В это время велись военные переговоры. Армия быстро оценила пользу разработки и предложила Липперсхею не закреплять авторские права за устройством, а доработать его так, чтобы в него можно было бы смотреть двумя глазами. Ученый согласился.

Новую разработку ученого не удалось удержать втайне: сведения о ней были опубликованы в местных печатных изданиях. Журналисты того времени назвали прибор зрительной трубой. В ней использовалось две линзы, которые позволяли увеличить предметы и объекты. С 1609 года в Париже вовсю продавали трубы с трехкратным увеличением. С этого года какая-либо информация о Липперсхее исчезает из истории, а появляются сведения о другом ученом и его новых открытиях.

Примерно в те же годы итальянец Галилео занимался шлифовкой линз. В 1609 году он представил обществу новую разработку - телескоп с трехкратным увеличением. Телескоп Галилея имел более высокое качество изображения, чем трубы Липперсхея. Именно детище итальянского ученого получило название «телескоп».

В семнадцатом веке телескопы изготавливались голландскими учеными, но они имели низкое качество изображения. И только Галилею удалось разработать такую методику шлифовки линз, которая позволила увеличить четко объекты. Он смог получить двадцатикратное увеличение, что было в те времена настоящим прорывом в науке. Исходя из этого невозможно сказать, кто изобрел телескоп: если по официальной версии, то именно Галилео представил миру устройство, которое он назвал телескопом, а если смотреть по версии разработки оптического прибора для увеличения объектов, то первым был Липперсхей.

Первые наблюдения за небом

После появления первого телескопа были сделаны уникальные открытия. Галилео применил свою разработку для отслеживания небесных тел. Он первым увидел и зарисовал лунные кратеры, пятна на Солнце, а также рассмотрел звезды Млечного Пути, спутники Юпитера. Телескоп Галилея дал возможность увидеть кольца у Сатурна. К сведению, в мире до сих пор есть телескоп, работающий по тому же принципу, что и устройство Галилея. Он находится в Йоркской обсерватории. Аппарат имеет диаметр 102 сантиметра и исправно служит ученым для отслеживания небесных тел.

Современные телескопы

На протяжении столетий ученые постоянно изменяли устройства телескопов, разрабатывали новые модели, улучшали кратность увеличения. В результате удалось создать малые и большие телескопы, имеющие разное назначение.

Малые обычно применяют для домашних наблюдений за космическими объектами, а также для наблюдения за близкими космическими телами. Большие аппараты позволяют рассмотреть и сделать снимки небесных тел, расположенных в тысячах световых лет от Земли.

Виды телескопов

Существует несколько разновидностей телескопов:

  1. Зеркальные.
  2. Линзовые.
  3. Катадиоптрические.

К линзовым относят рефракторы Галилея. К зеркальным относят устройства рефлекторного типа. А что такое телескоп катадиоптрический? Это уникальная современная разработка, в которой сочетается линзовый и зеркальный прибор.

Линзовые телескопы

Телескопы в астрономии играют важную роль: они позволяют видеть кометы, планеты, звезды и другие космические объекты. Одними из первых разработок были линзовые аппараты.

В каждом телескопе есть линза. Это главная деталь любого устройства. Она преломляет лучи света и собирает их в точке, под названием фокус. Именно в ней строится изображение объекта. Чтобы рассмотреть картинку, используют окуляр.

Линза размещается таким образом, чтобы окуляр и фокус совпадали. В современных моделях для удобного наблюдения в телескоп применяют подвижные окуляры. Они помогают настроить резкость изображения.

Все телескопы обладают аберрацией - искажением рассматриваемого объекта. Линзовые телескопы имеют несколько искажений: хроматическую (искажаются красные и синие лучи) и сферическую аберрацию.

Зеркальные модели

Зеркальные телескопы называют рефлекторами. На них устанавливается сферическое зеркало, которое собирает световой пучок и отражает его с помощью зеркала на окуляр. Для зеркальных моделей не характерна хроматическая аберрация, так как свет не преломляется. Однако у зеркальных приборов выражена сферическая аберрация, которая ограничивает поле зрения телескопа.

В графических телескопах используются сложные конструкции, зеркала со сложными поверхностями, отличающиеся от сферических.

Несмотря на сложность конструкции, зеркальные модели легче разрабатывать, чем линзовые аналоги. Поэтому данный вид более распространен. Самый большой диаметр телескопа зеркального типа составляет более семнадцати метров. На территории России самый большой аппарат имеет диаметр шесть метров. На протяжении многих лет он считался самым большим в мире.

Характеристики телескопов

Многие покупают оптические аппараты для наблюдений за космическими телами. При выборе устройства важно знать не только то, что такое телескоп, но и то, какими характеристиками он обладает.

  1. Увеличение. Фокусное расстояние окуляра и объекта - это кратность увеличения телескопа. Если фокусное расстояние объектива два метра, а у окуляра - пять сантиметров, то такое устройство будет обладать сорокакратным увеличением. Если окуляр заменить, то увеличение будет другим.
  2. Разрешение. Как известно, свету свойственны преломление и дифракция. В идеале любое изображение звезды выглядит как диск с несколькими концентрическими кольцами, называемыми дифракционными. Размеры дисков ограничены только возможностями телескопа.

Телескопы без глаз

А что такое телескоп без глаза, для чего его используют? Как известно, у каждого человека глаза воспринимают изображение по-разному. Один глаз может видеть больше, а другой - меньше. Чтобы ученые смогли рассмотреть все, что им необходимо увидеть, применяют телескопы без глаз. Эти аппараты передают картинку на экраны мониторов, через которые каждый видит изображение именно таким, какое оно есть, без искажений. Для малых телескопов с этой целью разработаны камеры, подключаемые к аппаратам и снимающие небо.

Самыми современными методами видения космоса стало использование ПЗС камер. Это особые светочувствительные микросхемы, которые собирают информацию с телескопа и передают ее на ЭВМ. Получаемые с них данные настолько четкие, что невозможно представить, какими еще устройствами можно было бы получить такие сведения. Ведь глаз людей не может различать все оттенки с такой высокой четкостью, как это делают современные камеры.

Для измерения расстояний между звездами и другими объектами пользуются специальными приборами - спектрографами. Их подключают к телескопам.

Современный астрономический телескоп - это не одно устройство, а сразу несколько. Получаемые данные с нескольких аппаратов обрабатываются и выводятся на мониторы в виде изображений. Причем после обработки ученые получают изображения очень высокой четкости. Увидеть глазами в телескоп такие же четкие изображения космоса невозможно.

Радиотелескопы

Астрономы для своих научных разработок используют огромные радиотелескопы. Чаще всего они выглядят как огромные металлические чаши с параболической формой. Антенны собирают получаемый сигнал и обрабатывают получаемую информацию в изображения. Радиотелескопы могут принимать только одну волну сигналов.

Инфракрасные модели

Ярким примером инфракрасного телескопа является аппарат имени Хаббла, хотя он может быть одновременно и оптическим. Во многом конструкция инфракрасных телескопов схожа с конструкцией оптических зеркальных моделей. Тепловые лучи отражаются обычным телескопическим объективом и фокусируются в одной точке, где находится прибор, измеряющий тепло. Полученные тепловые лучи пропускаются через тепловые фильтры. Только после этого происходит фотографирование.

Ультрафиолетовые телескопы

При фотографировании фотопленка может засвечиваться ультрафиолетовыми лучами. В некоторой части ультрафиолетового диапазона возможно принимать изображения без обработки и засвечивания. А в некоторых случаях необходимо, чтобы лучи света прошли через специальную конструкцию - фильтр. Их использование помогает выделить излучение определенных участков.

Существуют и другие виды телескопов, каждый из которых имеет свое назначение и особые характеристики. Это такие модели, как рентгеновские, гамма-телескопы. По своему назначению все существующие модели можно разделить на любительские и профессиональные. И это далеко не вся классификация аппаратов для отслеживания небесных тел.

МОУ Озёрская СОШ

«История создания телескопа»

Исполнитель: Плохотнюк Алёна,

учащаяся 10 класс

Учитель-консультант: Фомичёва Е. В.

2009 -2010 уч. Год

1. Введение……………………………………………………………..3стр.

2. История первых телескопов:

2.1. Открытие детей мастера Липперсгея………………………3-4стр.

2.2. «Телескопическая лихорадка»………………………………..4стр.

2.3. Телескопы братьев Гюйгенс………………………………….5стр.

2.4. Телескопы Галилея…………………………………………5-6стр.

3. Назначение телескопов…………………………………………..6-7стр.

4. Виды телескопов:

4.1. Телескоп-рефрактор………………………………………….7стр.

4.2. Телескоп-рефлектор………………………………………….7стр.

4.3. Менисковый телескоп. ………...…………………………….7стр.

5. Возможности современных телескопов:

5.1. Телескоп без глаза…………………………………………....8стр.

5.2. Радиотелескопы……………………………………………8-9стр.

5.3. Инфракрасные телескопы……………………………………9стр.

5.4. Ультрафиолетовые телескопы…………………………….....9стр.

5.5. Рентгеновский телескоп………………………………………9стр.

5.6. Гамма-телескопы…………………………………………….10стр.

6. Примеры телескопов…………………………………………..10-11стр.

7. Космический телескоп………………………………………...11-12стр.

8. Заключение……………………………………………………..…12стр.

9. Приложение……………………………………………………13-14стр.

10. Список используемой литературы……………………………..15стр.

“Унося наши чувства далеко за границы воображения

наших предков, эти замечательные инструменты,

телескопы, открывают путь к более глубокому

и более прекрасному пониманию природы”
Рене Декарт, 1637г.

1. Введение

Небо существует только для человека и только в его мыслях. Ведь небо есть не что иное, как картина космоса, наблюдаемая человеком с его крохотного обиталища – Земли. Представления людей о звёздном мире меняются из года в год. О космосе невозможно сказать, что он уже познан, ведь в нем столько тайн, столько самых невероятных событий…

Иногда, глядя в небо, я задумывалась над тем, как же могли еще в старину, глядя на, казалось бы, не подвижное, почти не меняющееся небо, делать открытия, находить новые планеты, определять траектории движения планет, одним словом, «разгадывать» тайны Вселенной. Ведь далеко не все можно увидеть невооруженным глазом. Заинтересовавшись этой проблемой, я выяснила, что первым астрономическим прибором был телескоп. За прошедшие века он совершенствовался и изменялся. Какой восторг вызвал у обывателей и учёных мужей первый телескоп! Какие невероятные открытия за этим последовали! Но с годами телескоп не утратил своей значимости. Именно поэтому мне захотелось узнать, каким же был первый телескоп, кто был его первооткрывателем и какими возможностями обладает современный телескоп? И вот какие «открытия» я для себя сделала…

2. История первых телескопов:

2.1. Открытие детей мастера Липперсгея

В самом начале XVII столетия жил в голландском городе Миддельбурге оптик Липперсгей. (Приложение №1) Обыкновенный ремесленник, мастер по изготовлению очковых стекол. Однажды сынишка Липперсгея сидел дома. Чтобы развлечься, мальчуган вытащил на подоконник целый ворох отшлифованных испорченных очковых стекол и стал складывать их, заглядывая поочередно в получившиеся сочетания. Он рассматривал мух. Зажимая линзы в кулаках, подносил их к глазам. Потом он взял в каждую руку по стеклу и приставил оба кулака к одному глазу одновременно,… Что тут произошло! Мальчик закричал, бросил стекла, закрыл глаза руками и убежал в глубину комнаты. Ему показалось, что башня ратуши, на которую он посмотрел через две линзы, шагнула ему на встречу. Это было похоже на колдовство.

Прошло несколько дней – Липперсгей явился магистрат. В руках у мастера была свинцовая трубка со вставленными в неё линзами. Этот удивительный снаряд позволял созерцать отдаленные предметы так, как если бы они находились совсем рядом. Липперсгей предложил продать городским властям «свое изобретение». Миддельбургские купцы охотно глядели в трубку, размахивали широкими рукавами, но признать автором изобретения Липперсгея отказывались. Липперсгей много раз пытался запатентовать и продать трубку то голландским Генеральным штатам, то принцу Морицу Оранскому. Однако патента так и не получил. Скоро в соседних городах объявились и другие оптики, претендующие на честь изобретения зрительной трубки. Слухи о голландском изобретении покатилось по всей Европе, обрастая невероятными подробностями и искажениями.

2.2. «Телескопическая лихорадка»

В середине XVII века «телескопическая лихорадка» захватила всех. В городах линзы шлифовали в домах ремесленников и купцов, дворян и вельмож. Изготовление телескопов стало модным. А наблюдение неба – просто необходимым занятием каждого более или менее образованного человека. Теперь люди могли не просто следить за перемещением по небу блуждающих звезд, но и рассматривать подробности строения Луны, наблюдать планеты вместе со спутниками. Правда, первое время такие исследования требовали от наблюдателя массы усилий. Плохое качество шлифованных линз давало вместо светящейся точки мутное расплывчатое пятно, окруженное вдобавок цветным ореолом. (Приложения №2-7)

2.3. Телескопы братьев Гюйгенс

Главной задачей стало получение телескопов с большим увеличением. В середине XVII столетия шлифовкой линз и устройством телескопов увлекся сын богатого голландца Христиан Гюйгенс. Будучи совсем молодым человеком, он теоретически нашел наилучшую форму линз. Получалось, что для уменьшения искажений кривизна поверхности одной линзы должна быть в шесть раз меньше, чем у другой. Но вот беда: оптика в то время ещё не научились шлифовать линзы с заданной кривизной.

Выход оставался один: собирать телескопы из большого количества слабых, но дающих хорошее изображение линз. Так появились первые длинные телескопы.

Первый инструмент, который построил Христиан Гюйгенс вместе с братом, имел 12 футов в длину. Это примерно три с половиной метра. А отверстие его было всего 57 миллиметров. То есть в шестьдесят раз меньше длины.

Гюйгенс с его помощью открывает спутник Сатурна. Кроме того, он смутно видит у планеты те же странные выступы по бокам. Чтобы разглядеть загадочные образования у Сатурна, братья Гюйгенсы берутся за постройку еще более длиннофокусного телескопа. Его размеры должны быть 23 фута. Такую длинную трубу уже трудно подвешивать к столбам, ещё труднее её поворачивать и наводить. На Гюйгенс не сдаётся и в конце концов открывает кольцо Сатурна. Скоро, чтобы облегчить конструкцию телескопа, вместо труб стали делать легкие рамы из деревянных планок. На рамках укрепляли объектив и окуляр, а в промежутке ставили диафрагмы.

Длина телескопа продолжается расти. Она достигла сначала 20, потом 30, даже 40 и более метров. Пришлось отказаться от рам. Объектив в небольшой оправе укрепляли на крыше здания или на специальной вышке. Наблюдатель же, с окуляром в руках, старался расположиться так, чтобы желаемое светило оказалось в створе с объективом и окуляром.

2.4. Телескопы Галилея.
В 1609, узнав об изобретении голландскими оптиками зрительной трубы, Галилей (Приложение №8) самостоятельно изготовил телескоп с плосковыпуклым объективом и плосковогнутым окуляром, который давал трехкратное увеличение. Через некоторое время им были изготовлены телескопы с 8- и 30-кратным увеличением.(приложение №4) В 1609, начав наблюдения с помощью телескопа, Галилей обнаружил на Луне темные пятна, названные им морями, горы и горные цепи. 7 января 1610 открыл четыре спутника планеты Юпитер, установил, что Млечный Путь является скоплением звезд.

После того как утихли первые восторги по поводу новых возможностей, открытых телескопами, наблюдатели всерьёз задумались над качеством изображения. Все открытия, «лежавшие на поверхности», были уже сделаны, и люди видели, люди понимали, что для дальнейшего проникновения в тайны неба Земли нужно улучшать инструменты.

Первым приемником изображений в телескопе, изобретенным Галилеем в 1609 году, был глаз наблюдателя. С тех пор не только увеличились размеры телескопов, но и принципиально изменились приемники изображения. В начале ХХ века в астрономии стали употребляться фотопластинки, чувствительные в различных областях спектра. Затем были изобретены фотоэлектронные умножители (ФЭУ), электронно-оптические преобразователи (ЭОП). (Приложения №9-10)
3. Назначение телескопов

Какими бы ни были конструкции телескопов, у них есть общие черты. Назначение всех телескопов заключатся в увеличении угла зрения, под которым видны небесные тела. Телескоп собирает во много раз больше света, приходящего от небесного светила, чем глаз человека. Благодаря этому в телескоп можно рассматривать не видимые невооруженным глазом детали поверхности ближайших в Земле небесных тел и увидеть множество слабых звезд.

Основная задача телескопа, как и любого оптического прибора, максимально четко и детально передать наблюдателю то, что он хочет увидеть. Само слово телескоп, имеет греческое происхождение, что в дословном переводе означает "далеко видеть".

Эволюция параметров оптических телескопов.

Первые астрономические наблюдения Галилея показали, насколько сильно даже маленький телескоп увеличивает возможности человеческого глаза. Телескоп собирает намного больше света, чем глаз. Это дает возможность увидеть гораздо более тусклые объекты, чем доступные невооруженному глазу. Например, в области Плеяд Галилей увидел 36 звезд вместо обычных 6. На фотографиях, полученных с помощью современных телескопов, в этой группе видны сотни звезд. Большой объектив значительно улучшает и разрешение.

Это означает, что две близкие звезды, сливающиеся для невооруженного глаза в одно пятнышко, можно увидеть по отдельности в телескоп. Способность собирать больше света, чем глаз, и высокое разрешение дают возможность увидеть больше структур и тусклых объектов на звездном небе. Высокое разрешение позволяет более точно определять положения (координаты) звезд. А это очень важно при измерении расстояний до звезд, о чем мы расскажем в следующей главе.

Конструкцию телескопа Галилея вскоре улучшил Кеплер

Конструкцию телескопа Галилея вскоре улучшил Кеплер, предложив оптическую схему, используемую по сей день. В «кеплеровском» телескопе большая объективная линза дает изображение небесного объекта на большом расстоянии от объектива. Детали этого изображения рассматривают с помощью увеличивающей выпуклой окулярной линзы.
Качество изображения первых телескопов было плохим. Простые линзы отягощены цветовыми ошибками (хроматическая аберрация), вызванными тем, что световые лучи разного цвета не фокусируются в одной точке, поэтому изображение звезды получается размытым пятнышком, окруженным цветными разводами. В определенной степени линза действует как призма.

Изобретение ахроматических объективов в XVIII веке намного улучшило изображения

Изобретение ахроматических объективов в XVIII веке намного улучшило изображения. Прежде для этого были вынуждены сооружать очень длинные телескопы. Когда отношение диаметра объективной линзы и ее фокусного расстояния мало, лучи света лишь слегка преломляются, цветовая погрешность меньше, а изображение резче. На рис. показаны такие длинные телескопы Парижской обсерватории.
Христиан Гюйгенс тоже строил телескопы, самый большой из которых имел в длину 37 м. Невозможно было сделать такую гигантскую сплошную трубу, поэтому объективная линза устанавливалась на верхушке шеста или на коньке кровли, а управляли ее положением с помощью длинной веревки, стоя на земле и удерживая окуляр перед глазом. Судя по всему, очень неудобно было работать с таким инструментом, следя за вращающимся звездным небом. Тем не менее при помощи этих инструментов получали интересные наблюдательные данные. Например, Гюйгенс обнаружил, что странные отростки у Сатурна, замеченные Галилеем, в действительности являются тонким плоским диском вокруг планеты в ее экваториальной плоскости.

Другим знаменитым наблюдателем эпохи длинных телескопов был поляк Ян Гевелий

Другим знаменитым наблюдателем эпохи длинных телескопов был поляк Ян Гевелий (16111687), имевший собственную обсерваторию в Гданьске. Это была первая в мире обсерватория, оснащенная телескопом. Наблюдениями занималась и его жена Елизавета. Инструмент Гевелия имел 45 м в длину! Его сложная система канатов и реек напоминала оснащение парусного судна и для управления определенно нуждалась в сноровке моряка. С помощью этого телескопа Гевелий исследовал поверхность Луны и составил ее хорошие карты. Когда мы говорим о лунных «морях», следует помнить, что так их назвал Гевелий. Теперь мы знаем, что это низины, наполненные застывшей лавой.
После изобретения в XVIII веке ахроматических линзовых телескопов, в изображении которых цветные разводы сильно ослаблены, эра длинных линзовых телескопов завершилась. До конца ХГХ века еще строили крупные линзовые телескопы с объективами диаметром вплоть до 1 метра, но уже были разработаны телескопы другого типа, которые постепенно стали основными инструментами современных исследований. В 1671 году Исаак Ньютон построил первый рефлектор, где не линза, как в рефракторе, а вогнутое зеркало собирало свет.

Опыты с преломлением лучей в стеклянной призме привели Ньютона к выводу, что цветовые ошибки телескоповрефракторов полностью устранить невозможно. Это заставило его обратиться к альтернативному способу фокусировки световых лучей путем отражения, угол которого не зависит от цвета. Изображение, сформированное в фокусе зеркала, не имеет цветных разводов. Если поверхность вогнутого зеркала параболическая, то все лучи, отраженные как от центральной части зеркала, так и от его краев, будут собираться в один фокус. Сохранился телескоп, собственноручно изготовленный Ньютоном. Его металлическое зеркало имеет диаметр 3,5 см. Ньютон использовал маленькое плоское зеркало для отклонения лучей вбок, в дырочку на трубе телескопа, где расположен увеличивающий окуляр.

Большие современные телескопы рефлекторы часто имеют отверстие в центре главного зеркала


Большие современные телескопы рефлекторы часто имеют отверстие в центре главного зеркала, сквозь которое лучи, отраженные от вторичного зеркала, попадают на детектор излучения. Сегодня изображение регистрируют уже не глазом или фотопластинкой, а высокочувствительной ПЗС камерой или спектрографом. Телескоп описанного типа называется кассегреновским рефлектором, поскольку его изобрел француз Г. Кассегрен (о котором очень мало известно) вскоре после создания рефлектора Ньютона. Впрочем, телескоп Кассегрена, на самом деле, был усовершенствованной версией телескопа, предложенного Джеймсом Грегори еще до Ньютона. Но Грегори не построил свой телескоп. В телескопе Кассегрена в качестве вторичного используют выпуклое зеркало; это приводит к уменьшению длины телескопа.

Важное преимущество телескопа рефлектора

Важное преимущество телескопа рефлектора состоит в том, что размер главного зеркала можно сделать гораздо больше, чем у линзы рефрактора. При этом собирается больше света и можно наблюдать более тусклые и далекие объекты. Зеркало можно поддерживать сзади по всей поверхности, в то время как линзу можно держать только по краям. После разработки методов нанесения серебра, а затем и алюминирования, вместо использовавшегося Ньютоном металла, стали применять стекло, которому даже не нужно быть прозрачным. Вообще свободный от хроматической аберрации рефлектор большого диаметра можно построить за те же деньги, что и рефрактор меньшего размера.
Хотя рефлекторы в астрономии начали успешно конкурировать с рефракторами еще в XIX веке, оставалось много задач, при решении которых предпочтение отдавалось рефракторам. Например, их использовали для точного определения положений звезд. Большие проблемы создавало наличие хроматической аберрации, но в конце концов ее удалось устранить. Это позволило осуществить мечту об измерениях расстояний до звезд.

Сегодня телескопы усложнились еще больше

Сегодня телескопы усложнились еще больше. Наряду с работой в визуальной области, они могут работать в рентгеновском, ультрафиолетовом, радио и инфракрасном диапазонах, недоступных человеческому глазу. Некоторые телескопы работают в космосе, и им не мешает атмосфера, размывающая оптическое изображение и поглощающая излучение на многих длинах волн (исключая визуальный свет и радиоволны). На рис. 7.5 представлено большое зеркало, предназначенное для космического телескопа. Для радиотелескопов вместо зеркала используют вогнутую тарелку, а радиоприемник устанавливают в фокусе этой тарелки.

Большая длина радиоволн делает их разрешение ниже, чем у оптического телескопа того же размера, поэтому тарелка радиотелескопа очень крупная. Бывают тарелки диаметром 100 м и даже больше, тогда как диаметр зеркала современного оптического телескопа не превышает 10 м. Радиоастрономы научились объединять сигналы с разных тарелок, имитируя одну тарелку, сравнимую с размером Земли. Это называется интерферометрией. Уровень современной электроники позволяет сделать то же самое и в оптическом диапазоне, используя несколько телескопов одной обсерватории.
Наконец, некоторые современные телескопы стали трудноузнаваемыми. Разработаны приборы, способные регистрировать субатомное нейтринное излучение Солнца и сверхновых звезд. Созданы детекторы гравитационных волн для обнаружения изменений полей при орбитальном движении черных дыр или их рождение в сверхновых.
Исследовательский дух очень силен в астрономии. Велико желание продвигаться все глубже и глубже в бездну Вселенной, чтобы увидеть то, чего никто никогда ранее не видел. Для обнаружения и дальнейшего исследования всех этих неожиданных небесных тел и явлений требуются телескопы все большего и большего размера.

Первый телескоп видео

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Галилео Галилей и телескоп

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба - ком-бинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто дога-дался использовать на пользу астро-номии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кратным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век ре-фрактора в астрономии — 17 век.

XVII век в истории наблюдений за звездами

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров — не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Исаак Ньютон и изобретение рефлектора

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон — уменьшение хроматической абер-рации линзы происходит с увеличением ее фокусно-го расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой не-вероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производиться с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону , именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный ре-флектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд , который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

Телескопы Гершеля и Росса


После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзо-вые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего разме-ра. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диа-метр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зер-калом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманно-стей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографиче-ских наблюдений со стеклянным зерка-лом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

Расцвет рефракторной астрономии

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диа-метр ахроматических объективов постепенно рос. Если в 1824 го-ду диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоро-стью одного сантиметра в год.

К концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков ре-флекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более двадцати лет.

Новейшая история телескопов

Более 40 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени - на сегодня его качество упало на 30% от первоначального - превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.

А в июне 2019 года NASA планирует вывести на орбиту уникальный инфракрасный телескоп (JWST) с 6,5-метровым зеркалом.

История телескопа прошла долгий путь - от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

Ирина Калина, 15.04.2014
Обновление: Татьяна Сидорова, 02.11.2018
Перепечатка без активной ссылки запрещена!


Брайан Грин


Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии