Виды и примеры астроном телескопа. Телескопы и их характеристики. Ход лучей в оптических телескопах

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Наблюдения являются фундаментальными измерениями астрономии как науки. Они сопоставляются с данными и теориями, полученными в лабораториях астрофизиками и другими учеными-физиками для проверки доказуемых предсказаний.

Астрономы находятся в уникальном положении среди ученых, поскольку они не могут проводить эксперименты непосредственно на предметах своих исследований. Астрономы должны ждать фотонов (теперь и других форм неэлектромагнитного излучения), чтобы эти излучения прошли через Вселенную к Земле и человек увидел их с помощью одного из устройств.

Ключ к совершению открытий – наличие соответствующего телескопа в соответствующем месте, чтобы засвидетельствовать эти фотоны и историю их появления.

На протяжении большей части человеческой истории астрономические наблюдения проводились за пределами того, что можно увидеть с помощью глаз.
Некоторые базовые знания, какие бывают телескопы для фундаментальной астрономии или для личного наблюдения будут рассмотрены в этой статье. Подробная информация про эти устройства сконцентрирована на https://www.4glaza.ru/katalog/teleskopy/veber/

Уникальность инструмента для наблюдения небесных объектов

В течение многих лет телескопы использовались для наблюдения небесных объектов. Эти приборы за наблюдением удаленных объектов изменили наше понимание и знания про объекты во Вселенной. Учеными и инженерами проводятся новые разработки, основанные на измерении параметров длины волны, пришедшей с небесных объектов, с улучшенной технологией создания многих видов телескопов.

Существуют различные виды этого инструмента от бытовых оптических изготавливаемых компанией Veber до сложнейших рентгеновских изготавливаемых в интересах управления по аэронавтике и исследованию космического пространства NASA, Европейского космического агентства ESA или Российского Роскосмоса. Изучение различных стадий звезд в деталях может быть сделано с помощью этих приборов, которые используются для конкретных целей.

Эта статья будет касаться вопроса какие бывают телескопы, а также функции и их предназначения для анализа сигналов нашей Вселенной.

История

С семнадцатого века устройства за наблюдениями за небом стали одним из важных инструментов для выявления неожиданных явлений во Вселенной.

Противоречие между традиционной геоцентрической астрономией и теми, кто предпочитал гелиоцентрическую систему Коперника, оказало большое влияние на открытие телескопа.

Первоначально изобретение телескопа было прототипом современных научных приборов, а не изобретением ученых. Прибор дал людям возможность наблюдать вещи, которые человечество никогда не видело прежде, увеличивая человеческие чувства и знание объектов в космическом пространстве. Мастера создали инструмент, который мы называем телескопом. Использование выпуклых и вогнутых объектов для увеличения и уменьшения было известно с древности.

На Западе в конце тринадцатого века линзы стали популярными. Галилей был первым, кто использовал рефракционный прибор в качестве инструмента для наблюдения планет, лун и звезд в 1609 году. Галилей употребил греческий термин “теле” как далеко и “скопейн” как смотреть, для названия инструментов для наблюдения за небом. Галилей доказал, что предсказанная гелиоцентрическая модель Солнечной системы была правильной. Он продемонстрировал, что Венера показала полный набор фаз, подобных Луне. Открытие Галилея также доказало, что модель Птолемея была невозможна из его наблюдений.

Открытия Галилея изменили наше понимание Вселенной благодаря его наблюдениям, сделанным с помощью телескопа. Кроме того новые объекты в небе были обнаружены, когда Галилей использовал оптический инструмент, чтобы доказать гелиоцентрический вид.

Типы телескопов

Длины волн или электромагнитного излучения от объектов Вселенной отличаются. Поэтому приборы за наблюдением удаленных объектов классифицируются по конструкции. Они бывают оптического, рентгеновского, инфракрасного диапазонов, а также радиотелескопы.

Оптические

Оптические телескопы являются наиболее распространенными, поскольку они в основном используются для наблюдения удаленных объектов с видимой частью электромагнитного спектра видимого света. Поскольку видимый свет можно наблюдать с Земли, большинство оптических телескопов могут быть установлены на земле.

Некоторые атмосферные искажения могут привести к тому, что наблюдения не будут точными для профессионалов.

Рентгеновские

Излучение от удаленных объектов и более коротких длин волн обнаруживаются с помощью рентгеновских телескопов которые расположены на космических аппаратах. Их расположение на космических аппаратах связано с те, что атмосфера непрозрачна и поэтому блокирует любые гамма-лучи, рентгеновские лучи, а ультрафиолетовый свет можно использовать только в космосе, поэтому нет рентгеновских телескопов расположенных на земле.

Радиотелескопы

Другими распространенными типами телескопов, которые могут быть установлены на Земле, являются радиотелескопы, которые используются для радиоастрономии. Поскольку они могут принимать радиоволны от Вселенной антенны открыты и относительно большие. Поскольку атмосфера не блокирует радиоволны, радиотелескоп не нужно устанавливать над атмосферой Земли. Радиотелескоп может использоваться для наблюдения таких объектов, как квазары. Чтобы определить космологическое красное смещение можно изучать квазары и галактики с помощью спектроскопии. Это помогает отображать структуру Вселенной, потому что красное смещение пропорционально расстоянию.

Оптические и радиотелескопы часто расположены в горах или за пределами городской черты, поскольку электромагнитное и световое загрязнение от городов может повлиять на результат наблюдений.

Так, например, чтобы не влияли помехи на наблюдение используемое радиотелескопами в гористой местности штата Нью-Мексико, США построено очень много радиотелескопов, которые используются, в основном, для наблюдения протопланетных дисков вокруг молодых звезд и черных дыр. Этот комплекс для наблюдения Вселенной специально был создан за пределами городов, чтобы избежать влияние во время наблюдения при исследовании многих астрономических объектов.

Телескопы на спутниках

Ученые использовали наземные телескопы, чтобы увидеть видимый свет и радиоволны от звезды.
Для изучения Вселенной на всех длинах волн и без размытия и затемнения атмосферы Земли ученые используют спутники с телескопами.

Многие объекты, находящиеся на разных стадиях развития во Вселенной излучают электромагнитные волны, поэтому телескопы различных типов могут предоставлять снимки этих объектов. Ученые могут изучать радиоволны от молодых звезд, чтобы увидеть рождение звезд или смерть звезд, когда используются рентгеновские аппараты, потому что эти звезды часто излучают рентгеновские лучи. Наземные комплексы в этом диапазоне вносят искажения изображений, и при этом невозможно изучать крупномасштабные изображения галактик.

Космическая обсерватория Хаббл с 1991 года является еще одним типичным примером, который может глубоко изучать область неба, чтобы выявить галактики на ранних стадиях их эволюции. Он может собирать более точные и детальные изображения без отсутствия атмосферных искажений.

Другим примером является космическая обсерватория Чандра NASA с 1999 года. С помощью спутниковой обсерватории Чандра составлена карта горячего газа в скоплениях галактик и проводятся исследования черных дыр по всей Вселенной.

Обсерватория Чандра предоставила детальное исследование рентгеновского неба. С помощью этих данных проводится изучение темной энергии и темной материи. Поскольку темные энергия и материя не испускают никакого излучения, устройства наблюдения могут только частично помочь в изучении, потому что они не могут непосредственно наблюдать темные составляющие Вселенной. Для изучения этих объектов ученые построили ряд новых детекторов. Изучение темной энергии и темной материи может быть возможно путем объединения этих новых детекторов в сочетании с телескопами.

Выводы

В выводах какие бывают телескопы можно отметить различные типы этого инструмента, обеспечивающие многочисленные способы изучения звезд, планет и объектов во Вселенной.

Бывают телескопы от недорогих домашних бренда Veber до сложнейших космического базирования.

Различные виды телескопов были разработаны для наблюдения звезд в различных длинах волн по всей Вселенной. Телескопы бывают различны по функциональному применению в астрономии, хотя некоторые объекты, как темная энергия и темная материя не могут быть непосредственно наблюдаемы. Новые технологии в будущем создадут лучшие устройства и инструменты для ученых, чтобы обнаружить неизвестные объекты в нашей Вселенной.

Таким образом, представлено резюме какие бывают телескопы для исследований и открытий во Вселенной для настоящих и будущих поколений.

На российском рынке оптической техники телескопы занимают не самую широкую нишу, но ассортимент здесь вполне приличный и представлен продукцией многих известных фирм.

Крупные производители предлагают оптику для пользователей разного уровня. Уже появились полноценные серии для новичков и даже недорогие приборы, специально разработанные для детей и подростков.

Предметом же особой гордости именитых брендов по-прежнему остаются телескопы для профессионалов – уже не просто оптические устройства, а высокотехнологичные и «умные» приборы.

Лидерами продаж 2017 года стали любительские и полупрофессиональные телескопы следующих производителей:

  • Sky-Watcher;
  • Celestron;
  • Bresser;
  • Veber.

Принцип работы и устройство телескопа

Телескоп – сложное оптическое устройство, с помощью которого можно видеть отдаленные предметы (астрономические или земные) в многократном увеличении.

Конструктивно он представляет собой трубу, на одном конце которой находится светособирающая линза и/или вогнутое зеркало – объектив. На другом располагается окуляр – через него мы как раз и рассматриваем полученное изображение.

добавить изо моего телескопа с надписями

Также конструкция телескопа включает:

1. Искатель для обнаружения конкретных астрономических объектов;

2. Светофильтры, приглушающие слишком яркое сияние звезд;

3. Диагональные зеркала (корректирующие пластины), переворачивающие картинку, которую объектив передает «вверх ногами».

Профессиональные модели, обладающие возможностями астрофотографирования и видеосъемки, могут дополнительно комплектоваться следующими элементами:

1. Сложная электронная аппаратура;

2. Система GPS;

3. Электродвигатель.

Виды телескопов

Рефракторы (линзовые)

Узнать такой телескоп можно по его простой конструкции, похожей на подзорную трубу. Объектив и окуляр здесь находятся на одной оси, а увеличенное изображение передается по прямой линии – как и в самых первых приборах, изобретенных 400 лет назад.

Рефракторы, или преломляющие телескопы собирают отраженный свет небесных тел при помощи 2-5 двояковыпуклых линз, разнесенных в оба конца длинной трубы корпуса. Этот тип устройств скорее подойдет новичкам и любителям астронаблюдений, так как позволяет хорошо рассмотреть наземные объекты и небесные тела в пределах нашей Солнечной системы.

Установленные в рефракторах линзы разлагают «пойманный» объективом свет на спектральные составляющие, что приводит к некоторой потере четкости изображения и делает его тусклее при слишком большом увеличении. Пользоваться таким телескопом рекомендуется на открытой местности за чертой города, где засветка неба минимальна.

  • Просты в эксплуатации и не нуждаются в специализированном обслуживании;
  • Герметичная конструкция защищена от попадания пыли и влаги;
  • Не боятся перепадов температуры;
  • Выдают четкую и контрастную картинку недалеких астрономических тел;
  • Имеют долгий срок службы.
  • Довольно громоздкие и тяжелые (вес некоторых моделей достигает 25 кг);
  • Максимальный диаметр объектива – 150 мм;
  • Не подходит для наблюдений в черте города.

В зависимости от типа установленных линз, телескопы подразделяются на следующие виды:

1. Ахроматические — имеют малые и средние степени увеличения, но дают плоскую картинку.

2. Апохроматические — делают изображение более выпуклым, зато устраняют дефекты вроде расплывчатого контура и проявления вторичного спектра.

Рефлекторы (зеркальные)

Рефлектор улавливает и передает световой луч при помощи двух вогнутых зеркал: одно находится в объективе трубы, другое отражает картинку под углом, отправляя ее на боковой окуляр.

В отличие от рефрактора, такая оптика более приспособлена для изучения глубокого космоса и получения качественного изображения удаленных галактик. Производство зеркал обходится дешевле линз, что отражается и на стоимости приборов. Однако новичку или ребенку будет трудно управиться со сложными настройками и корректорами изображений.

  • Простота конструкции;
  • Компактные размеры и небольшой вес;
  • Отлично улавливают неяркий свет удаленных космических тел;
  • Большая апертура (от 250 до 400 мм), дающая более яркую и четкую картинку без дефектов;
  • Более низкая цена по сравнению с аналогичными рефракторами.
  • Требуют времени и опыта для настройки;
  • В открытую конструкцию устройства может попасть пыль или грязь;
  • Боятся перепадов температур;
  • Не подходят для наблюдения за наземными и ближайшими объектами Солнечной системы.

Катадиоптрики (зеркально-линзовые)

Объектив катадиоптрических телескопов собран из линз и зеркал, поэтому он сочетает в себе их достоинства и максимально компенсирует дефекты при помощи специальных коррекционных пластин.

Изображение как далеких, так и близких астрономических объектов в таком приборе приближается к идеалу, что позволяет не только наблюдать за звездами, но и делать качественные снимки.

  • Компактные габариты и транспортабельность;
  • Одинаково хорошо подходят для наблюдений за объектами дальнего и ближнего космоса;
  • Дают самое качественное изображение;
  • Апертура до 400 мм.
  • Высокая стоимость;
  • Длительное время термостабилизации воздуха внутри трубы;
  • Сложная конструкция.

Параметры выбора телескопа

Решившись на покупку телескопа, следует определиться с вашими основными требованиями к этому прибору.

Конструкция и характеристики оптики будут зависеть от ваших ответов на ряд вопросов:

1. Какие именно объекты вам хотелось бы рассматривать – планеты в пределах нашей Солнечной системы или далекие галактики?

2. Откуда вы будете наблюдать за космическими телами – со своего балкона у вас есть возможность выезжать с телескопом в поле?

3. Планируете ли вы заниматься астрофотографией?

Теперь перейдем к основным характеристикам современных телескопов.

Параболическое или сферическое зеркало

Конструкция сферического зеркала такова, что оно не может отразить все лучи в одну точку. Из-за этого для рефлекторов со сферической оптикой недостижим идеально резкий фокус. Это явление носит название «сферической аберрации» и проявляется сильнее всего на высоких увеличениях.

Параболическое зеркало не подвержено сферическим аберрациям и способно собирать световые лучи в одну точку. На большой кратности у вас не возникнет никаких проблем с фокусировкой, и удаленный объект будет виден четко и во всех деталях.

Но не все так плохо и со сферическими зеркалами. При определенном соотношении между диаметром зеркала и фокусным расстоянием такое зеркало работает практически как параболическое. Телескоп с зеркалом диаметром 114 мм и фокусным расстоянием в 900 мм практически лишен сферических аберраций и хорошо фокусирует изображение вплоть до значения максимально полезного увеличения.

Апертура (диаметр объектива)

Главный критерий выбора телескопа – апертура его объектива. Она определяет способность линзы или зеркала собирать свет: чем выше эта характеристика, тем больше отраженных лучей попадет в объектив. А значит, он даст высокое качество изображения и даже сможет уловить слабое отраженное излучение отдаленных космических объектов.

При выборе апертуры под свои цели ориентируйтесь на такие цифры:

1. Для получения четкой картинки недалеких планет или спутников хватит прибора с диаметром объектива до 150 мм. В условиях города лучше уменьшить этот показатель до 70-90 мм.

2. Разглядеть отдаленные галактики сможет устройство с апертурой свыше 200 мм.

3. Если вы планируете предаваться любимому хобби в отдаленных от города местах с малозасвеченным ночным небом, можете попробовать максимальную величину полупрофессиональных линз – до 400 мм.

Фокусное расстояние

Фокусным называют расстояние от объектива до точки в окуляре, где все световые лучи снова собираются в пучок. От этого показателя зависит степень увеличения и качество видимого изображения – чем он выше, тем лучше мы рассмотрим интересующий объект.

Фокус увеличивает длину самого телескопа, что отражается на удобстве его хранения и перевозки. Конечно, на балконе удобнее держать короткофокусный прибор, где F не превышает 500-800 мм. Это ограничение не касается только катадиоптриков – в них световой поток многократно преломляется, а не идет по прямой, что позволяет значительно укоротить корпус.

Кратность увеличения

Увеличение объектов можно корректировать, поставив более мощный или слабый окуляр – сегодня производители предлагают оптику с F от 4 до 40 мм, а также линзы Барлоу, удваивающие фокус самого телескопа.

1. Детально есть смысл рассматривать только близкие космические тела (Луну, например).

2. Для наблюдения за далекими галактиками высокая кратность увеличения не столь важна.

Тип монтировки

Монтировка (подставка для телескопа) необходима для того, чтобы прибором было удобно пользоваться.

В комплекте с любительской и полупрофессиональной оптикой обычно идет один из 3 основных видов специальных подвижных опор:

1. Азимутальная – самая простая подставка, позволяющая смещать телескоп по горизонтали и вертикали. Чаще всего ею комплектуются рефракторы и небольшие катадиоптрики. А вот для астрофотографирования азимутальная монтировка не годится, поскольку не позволяет поймать четкую картинку.

2. Экваториальная – обладает внушительным весом и габаритами, зато помогает найти необходимый объект по заданным координатам. Такая тренога идеальна для рефлекторов, которые «видят» удаленные галактики, неразличимые невооруженным взглядом. Экваториалка популярна и в среде поклонников астрофотографии.

3. Система Добсона – некий компромисс между простой в использовании и дешевой азимутальной подставкой и надежной экваториальной конструкцией. Зачастую идет в комплекте с мощными и дорогими рефлекторами.

Оптическая схема

Телескоп Галилея (1609)

Простая конструкция телескопа, аналогичная использованной Галилеем в первых астрономических двухлинзовых телескопах. Длиннофокусная собирательная (выпуклая) линза играет роль объектива, а другая (вогнутая) линза — окуляра; в результате получается прямое изображение. Такая система все еще используется в театральных биноклях.

Телескоп Кеплера (1611)

Простая система устройства телескопа, в которой в качестве как объектива, так и окуляра используются выпуклые линзы. Это дает большее поле зрения и более высокую степень увеличения, чем можно получить в галилеевском телескопе, но изображение в кеплеровском телескопе перевернуто.

Телескоп системы Грегори (1663)

Тип отражательного телескопа, предложенный Джеймсом Грегори в 1663 г. Первичное зеркало — параболоид с центральным отверстием, а вторичное — эллипсоид. Грегори не удалось получить зеркала нужной конфигурации, поэтому он не смог построить свой телескоп до того, как Ньютон создал свой первый рефлектор более простой конструкции с плоским вторичным зеркалом. Впоследствии система Грегори была вытеснена кассегреновским телескопом

Телескоп Ньютона (1668)

Простой тип отражательного телескопа, разработанный Исааком Ньютоном (1642- 1727), который продемонстрировал его в Королевском Обществе в Лондоне в 1671 г. Первичное зеркало телескопа представляет собой параболоид (для небольших апертур можно использовать сферическое зеркало), а вторичное зеркало — плоское, помещенное на пути отраженного луча под углом 45° к оптической оси, так что изображение образуется вне главной трубы. Конструкция широко используется для небольших любительских инструментов, но для больших телескопов не подходит.

Схема Кассегрена (1672)

Телескоп-рефлектор, в котором фокус изображения находится непосредственно за центральным отверстием в первичном зеркале. Такая конструкция была предложена Жаком Кассегреном (1652-1712), профессором физики в городе Шартре во Франции около 1672 г., т.е. через четыре года после того, как Иссак Ньютон создал первый рефлектор. В этом телескопе вторичное зеркало выпуклое, а не плоское (как в ньютоновской конструкции). Сам Кассегрен телескопа не построил, так что прошло несколько лет до того, как его идея была осуществлена. Сегодня кассегреновский фокус популярен и широко используется как в скромных любительских приборах, так и в больших профессиональных телескопах.

Телескоп Гершеля (1772)

Тип телескопа-рефлектора, сконструированного Уильямом Гершелем (1738- 1822), в котором параболическое первичное зеркало наклонено так, что фокус лежит вне главной трубы телескопа и доступ к нему можно получить, не заслоняя поступающий свет. Эта идея была на 10 лет раньше воплощена в жизнь Ломоносовым. Недостатком системы является наличие искажений, почему этот тип телескопа и был впоследствии заменен другими системами рефлекторов.

Телескоп Ричи-Кретьена (1922)

Телескоп, оптическая система которого подобна системе кассегреновского телескопа за исключением того, что как первичное, так и вторичное зеркала имеют форму гиперболоида. В результате телескоп Ричи-Кретьена обеспечивает широкое поле зрения при отсутствии комы.

Система Серюрье (1930)

Конструкция открытой трубы большого отражательного телескопа, обеспечивающая равномерность прогиба при изменении ориентации телескопа. Сделать трубу самых больших телескопов полностью недеформируемой невозможно. Предложенная Марком Серюрье конструкция 200-дюймовой трубы Телескопа Хейла не устраняет деформацию, но обеспечивает сохранение оптической оси телескопа

Камера Шмидта (1930)

Тип астрономического телескопа с широким полем зрения, предназначенный исключительно для фотографического использования. Он был изобретен Бернардом Шмидтом в 1930 г. Роль коллектора света выполняет сферическое зеркало. Коррекция сферической аберрации осуществляется с помощью тонкой стеклянной пластины сложного профиля, установленной у входного конца телескопической трубы (за фокусом). Фотопластинка помещается в первичном фокусе. Поскольку фокальная поверхность изогнута, фотопластинке придается та же форма при помощи специального держателя. В результате получаются резкие неискаженные изображения очень широкого поля зрения — до десятков градусов в поперечнике.

Телескоп Дэлла-Киркхэма

Разновидность кассегреновского телескопа, в котором первичное зеркало имеет эллипсоидный профиль, а не более обычный параболоидный. Вторичное зеркало — сферическое. В результате поле зрения оказывается значительно меньшим, чем у стандартного кассегреновского телескопа того же размера.

Телескоп Максутова (1940)

Отражательный телескоп, в котором оптические искажения сферического первичного зеркала исправляются вогнутой линзой (мениском), что обеспечивает высококачественное изображение при широком поле зрения. Телескоп был изобретен Д.Д. Максутовым (1896-1964).

Основная конструкция телескопа — типичная кассегреновская система. Небольшое вторичное зеркало установлено сзади корректирующей линзы, а изображение формируется непосредственно позади первичного зеркала, которое имеет небольшое центральное отверстие.

Трудность создания больших корректирующих линз ограничивает профессиональное применение такого телескопа, но телескопы Максутова, имеющие компактную трубу и широкое поле зрения при низком фокусном отношении, популярны у астрономов-любителей.

В зависимости от направления выходного пучка различаются модификации этой системы: Максутова-Кассегрена и Максутова-Ньютона.

Телескоп Шмидта-Кассегрена (1940, 1942)

Конструкция оптического телескопа, сочетающая черты камеры Шмидта и кассегреновского рефлектора. Предложена Д.Д. Бейкером (1940) и Ч.Р. Бёрч (1942).

В этом телескопе используется сферическое первичное зеркало и корректирующая пластина для компенсации сферической аберрации, как и в камере Шмидта. Однако держатель фотопластинки в первичном фокусе заменен небольшим выпуклым вторичным зеркалом, которое отражает свет назад в трубу через отверстие в первичном зеркале. В результате можно либо рассматривать изображение визуально или установить камеру в главной трубе за первичным зеркалом.

Телескоп такой конструкции оказывается очень компактным, что особенно важно для портативных телескопов и телескопов любительского и общеобразовательного назначения.

Система Пола-Бейкера (1935, 1945)

Оптическая конструкция отражательного телескопа, имеющего исключительно широкое поле зрения с хорошим разрешением. В ней используется параболическое первичное зеркало с фокусным отношением f/4 или меньше, выпуклое сферическое вторичное зеркало и вогнутое сферическое третье зеркало, кривизна которого равна, но по знаку противоположна кривизне вторичного. Конструкция была предложена французским оптиком Морисом Полом в 1935 г. и независимо от него Джеймсом Бейкером около 1945 г.

Камера Бейкера-Нанна (1957)

Разновидность камеры Шмидта, разработанная для фотографирования искусственных спутников Земли.

Система Бейкера-Шмидта

Модификация камеры Шмидта, в которой использованы предложенные Дж.Г.Бейкером технические средства, устраняющие аберрацию и дисторсию.

Телескоп Уиллстропа

Конструкция отражательных оптических телескопов, обеспечивающих хорошие изображения при поле зрения в 5° или больше. Конструкция представляет собой модифицированный вариант системы Пола- Бейкера. Отверстие в первичном зеркале имеет диаметр, составляющий 60% от диаметра всего зеркала, и в этом отверстии лежит фокус. Форма всех трех зеркал существенно отличается от параболической или сферической. Преимущество конструкции Уиллстропа состоят в том, что телескоп намного более компактен, чем камера Шмидта. Кроме того, в нем не возникают мнимые изображения, вызванные внутренними отражениями, как в корректирующей линзе камеры Шмидта. Эта конструкция позволяет построить телескоп, который был бы мощнее любой из существующих камер Шмидта.

Телескоп Добсона (1960-1970-е гг.)

Недорогой телескоп-рефлектор с большой апертурой и простой неуправляемой альтазимутальной установкой. Его конструкция удобна для астрономов-любителей, причем особенно важна его портативность. Телескоп носит имя автора концепции и первых разработок, проводившихся в 1960-1970-х гг., Джона Добсона из Сан-Францисского общества астрономов-любителей. Клееная деревянная труба телескопа крепится в коробке, которая установлена на опорной плите и может вращаться вокруг вертикальной оси. Полукруглая скоба с упорами в верхней части коробки имеет цапфы, присоединенные к противоположным сторонам трубы. Чтобы движение вокруг обеих осей было ровным, используется тефлон. Добсону удалось показать также, что из листового стекла (которое тоньше обычно используемого зеркального) можно сделать недорогое большое зеркало хорошего качества. Чтобы избежать искажений, тонкое зеркало должно свободно лежать на ковровой или резиновой подкладке.

Телескопы Галилея

В 1609, узнав об изобретении голландскими оптиками зрительной трубы, Галилей самостоятельно изготовил телескоп с плосковыпуклым объективом и плосковогнутым окуляром, который давал трехкратное увеличение. Через некоторое время им были изготовлены телескопы с 8- и 30-кратным увеличением.

В 1609, начав наблюдения с помощью телескопа, Галилей обнаружил на Луне темные пятна, названные им морями, горы и горные цепи. 7 января 1610 открыл четыре спутника планеты Юпитер, установил, что Млечный Путь является скоплением звезд. Эти открытия описаны им в сочинении «Звездный вестник, открывающий великие и в высшей степени удивительные зрелища…» (вышел в свет 12 марта 1610).

Разрешающая сила (разрешение) телескопа

Этот параметр характеризует способность телескопа различать мелкие детали у протяженных объектов (например, на дисках Луны и планет) и разделять близко расположенные точечные объекты — звезды. Разрешение напрямую зависит от диаметра объектива телескопа: если апертуру увеличить вдвое, то разрешающая сила также увеличится в два раза.

Второй фактор, влияющий на разрешение — это качество линз и зеркальных поверхностей. Ошибки изготовления оптики, неправильная сборка и юстировка, дефекты стекла, царапины, пыль и грязь на поверхности оптических элементов — все это становится источником ухудшения разрешающей силы телескопа .

При наблюдениях протяженных объектов, таких как Луна и планеты, вместе с увеличением телескопа растет видимый размер изображения. В отличие от них, точечные объекты (звезды) при больших увеличениях принимают вид дисков, окруженных несколькими концентрическими кольцами уменьшающейся яркости. Подобная картина, именуемая дифракционной, обусловлена волновой природой света. Диаметр центрального диска, называемого кружком Эри, обратно пропорционален апертуре телескопа .

Поскольку настоящее изображение звезды тонет в кружке Эри, на практике разделение тесной двойной звезды сводится к рассматриванию дифракционной картины системы в попытках различить диски Эри двух тесно расположенных звезд. Если принять, что оба компонента двойной системы имеют одинаковый блеск, то минимальное угловое расстояние (в секундах дуги), на котором эти звезды все еще можно будет разделить в данный телескоп, рассчитывается по формуле: 116″/D, где D — диаметр объектива телескопа в миллиметрах. Эта формула разрешающей силы называется пределом Дауэса, по фамилии английского астронома, получившего ее в XIX веке. Теоретические значения разрешающей силы для телескопов разных диаметров приведены в сводной таблице.

Проницающая сила телескопа

Это минимальная звездная величина звезд, туманностей, галактик, которую можно различить с помощью данного телескопа.

Проницающая сила телескопа зависит от двух показателей:

Астроклимат. Это комплекс следующих характеристик атмосферы: сила ветра, перепады температуры и влажности воздуха, прозрачность атмосферы и другое.

Место установки телескопа так же одно из важнейших условий, влияющих на проницающую способность телескопов. Если установить телескоп в низменной местности, скажем на уровне моря или ниже его, то проницающая способность будет весьма низкой. Чем выше местность, на которой установлен телескоп, тем выше будет его проницающая способность.

Проницающая способность телескопа характеризуется предельной звездной величиной слабейших звезд, которые можно увидеть в данный инструмент в условиях идеально темного неба. Предельную звездную величину (m) для телескопа , диаметр объектива которого равен D в миллиметрах, можно приблизительно оценить по следующей формуле: m = 2,5 + 5 lg D.

Просветление оптики позволяет повысить проницающую способность телескопа , тогда как пыль и грязь на оптике — понижает ее.

Светосила телескопа

Этот параметр характеризуется отношением диаметра объектива к его фокусному расстоянию (D/f). Эта величина называется относительным отверстием и записывается в виде дроби: 1:5, 1:7, 1:10, 1:15… В англоязычной литературе чаще используется обратная величина — относительное фокусное расстояние (f/D), которое также записывается в виде дроби: f/5, f/7, f/10, f/15… Чем больше относительное отверстие объектива телескопа (или наоборот: чем меньше отношение фокусного расстояния к диаметру объектива), тем выше его светосила.

Светосила телескопа , прежде всего, важна для определения его пригодности для фотографических целей — более светосильный инструмент позволит делать более короткие выдержки при фотографировании слабых астрономических объектов. Другим плюсом светосильных инструментов является большая компактность по сравнению с обычными инструментами (за счет более короткого фокуса), кроме того, они более приспособлены для наблюдений с малыми увеличениями (по той же причине). С другой стороны, светосильные инструменты сложнее в изготовлении и юстировке, и они в большей мере подвержены влиянию различных оптических аберраций.

Диаметр объектива, мм Диапазон увеличений, крат Разрешающая способность, " Проницающая способность, зв. вел.
60 10 - 120 1.93 11.4
70 12 - 140 1.66 11.7
80 13 - 160 1.45 12
90 15 - 180 1.29 12.3
100 17 - 200 1.16 12.5
110 18 - 220 1.05 12.7
120 20 - 240 0.97 12.9
130 22 - 260 0.89 13.1
150 25 - 300 0.77 13.4
200 33 - 400 0.58 14
250 42 - 500 0.46 14.5
300 50 - 600 0.39 14.9

Какой телескоп выбрать

  1. Школьнику 8-10 лет, интересующемуся звездами, можно подарить недорогой и простой в управлении телескоп-рефрактор из специальной детской серии с апертурой от 70 мм на азимутальной монтировке. А дополнительный адаптер под фотоаппарат позволит ему сделать красивые снимки Луны и наземных объектов.
  2. Начинающему исследователю ночного неба, проживающего в городе, лучше купить короткофокусный рефрактор с апертурой 70-90 мм на азимутальной подставке. Если есть возможность наблюдать звезды где-нибудь «в поле», можно раскошелиться на рефлектор 110-250 мм с монтировкой Добсона в комплекте.
  3. Если вашей мечтой является изучение отдаленных галактик и туманностей, приобретите рефлектор с диаметром объектива от 250 мм, укомплектованный азимутальной подставкой.
  4. Путешественникам или тем, кто собирается часто перевозить свой телескоп, понадобится легкий и надежный зеркально-линзовый аппарат, оснащенный системой Добсона или азимутальной подставкой.
  5. Опытным астрофотографам не обойтись без катадиоптрического телескопа с максимальной апертурой (400 мм) и длинным фокусом от 1000 мм. Монтировку лучше выбрать экваториальную с автоматическим приводом.

Сколько стоит телескоп

1. Рефрактор на азимутальной монтировке можно приобрести по цене от 3500 до 25000 руб. Стоимость будет зависеть от технических характеристик оптики и функционала прибора.

2. Зеркальный рефлектор на экваториальной подставке обойдется вам в сумму от 14 до 55 тыс. руб.

3. За профессиональный и мощный катадиоптрик придется отдать 18-130 тысяч.

Какое устройство послужит отличным подарком ребенку, расширяющим его кругозор? Какая покупка может стать началом хобби для человека любого возраста, пола и дохода? Какое занятие, одновременно, требует внимательности и усидчивости и поощряет поездки на природу? Как можно было догадаться из заголовка, эти вопросы относятся к телескопам и любительской астрономии.

Итак, сначала следует подчеркнуть, что телескоп - это такая вещь, которая не особо полезна без соответствующих знаний. В данном случае поможет карта звездного неба, которая может существовать как в электронном виде, так и классическом - бумажном. Надо сказать, что современные астрономические программы позволяют распечатывать карты на бумаге, чтобы их можно было использовать на природе. А с хорошими телескопами может идти в подарок лицензия на такое приложение.

Имея карту, можно узнать, какие объекты в принципе можно наблюдать на небе. Далее, рекомендуем изучить их свойства, что поможет пробудить интерес к самой астрономии, ведь она интересна именно масштабом изучаемых небесных тел.

Характеристики телескопов

Зная разновидности небесных объектов, можно приступать и к разнице телескопов как таковых. Как у любого технического устройства, здесь присутствует набор характеристик, который позволяет понять, какие преимущества и недостатки есть у той или иной модели.

Диаметр объектива

Именно эта характеристика телескопа является главной, а не увеличение, как можно было бы подумать. Почему?

Дело в том, что любой наблюдаемый в оптический телескоп объект является источником света, отраженного или собственного. При этом, если сам объект достаточно яркий, чтобы увидеть его невооруженным взглядом, то его детали будут менее яркими.

Плюс, существуют объекты, которые излучают свет в недостаточном для нашего глаза количестве.

Таким образом, телескоп, или подобный оптический прибор является “усилителем” света, поступающего в наш глаз.

Поэтому основная характеристика телескопа - диаметр апертуры, то есть диаметр объектива. Чем он больше, чем больше информации мы получим с помощью него.

Увеличение телескопа

Равно отношению фокусного расстояния объектива и фокусного расстояния окуляра. Увеличение определяет угол зрения телескопа, то есть сильные увеличения хороши для рассмотрения деталей лун и планет (точечные объекты), а слабые - для просмотра туманностей и прочих протяженных объектов.

Помимо увеличения на угол зрения телескопа влияет поле зрения окуляра, поэтому если вы хотите “расширить обзор” телескопа, возможно, стоит просто подобрать к нему другой окуляр.

Разрешающее увеличение (максимально полезное увеличение)

Равно диаметру объектива в миллиметрах, умноженному на два. Поясним: например, вы хотите разглядеть в телескоп кольца Сатурна. Для этого вам нужно смотреть именно на разрешающее увеличение, то есть, чем больше диаметр объектива, тем больше деталей вы увидите. Простое увеличение не определяет эту возможность.

Фокусное расстояние объектива

От этой характеристики зависит светосила объектива которая равна отношению диаметра к фокусному расстоянию. А светосила, собственно, влияет на настройки камеры при астрофотографии.

Вместе с тем, увеличение светосилы ведет к появлению оптических искажений - аберраций. Как всегда, нужно соблюдать баланс между светосилой и фокусным расстоянием, в зависимости от планируемых задач.

Типы телескопов по оптическому устройству

В случае телескопов окуляр являются сменными. Основная характеристика окуляра - фокусное расстояние, оно влияет на увеличение телескопа, как было упомянуто. Чем меньше фокусное расстояние окуляра, тем больше увеличение телескопа. Однако, при выборе окуляра не стоит превышать максимально полезное увеличение.

Искатель

При рассмотрении фотографий телескопов мы можем заметить маленькую оптическую трубу, которая крепится к основной, параллельно ей. Она и называется искателем.


Несложно догадаться, что служит искатель для наведения телескопа , обладая более широким полем зрения.

Чаще всего встречаются искатели с увеличением и фокусировкой, но бывают и модели с так называемой красной точкой, то есть сделанные по принципу голографического прицела.


Также, искатель может быть снабжен лазерным лучом, который виден в атмосфере и позволяет сориентировать телескоп должным образом.

Линза Барлоу

Этот аксессуар представляет собой линзу, которая размещается перед окуляром и кратно увеличивает фокусное расстояние объектива. Кратность увеличения является основной характеристикой линзы Барлоу.


Теоретически, одна линза Барлоу увеличивает в два раза количество возможных увеличений телескопа с окулярами. Например, если у вас два окуляра, с одной линзой Барлоу будет четыре возможных увеличения.

Кроме того, применение линзы Барлоу увеличивает вынос зрачка окуляра, то есть позволяет использовать большее расстояние между глазом и окуляром при наблюдении.

Но, как и любой дополнительный элемент линза Барлоу вносит в изображение определенные искажения.

Некоторые линзы Барлоу обладают дополнительной функцией переходника на камеру. Для этого на корпусе у них имеется специальная Т-резьба.

Оборачивающие призмы и диагональные зеркала

Призма - еще один аксессуар, который монтируется перед окуляром и служит для того, чтобы видимое изображение стало прямым, то есть не перевернутым и не отзеркаленным.


Диагональные зеркала работают схожим образом, изображение в них становится не первернутым, но остается отзеркаленным по горизонтали, в отличие от призм.

Оба данных типа аксессуаров полезны при наблюдении наземных объектов.

Фильтры

Оптический фильтр - стекло, которое пропускает свет с определенными характеристиками. Фильтры для телескопов устанавливаются на окуляр.


Перечислим, какие бывают фильтры для телескопов (функции многих из них понятны из названия).

  1. Солнечные.
  2. Лунные.
  3. Цветные (зеленые, оранжевые, красные, желтые, фиолетовые).
  4. Deep Sky - фильтры. Как правило, пропускают свет в узком диапазоне. Служат для наблюдения объектов глубокого космоса.

Таким образом, любительские телескопы являются модульным устройством, возможности которого можно расширить за счет аксессуаров.

Выводы

Астрономия является не самым распространенным хобби. Это обусловлено тем, что это занятие для увлеченных - несмотря на техническую простоту телескопов, существует множество нюансов, требующих больших знаний предмета.

Кроме того, в наше время люди не так стремятся к космосу, как, например, 50 лет назад. Открытия в области астрономии простираются в области локальных задач и очень далеких объектов. Уже понятно, что уникальных ресурсов, а, тем более, жизни, в ближнем космосе нет.

Немалую роль играет и то, что астрономия мало изучается в школе.

Тем не менее, мы думаем, что эта наука и работа с телескопами могут “зацепить” любого, и вам стоит это проверить. И, как ни странно, заметить что-то новое на небе есть возможность и у любителей.

Все оптические телескопы можно разделить по типу основного собирающего свет элемента на линзовые, зеркальные и комбинированные - зеркально-линзовые. Все системы обладают своими достоинствами и недостатками, и при выборе подходящей системы требуется учитывать несколько факторов - цели наблюдений, условия, требования к транспортабельности и весу, уровню аберраций, цене и т.п. Попробуем привести основные характеристики наиболее популярных на сегодня типов телескопов.



Рефракторы (линзовые телескопы)

Исторически первыми появились линзовые телескопы. Свет в таком телескопе собирается с помощью двояковыпуклой линзы, которая и является объективом телескопа. Ее действие основано на свойстве выпуклых линз преломлять световые лучи и собирать в определенной точке - фокусе. Поэтому часто линзовые телескопы называют рефракторами (от лат. refract - преломлять).

В рефракторе Галилея (созданном в 1609 г.) для того, чтобы собрать максимум звездного света и позволить человеческому глазу его увидеть, использовались две линзы. Первая линза (объектив) - выпуклая, она собирает свет и фокусирует его на определенном расстоянии, а вторая линза (играющая роль окуляра) - вогнутая, превращает сходящийся пучок световых лучей обратно в параллельный. Система Галилея дает прямое, неперевернутое изображение, однако сильно страдает от хроматической аберрации, портящей изображение. Хроматическая аберрация проявляется в виде ложной окраски границ и деталей объекта.

Более совершенным был рефрактор Кеплера (1611 г.), в котором в качестве окуляра выступала выпуклая линза, передний фокус которой совмещался с задним фокусом линзы-объектива. Изображение при этом получается перевернутым, но это несущественно для астрономических наблюдений, зато в точке фокуса внутри трубы можно поместить измерительную сетку. Предложенная Кеплером схема оказала сильное влияние на развитие рефракторов. Правда, она также не была свободна от хроматической аберрации, но ее влияние можно было уменьшить, увеличив фокусное расстояние объектива. Поэтому рефракторы того времени при скромных диаметрах объективов нередко имели фокусное расстояние в несколько метров и соответствующую длину трубы или обходились вообще без нее (наблюдатель держал окуляр в руках и «ловил» изображение, которое строил закрепленный на специальном штативе объектив).

Эти трудности рефракторов в свое время даже великого Ньютона привели к выводу о невозможности исправить хроматизм рефракторов. Но в первой половине XVIII в. появился ахроматический рефрактор.


Среди любительских инструментов наиболее распространены двухлинзовые рефракторы-ахроматы, но существуют и более сложные линзовые системы. Обычно объектив ахроматического рефрактора состоит из двух линз из разных сортов стекла, при этом одна собирающая, а вторая - рассеивающая, и это позволяет значительно уменьшить сферическую и хроматическую аберрации (присущие одиночной линзе искажения изображения). При этом труба телескопа остается сравнительно небольшой.

Дальнейшее совершенствование рефракторов привело к созданию апохроматов. В них влияние хроматической аберрации на изображение сведено к практически незаметной величине. Правда, достигается это за счет применения специальных типов стекол, которые дороги в производстве и обработке, поэтому и цена на такие рефракторы в несколько раз выше, чем на ахроматы одинаковой апертуры.

Как и у любой другой оптической системы, у рефракторов есть свои плюсы и минусы.


Достоинства рефракторов:

Сравнительная простота конструкции, дающая простоту в использовании и надежность;
практически не требуется специальное обслуживание;
быстрая термостабилизация;
отлично подходит для наблюдений Луны, планет, двойных звезд, особенно при больших апертурах;
отсутствие центрального экранирования от вторичного или диагонального зеркала обеспечивает максимальный контраст изображения;
хорошая цветопередача в ахроматическом исполнении и отличная в апохроматическом;
закрытая труба исключает воздушные потоки, портящие изображение, и защищает оптику от пыли и загрязнений;
объектив изготавливается и юстируется производителем как единое целое и не требует регулировок пользователем.


Недостатки рефракторов:
наибольшая стоимость на единицу диаметра объектива в сравнении с рефлекторами или катадиоптриками;
как правило, больший вес и габариты в сравнении с рефлекторами или катадиоптриками одинаковой апертуры;
цена и громоздкость ограничивают наибольший практический диаметр апертуры;
как правило, менее подходят для наблюдений небольших и тусклых объектов далекого космоса из-за практических ограничений на апертуру.

Рефлекторы (зеркальные телескопы)

Зеркальный телескоп или рефлектор (от лат. reflectio - отражать) - это телескоп, объектив которого состоит только из зеркал. Также как и выпуклая линза, вогнутое зеркало способно собирать свет в некоторой точке. Если поместить в этой точке окуляр, то можно будет увидеть изображение.

Одним из первых рефлекторов был рефлекторный телескоп Грегори (1663), который придумал телескоп с параболическим главным зеркалом. Изображение, которое можно наблюдать в подобный телескоп, оказывается свободным и от сферических, и от хроматических аберраций. Собранный большим главным зеркалом свет, отражается от небольшого эллиптического зеркала, закрепленного перед главным, и выводится к наблюдателю через отверстие в центре главного зеркала.


Разочаровавшись в современных ему рефракторах, И. Ньютон в 1667 г. начал разработку телескопа-рефлектора. Ньютон использовал металлическое главное зеркало (стеклянные зеркала с серебряным или алюминиевым покрытием появились позже) для собирания света, и небольшое плоское зеркальце для отклонения собранного светового пучка под прямым углом и вывода его сбоку трубы в окуляр. Таким образом, удалось справиться с хроматической аберрацией - вместо линз в этом телескопе используются зеркала, которые одинаково отражают свет с разными длинами волн. Главное зеркало рефлектора Ньютона может быть параболическим или даже сферическим, если его относительное отверстие сравнительно невелико. Сферическое зеркало гораздо проще изготовить, поэтому рефлектор Ньютона со сферическим зеркалом - это один из самых доступных типов телескопов, в том числе и для самостоятельного изготовления.


Схема, предложенная в 1672 г. Лореном Кассегреном, внешне напоминает рефлектор Грегори, однако имеет ряд существенных отличий - гиперболическое выпуклое вторичное зеркало и, как следствие, более компактный размер и меньшее центральное экранирование. Традиционный рефлектор Кассегрена нетехнологичен в массовом производстве (сложные поверхности зеркал - парабола, гипербола), а также имеет недоисправленную аберрацию комы, однако его модификации остаются популярными и в наше время. В частности, в телескопе Ричи-Кретьена применены гиперболические главное и вторичное зеркала, что дает ему возможность развивать большие поля зрения, свободные от искажений, и, что особенно ценно - для астрофотографии (прославленный орбитальный телескоп им. Хаббла спроектирон по этой схеме). Кроме того, на основе кассегреновского рефлектора позднее были разработаны популярные и технологичные катадиоптрические системы - Шмидта-Кассегрена и Максутова-Кассегрена.

В наше время рефлектором чаще всего называется именно телескоп, сделанный по схеме Ньютона. Имея малую сферическую аберрацию и полное отсутствие хроматизма, он, тем не менее, не полностью свободен от аберраций. Уже недалеко от оси начинает проявляться кома (неизопланатизм) - аберрация, связанная с неравностью увеличения разных кольцевых зон апертуры. Кома приводит к тому, что изображение звезды выглядит не как кружок, а как проекция конуса - острой и яркой частью к центру поля зрения, тупой и округлой в сторону от центра. Кома прямо пропорциональна удалению от центра поля зрения и квадрату диаметра объектива, поэтому особенно сильно она проявляется в так называемых "быстрых" (светосильных) Ньютонах на краю поля зрения. Для коррекции комы применяются специальные линзовые корректоры, устанавливаемые перед окуляром или фотокамерой.

Как наиболее доступный для самостоятельного изготовления рефлектор, «ньютон» часто выполняется на простой, компактной и практичной монтировке Добсона и в таком виде является наиболее портативным телескопом с учетом доступной апертуры. Причем производством «добсонов» занимаются не только любители, но и коммерческие производители, и телескопы могут иметь апертуры до полуметра и более.
Достоинства рефлекторов:
наименьшая стоимость на единицу диаметра апертуры в сравнении с рефракторами и катадиоптриками - большие зеркала проще производить, чем большие линзы;
сравнительно компактны и транспортабельны (особенно в добсоновском исполнении);
в силу сравнительно большой апертуры превосходно работают для наблюдений тусклых объектов далекого космоса - галактик, туманностей, звездных скоплений;
дают яркие изображения с малыми искажениями, отсутствует хроматическая аберрация.
Недостатки рефлекторов:
центральное экранирование и растяжки вторичного зеркала снижают контраст деталей изображения;
массивное стеклянное зеркало требует времени на термостабилизацию;
открытая труба не защищена от пыли и тепловых токов воздуха, портящих изображение;
требуется периодическая подстройка положений зеркал (юстировка или коллимация), склонная утрачиваться при транспортировке и эксплуатации.

Катадиоптрические (зеркально-линзовые) телескопы

Зеркально-линзовые (или катадиоптрические) телескопы используют как линзы, так и зеркала для построения изображения и исправления аберраций. Среди катадиоптриков у любителей астрономии наиболее популярны два типа телескопов, основанных на кассегреновской схеме - Шмидт-Кассегрен и Максутов-Кассегрен.

В телескопах Шмидта-Кассегрена (Ш-К) главное и вторичное зеркала - сферические. Сферическая аберрация исправляется стоящей на входе в трубу полноапертурной коррекционной пластиной Шмидта. Эта пластина со стороны кажется плоской, но имеет сложную поверхность, изготовление которой и составляет главную трудность изготовления системы. Впрочем, американские компании Meade и Celestron успешно освоили производство системы Ш-К. Среди остаточных аберраций этой системы заметнее всего проявляются кривизна поля и кома, исправление которых требует применения линзовых корректоров, особенно при фотографировании. Главное достоинство - короткая труба и меньший вес, чем у ньютоновского рефлектора той же апертуры и фокусного расстояния. При этом отсутствуют растяжки крепления вторичного зеркала, а закрытая труба препятствует образованию воздушных потоков и защищает оптику от пыли.

Система Максутова-Кассегрена (М-К) была разработана советским оптиком Д. Максутовым и подобно Ш-К имеет сферические зеркала, а исправлением аберраций занимается полноапертурный линзовый корректор - мениск (выпукло-вогнутая линза). Поэтому такие телескопы еще называются менисковыми рефлекторами. Закрытая труба и отсутствие растяжек - также плюсы М-К. Подбором параметров системы можно скорректировать практически все аберрации. Исключение составляет так называемая сферическая аберрация высших порядков, но ее влияние невелико. Поэтому эта схема очень популярна и выпускается многими производителями. Вторичное зеркало может быть реализовано как отдельный блок, механически закрепленный на мениске, либо как алюминированный центральный участок задней поверхности мениска. В первом случае обеспечивается лучшее исправление аберраций, во втором - меньшая стоимость и вес, большая технологичность в массовом производстве и исключение возможности разъюстировки вторичного зеркала.

В целом, при одинаковом качестве изготовления система М-К способна дать немного более качественное изображение, чем Ш-К с близкими параметрами. Но большие телескопы М-К требуют больше времени на термостабилизацию, т.к. толстый мениск остывает значительно дольше пластины Шмидта, а также для М-К возрастают требования к жесткости крепления корректора, и весь телескоп получается тяжелее. Поэтому прослеживается применение для малых и средних апертур системы М-К, а для средних и больших - Ш-К.

Существуют также катадиоптрические системы Шмидта-Ньютона и Максутова-Ньютона, имеющие характерные черты упомянутых в названии конструкций и лучшее исправление аберраций. Но при этом габариты трубы остаются «ньютоновскими» (сравнительно крупными), а вес увеличивается, особенно в случае менискового корректора. Кроме того, к катадиоптрическим относятся системы с линзовыми корректорами, установленными перед вторичным зеркалом (система Клевцова, «сферические кассегрены» и т.п.).
Достоинства катадиоптрических телескопов:
высокий уровень коррекции аберраций;
универсальность - хорошо подходят и для наблюдений планет и Луны, и для объектов далекого космоса;
там, где есть закрытая труба, она минимизирует тепловые потоки воздуха и защищает от пыли;
наибольшая компактность при равной апертуре в сравнении с рефракторами и рефлекторами;
большие апертуры стоят значительно дешевле сравнимых рефракторов.
Недостатки катадиоптрических телескопов:
необходимости сравнительно долгой термостабилизации, особенно для систем с менисковым корректором;
большей стоимости, чем у рефлекторов равной апертуры;
сложности конструкции, затрудняющей самостоятельную юстировку инструмента.

Атрибут детства многих поколений наших сограждан - пытливый астроном с неизменной островерхой шапкой и телескопом. Кто-то вырос, а кто-то до сих пор остался романтиком, увлекающимся бесконечным космосом и звездами, в поисках планет, заселенных братьями по разуму. Для таких профессионалов ежегодно выпускается множество моделей данных приборов, виды которых мы и рассмотрим в статье.

Итак, основные их виды:

  • линзовые (известные со времен Галилея, рефракторы);
  • зеркальные (они же рефлекторы);
  • катадиоптрические, являющиеся комбинированными зеркально-линзовыми приборами.

Будем считать, что перед тем как купить телескопВы уже выбрали перечень объектов для изучения, который Вам интересен. Поэтому далее мы остановимся на конструкциях и технических характеристиках, оставив в стороне вопрос их применимости.

Линзовые «глаза астрономов» сделаны на базе двояковыпуклых линз, собирающих отсвет от наблюдаемых объектов в определенном фокусе. Линза преломляет свет определенным образом, поэтому из-за этого её свойства такой прибор ещё известен как рефрактор. Его история богата именами конструкторов. Известен рефрактор:

  • Галилея (двояковыпуклая линза - объектив и двояковогнутая - окуляр);
  • Кеплера;
  • ахроматический (наиболее оптически совершенный).

Его достоинства - простота и надежность конструкции, отличная контрастность и термостабилизация, незагруженность регулировками, возможность наблюдать любые астрономические объекты. К недостаткам можно отнести - высокая удельная стоимость дюйма апертуры по сравнению с другими типами моделей, высокие массо-габаритные показатели, невозможность наблюдать относительно удаленные объекты Солнечной системы.

Врефлекторахвместо линз используются вогнутые, выпуклые зеркала, позволяющие с помощью линзового окуляра в точке фокуса видеть чистое от хроматических и сферических аббераций изображение. К идее разработки и производству такого вида телескопа приложили руку Ньютон, Грегори, Кассегрен, Ричи-Кретьен… В итоге современникам больше известна на практике модель, созданная Исааком Ньютоном.

Купить зеркальный телескоп стоит из-за :

  • более чем конкурентной стоимости по сравнению с катадиоптриками и рефракторами;
  • сравнительно небольших массо-габаритных показателей;
  • возможности наблюдения удаленных туманных астрономических объектов;
  • высокого качества изображения (без определенных шумов, хорошей яркости и т.д.)

Препятствием для приобретения могут послужить:

  • потеря контрастности из-за конфигурации зеркал;
  • медленная термическая стабилизация;
  • подверженная прямому воздействию воздуха, пыли, влаги открытая конструкция;
  • постоянная необходимость в юстировке либо коллимации, особенно после перевозки прибора на другое место.

Катадиоптрические - оптические устройства, вобравшие в себя лучшие черты рефракторов и рефлекторов. Наибольшим спросом на рынке пользуются такие телескопы, построенные по нескольким схемам. Их наименования даны в соответствии с фамилиями изобретателей - Шмидта-Кассегрена и Максутова-Кассегрена. Оба варианта максимально продуманы, в них реализованы всевозможные приемы защиты от оптических искажений, влияния сторонних факторов - влажности, температуры…

Приобрести катадиоптрический телескоп можно с учетом следующих его позитивных черт :

  • отличная универсальность в применимости;
  • лучшая корректировка аббераций;
  • минимизация влияния сторонних факторов на изображение;
  • более низкая стоимость больших апертур по сравнению с конкурентами.

К недостаткам можно отнести:

  • долгий процесс термической стабилизации;
  • практическая невозможность самостоятельной юстировки;
  • высокая стоимость в сегменте оборудования средней и малой «зоркости», т.е. наблюдения за недалеко расположенными объектами.


Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии