Первые телескопы. Весь мир — телескоп: как ученые из России превратили космос в обсерваторию. Рис.1 Телескоп Галилея

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Трудно сказать, кто первый изобрел телескоп. Известно, что еще древние употребляли увеличительные стекла. Дошла до нас и легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бэкон, один из наиболее замечательных ученых и мыслителей XIII века, в одном из своих трактатов утверждал, что он изобрел такую комбинацию линз, с помощью которой отдаленные предметы при рассматривании их кажутся близкими.

Так ли это было в действительности - неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика - Липперсгей, Мециус и Янсен. Рассказывают, что будто бы дети одного из оптиков, играя с линзами, случайно расположили две из них так, что далекая колокольня вдруг показалась близкой. Как бы там ни было, к концу 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических инструментах быстро распространились по Европе.

В Падуе в это время уже пользовался широкой известностью Галилео Галилей, профессор местного университета, красноречивый оратор и страстный сторонник учения Коперника. Услышав о новом оптическом инструменте, Галилей решил собственноручно построить подзорную трубу. Сам он рассказывает об этом так:

«Месяцев десять тому назад стало известно, что некий фламандец построил перспективу, при помощи которой видимые предметы, далеко расположенные от глаз, становятся отчетливо различимы, как будто они находятся вблизи. Это и было причиной, по которой я обратился к изысканию оснований и средств для изобретения сходного инструмента. Вскоре после этого, опираясь на учение о преломлении, я постиг суть дела и сначала изготовил свинцовую трубу, на концах которой я поместил два оптических стекла, оба плоских с одной стороны, с другой стороны одно стекло выпукло-сферическое, другое вогнутое».

Этот первенец телескопической техники давал увеличение всего в три раза. Позже Галилею удалось построить более совершенный инструмент, увеличивающий в 30 раз. И тогда, как пишет Галилей, «оставив дела земные, я обратился к небесным».

7 января 1610 года навсегда останется памятной датой в истории человечества. Вечером этого дня Галилей впервые направил построенный им телескоп) на небо. Он увидел то, что предвидеть заранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, сходным хотя бы по рельефу с Землей. Планета Юпитер предстала перед глазами изумленного Галилея крошечным диском, вокруг которого обращались четыре необычные звездочки - его спутники. Картина эта в миниатюре напоминала Солнечную систему по представлениям Коперника. При наблюдениях в телескоп планета Венера оказалась похожей на маленькую Луну. Она меняла свои фазы, что свидетельствовало о ее обращении вокруг Солнца. На самом Солнце (закрыв глаза темным стеклом) Галилей увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю Солнца, из чего Галилей сделал правильный вывод о вращении Солнца вокруг оси.

В темные прозрачные ночи в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженному глазу. Некоторые туманные пятна на ночном небе оказались скопищами слабо светящихся звезд. Великим собранием скученно расположенных звездочек оказался и Млечный Путь - беловатая, слабо светящаяся полоса, опоясывающая все небо.

Несовершенство первого телескопа помешало Галилею рассмотреть кольцо Сатурна.


Рис. 11. Телескопы Галилея.

Вместо кольца он увидел по обе стороны Сатурна два каких-то странных придатка и в своем «Звездном вестнике» - дневнике наблюдений - Галилеи был вынужден записать, что «высочайшую планету» (то есть Сатурн) он «тройною наблюдал».

Открытия Галилея положили начало телескопической астрономии. Но его телескопы (рис. 11), утвердившие, окончательно новое коперниканское мировоззрение, были очень несовершенны. Уже при жизни Галилея им на смену пришли телескопы несколько иного типа. Изобретателем нового инструмента был уже знакомый нам Иоганн Кеплер. В 1611 году в трактате «Диоптрика» Кеплер дал описание телескопа, состоящего из двух двояковыпуклых линз. Сам Кеплер, будучи типичным астрономом-теоретиком, ограничился лишь описанием схемы нового телескопа, а первым, кто построил такой телескоп и употребил его для астрономических целей, был иезуит Шейнер, оппонент Галилея в их горячих спорах о природе солнечных пятен.

Рассмотрим оптические схемы и принцип действия галилеевского и кеплеровского телескопов . Линза А, обращенная к объекту наблюдения, называется объективом, а та линза В , к которой прикладывает свой глаз наблюдатель - окуляром. Если линза толще посередине, чем на краях, она называется собирательной или положительной, в противном случае - рассеивающей или отрицательной. Заметим, что в телескопе самого Галилея объективом служила плоско-выпуклая линза, а окуляром - плоско-вогнутая. По существу, галилеевский телескоп был прообразом современного театрального бинокля, в котором используются двояковыпуклые и двояковогнутые линзы. В телескопе Кеплера и объектив и окуляр были положительными двояковыпуклыми линзами.


Рис. 12. Галилеевский (вверху) и кемеровский телескопы (схема)

Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямая, соединяющая центры этих поверхностей, называется оптической осью линзы. Если на такую линзу падают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой фокусом линзы. Расстояние от центра линзы до ее фокуса называют фокусным расстоянием. Нетрудно сообразить, что чем больше кривизна поверхностей собирательной линзы, тем меньше ее фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Иначе ведут себя рассеивающие, отрицательные линзы. Падающий на них параллельно оптической оси пучок света они рассеивают и в фокусе такой линзы сходятся не сами лучи, а их продолжения. Потому рассеивающие линзы имеют, как говорят, мнимый фокус и дают мнимое изображение.

На рис. 12 показан ход лучей в галилеевском телескопе. Так как небесные светила, практически говоря, находятся «в бесконечности», то изображения их получаются в фокальной плоскости, то есть в плоскости, проходящей через фокус F и перпендикулярной к оптической оси. Между фокусом и объективом Галилей поместил рассеивающую линзу, которая давала мнимое, прямое и увеличенное изображение MN.

Главным недостатком галилеевского телескопа было очень малое поле зрения - так называют угловой поперечник кружка неба, видимого в телескоп. Из-за этого наводить телескоп на небесное светило и наблюдать его Галилею было очень трудно. По той же причине галилеевские телескопы после смерти их изобретателя в астрономии не употреблялись и их реликтом можно считать современные театральные бинокли.

В кеплеровском телескопе (см. рис. 12) изображение CD получается действительное, увеличенное и перевернутое. Последнее обстоятельство, неудобное при наблюдениях земных предметов, в астрономии несущественно - ведь в космосе нет какого-то абсолютного верха или низа, а потому небесные тела не могут быть повернутыми телескопом «вверх ногами».

Первое из двух главных преимуществ телескопа - это увеличение угла зрения, под которым мы видим небесные объекты. Как уже говорилось, человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние между ними не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает лишь крупные детали, поперечник которых превышает 100 км. В благоприятных условиях, когда Солнце затянуто облачной дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженный глаз на небесных телах не видит. Телескопы же увеличивают угол зрения в десятки и сотни раз.

Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не больше 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше того количества, которое собирает глаз, во сколько площадь объектива больше площади зрачка. Иначе говоря, это отношение равно отношению квадратов диаметров объектива и зрачка.

Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком . В сущности, выходной зрачок - это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа (то есть увеличение угла зрения по сравнению с невооруженным глазом) равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, увеличивая фокусное расстояние объектива и уменьшая фокусное расстояние окуляра, можно достичь любых увеличений. Теоретически это так, но практически все выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зрения. Во-вторых, с ростом увеличения становятся все заметнее движения воздуха. Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тусклее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, Солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и в десятки тысяч раз). Приходится искать некоторый оптимум и потому даже в современных телескопах, как правило, наибольшие увеличения не превосходят нескольких сотен раз.

При создании телескопов со времен Галилея придерживаются следующего правила: выходной зрачок телескопа не должен быть больше выходного зрачка наблюдателя. Легко сообразить, что в противном случае часть света, собранного объективом, будет напрасно потеряна. Очень важной величиной, характеризующей объектив телескопа, является его относительное отверстие, то есть отношение диаметра объектива телескопа к его фокусному расстоянию. Светосилой объектива называется квадрат относительного отверстия телескопа. Чем «светосильнее» телескоп, то есть чем больше светосила его объектива, тем более яркие изображения объектов он дает. Количество же света, собираемого телескопом, зависит лишь от диаметра его объектива (но не от светосилы!). Из-за явления, именуемого в оптике дифракцией, при наблюдениях в телескопы яркие звезды кажутся небольшими дисками, окруженными несколькими концентрическими радужными кольцами. Разумеется, к настоящим дискам звезд дифракционные диски никакого отношения не имеют.

В заключение сообщим читателю основные технические данные о первых галилеевских телескопах. Меньший из них имел диаметр объектива 4 см при фокусном расстоянии 50 см (его относительное отверстие было равно 4/50 = 0,08). Он увеличивал угол зрения всего в три раза. Второй, более совершенный телескоп, с помощью которого Галилей совершил свои великие открытия, имел объектив диаметром 4,5 см при фокусном расстоянии 125 см и давал увеличение в 34 раза. При наблюдениях в этот телескоп Галилей различал звезды до 8-й звездной величины, то есть в 6,25 раз более слабые, чем те, которые еле видит на ночном небе невооруженный глаз.

Таково было скромное начало развернувшегося позже «чемпионата» телескопов - длительной борьбы за усовершенствование этих главных астрономических инструментов.

<<< Назад
Вперед >>>

К концу 1609 года небольшие подзорные трубы благодаря Липпершлею стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галилей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала это была всего лишь зрительная труба - комбинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто догадывался использовать на пользу астрономии эту трубку. Благодаря прибору Галилей открыл кратеры на Луне, доказал ее сферичность, открыл четыре спутника Юпитера, кольца Сатурна.

Развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в огромные неподъемные трубы и, конечно, были не удобны в использовании. Тогда для них изобрели штативы.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура - около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов. К 1670-х годам был построен 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон: уменьшение хроматической аберрации линзы происходит с увеличением ее фокусного расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой невероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и их настройке. Недостатки рефракторов заставили великие умы искать решения, телескоп. Ответ и новый способ был найден: собирание и фокусировке лучей стала производится с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону, именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный рефлектор диаметром 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

Двухзеркальная система в предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами, изобретенными в конце XIX века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в XIX веке, тогда диаметр ахроматических объективов постепенно рос. Если в 1824 году диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году он стал составлять 76 сантиметров (Пулковская обсерватория в России), а к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоростью одного сантиметра в год.

К концу XVIII века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон - и тяжелого - флинта - появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзовые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось астрономов-любителей. Так Вильям Гершель, английский музыкант, в 1781 году открыл планету Уран. Его открытию не было равных в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего размера. Гершель в мастерской собственноручно сплавлял зеркала из меди и олова. Главный труд его жизни – большой телескоп с зеркалом диаметром 122 см. Благодаря этому телескопу открытия не заставили себя ждать: Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным астроном-любитель, английский землевладелец лорд Росс изобрел рефлектор с зеркалом диаметром в 182 сантиметра. Благодаря телескопу он открыл ряд неизвестных спиральных туманностей.

Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла были слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркало из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографических наблюдений со стеклянным зеркалом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и улучшил качество линз. И сегодня в Тартуской обсерватории с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна – хроматизма.

И лишь к концу XIX века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце XIX века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено . Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков рефлекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Маунт-Вилсон, его диаметр 256 сантиметров. И даже этот предел совсем скоро был превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, его возраст более пятнадцати лет.

Более 30 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца XX века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня эти новшества применяются практически во всех телескопах-гигантах. В начале XXI века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени - на сегодня его качество на 30% от первоначального - превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа - 10-метровых KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Главное зеркало диаметром 10 метров состоит из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гавайях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенные на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.

История телескопа прошла долгий путь – от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты типа Хаббл все еще базируются на принципах работы, изобретенных Галилеем.

придуманы людьми несколько столетий назад, однако их точное происхождение пока остаётся предметом спора учёных. Достоверно известно, что в начале 17 века, а именно в 1608 году, голландский изготовитель очков Ханс Липперсхей (Hans Lipperhey) подал заявку на патент зрительной трубы, по сути представлявшей собой примитивный . Липперсхей обычно считается изобретателем телескопа, но есть вероятность, что он был не первым человеком, догадавшимся, что труба с вогнутой линзой на одном конце и выпуклой линзой на другом может увеличивать далёкие объекты.

Рефрактор Галилея (1609г)

Несмотря на то, что был изобретён другим человеком, Галилео Галилей (Galileo Galilei) усовершенствовал его, значительно увеличив его возможности. Помимо этого, Галилей первым понял, что можно использовать не только для зрительного приближения далёких объектов на Земле, но и для изучения неба.

На картинке изображён Галилей, демонстрирующий один из своих телескопов правителям Венеции в августе 1609г. В течение нескольких лет после этого Галилей сделал ряд крупных наблюдений, в том числе открыл четыре крупных спутника Юпитера.

Отражающий Ньютона (1668г)


Вместо стеклянных линз, преломляющих лучи света, Исаак Ньютон (Isaak Newton) использовал изогнутые зеркала, также способные собирать или рассеивать свет в зависимости от формы. Конструкция на основе зеркал позволяет увеличивать объекты намного сильнее, чем это возможно с линзами. Кроме того, использование зеркал решает проблему хроматической аберрации, явления, из-за которого разные части спектра преломляются по-разному, что вызывает искажение изображения.

Однако из-за плохого качества зеркала первый отражающий Ньютона довольно сильно искажал и затемнял изображение. Отражающие стали популярны среди астрономов более чем через сто лет, когда появились зеркала, лучше отшлифованные и поглощающие меньше света.

Гринвичская королевская обсерватория (Royal Greenwich Observatory) с 1675 года является основной астрономической организации Великобритании. Она была организована королём Карлом II для навигационных нужд и сопутствующих исследований и размещена в Гринвиче, предместье Лондона. В то время Англия была крупнейшей морской державой, которой были необходимы возможно более точные инструменты для определения положения корабля, навигации на море, картографии и т.д. Меридиан, проходящий через Гринвич, решили считать нулевым в Великобритании и её колониях, а с 1884 года от него исчисляется поясное время во всём мире.

Здесь, в Гринвичской обсерватории, в 1676г приступил к наблюдениям за звездами и Луной первый королевский астроном Джон Флемстид (John Flamsteed). К концу XIX века Гринвичская обсерватория имела 76см рефлектор, 71см, 66см и 33см рефракторы и множество вспомогательных инструментов. В 1953г часть обсерватории была перенесена на 70км к юго-западу, в позднесредневековый замок Хёрстмонсо.

Великий русский ученый М.В.Ломоносов не только изобрел и построил более десятка принципиально новых оптических приборов, но и создал русскую школу научной и прикладной оптики. Среди его изобретений был , позволяющий видеть ночью и названный Ломоносовым "ночезрительной трубой", и новый тип отражательного телескопа, который позднее был использован Гершелем в его знаменитом телескопе.

Под руководством Ломоносова в 1761г оптик Иван Иванович Беляев изготовил "небесную трубу" длиной больше 12м, с большими металлическими зеркалами и линзой-объективом. Эта зрительная труба, будучи неподвижной, позволяла наблюдать за двигающимися звёздами и планетами. Позднее, в 1764г, тот же Беляев по чертежам Ломоносова сделал три трубы, предназначенные для сумеречного времени. Эти трубы имели латунный корпус и по четыре стекла. До того "ночезрительные трубы" считались невозможными, и идея Ломоносова высмеивалась в научных кругах.


Первый собственный Джон Гершель (John Frederick William Herschel) построил в 1774г, взяв за основу идеи и расчёты Ломоносова (по другим данным, Гершель и Ломоносов независимо друг от друга придумали оптические системы с одинаковыми принципами работы). Гершель несколько раз улучшал конструкцию телескопа, построив в итоге 20-футовый (6м) . Это был довольно громоздкий инструмент, для обслуживания которого требовалось четыре рабочих. На протяжении нескольких десятилетий этот оставался крупнейшим в мире.

Гершель составил огромный каталог звёзд и туманностей, произвёл ценные наблюдения над планетами Солнечной системы, в частности, в 1781г подтвердил, что Уран является планетой, а не звездой, а также открыл два спутника Урана и два спутника Сатурна. Сын Гершеля также активно занимался небесной оптикой и провёл несколько лет в Южной Африке, где построил аналогичный для изучения неба Южного полушария.

Пулковская обсерватория (полное официальное название "Главная (Пулковская) астрономическая обсерватория Российской академии наук", сокращённое - ГАО РАН) в настоящее время является основной астрономической обсерваторией РАН. Она расположена в 19км к югу от Санкт-Петербурга на Пулковских высотах.

Торжественное открытие обсерватории, созданной по решению Петербургской Академии наук, состоялось 7 (19) августа 1839г. Созданием обсерватории руководил выдающийся учёный-астроном Василий Яковлевич Струве, который и стал её первым директором. В Пулковской обсерватории находился один из самых больших на тот момент в мире рефракторов (38см). Как и Гринвичская, Пулковская обсерватория предназначалась для развития навигации и для исследования неба, геодезических измерений и т.д. В 1847 году директор Гринвичской обсерватории написал, что ни один астроном не может считать себя астрономом, если он не познакомился с Пулковской обсерваторией. До 1884 года все географические карты России имели точкой отсчёта Пулковский меридиан. Обсерватория, практически разрушенная во время Великой Отечественной войны, была восстановлена и вновь открыта в 1954г.

На сегодняшний день научная деятельность обсерватории охватывает практически все приоритетные направления фундаментальных исследований современной астрономии: небесная механика и звёздная динамика, астрометрия (геометрические и кинематические параметры Вселенной), Солнце и солнечно-земные связи, физика и эволюция звезд, аппаратура и методика астрономических наблюдений.

Крымская астрофизическая обсерватория была основана в начале XX века возле поселка Симеиз на горе Кошка, как частная обсерватория любителя астрономии Николая Мальцова. В 1912 году она была передана в дар Пулковской обсерватории, после чего стала превращаться в полноценный научный центр, проводящий фотометрию звёзд и малых планет. В 1926 году в Крымской обсерватории был установлен метровый английский рефлектор, один из крупнейших рефракторов того времени. Крымская обсерватория, как и Пулковская, была практически полностью уничтожена во время Второй Мировой войны, позднее восстановлена и усовершенствована.

Сейчас Крымская обсерватория представляет собой развитый научно-исследовательский комплекс, в котором ведутся исследования по направлениям Физика звёзд и галактик, Физика Солнца, Радиоастрономия, Гамма-астрономия, Экспериментальная астрофизика, Оптическое производство. Сотрудниками Крымской обсерватории открыто около 1300 астероидов и 3 кометы. В настоящее время обсерватория находится под угрозой уничтожения из-за начавшейся в марте 2009 года противозаконной застройки ее территории коттеджным поселком с развлекательными комплексами.

200-дюймовый Хейла (1948г)


Джордж Эллери Хейл (George Ellery Hale), которого вполне можно назвать фанатом астрономии, в 1908г построил 60" на горе Вильсон, к северо-востоку от Лос-Анджелеса. в 1917г там же был установлен 100" Вильсона, который в течение 30 лет был самым большим телескопом в мире. Но Хейлу не хватало 100" телескопа, он хотел построить раза в два больше размером. В 1928г Хейл начал продвигать идею создания 200" телескопа. Он сумел заручиться финансовой поддержкой чикагского миллионера Чарлза Йеркса и на горе Паломар, к югу от Лос-Анджелеса, был построен 200" (5.1м) Хейла. Его строительство было завершено в 1948г, через 10 лет после смерти Хейла. Этот на протяжении 10 лет оставался крупнейшим в мире.

В телескопе Хейла использованы гигантские зеркала, изготовленные из специального нового стекла Pyrex, которое не меняет форму и размеры из-за колебаний температуры. Зеркало в нижней части трубы телескопа отражает свет звёзд, кабина наблюдателя находится наверху. Дополнительное зеркало может отражать свет через отверстие в центре основного зеркала.

Космический Хаббл (Hubble, 1990г)

Телескоп Хаббл был назван в честь известного астронома Эдвина Хаббла (Edwin Powell Hubble). Этот учёный оказал огромное влияние на проблему определения размеров нашей Вселенной и сформулировал закон: "галактики разлетаются со скоростью пропорциональной расстоянию между ними". Кстати, многие наблюдения Хаббл проводил на телескопах Хейла.

Запуск телескопа Хаббл, который состоялся в апреле 1990г, был настоящим прорывом для астрономии. Впервые был выведен за границу атмосферы и избавлен от искажений, возникающих из-за прохождения света через земную атмосферу. С помощью телескопа Хаббл более точно определены темпы расширения Вселенной, открыты многие новые звёзды и туманности, открыта тёмная материя, до того существовавшая только в расчётах отдельных физиков. Хаббл стал первым космическим объектом искусственного происхождения, который предназначен для проведения профилактики и текущего ремонта прямо в космосе. Пятый и пока последний ремонт Хаббла был проведён 11 мая 2009 года, следующий ремонт ориентировочно будет в 2014 году.

WMAP (Wilkinson Microwave Anisotropy Probe, 2001г)

WMAP представляет собой космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва. Строго говоря, это не , а исследовательский спутник. С помощью WMAP была создана первая чёткая карта неба в микроволновом диапазоне, уточнён возраст Вселенной (13.7млрд лет), измерен состав Вселенной (по крайней мере ближайшего участка). Примерно 72% Вселенной занимает тёмная энергия, 23% ─ тёмная материя, и только 5% обычная материя.

14 мая 2009 года был запущен преемник аппарата WMAP, спутник Планк (Planck). Теоретически чувствительность приборов Планка в 10 раз выше, а угловое разрешение в 3 раза выше, чем у WMAP.

Телескоп Свифт (Swift, 2004г)

Орбитальный рентгеновский Свифт был разработан для изучения быстрых космических явлений, называемых гамма-всплесками, которые, предположительно, возникают при смерти массивной звезды или объединении двух плотных объектов, таких как нейтронные звёзды. До запуска Свифта, состоявшегося в 2004 году, астрономам требовалось около 6 часов, чтобы после фиксации гамма-всплеска регистрировать все его параметры. Свифт способен начать записывать все данные о гамма-потоке не более чем через минуту после фиксации всплеска. Свифт уже зафиксировал данные сотен гамма-всплесков, а в апреле 2009 года обнаружил поток гамма-излучения, который дошёл до нас от наиболее отдалённого космического объекта из всех зафиксированных до сих пор.

Благодарим ресурсы NewScientist , Astronomer.ru , Wikipedia за предоставленную информацию.

Министерство образования Оренбургской области

Государственное Образовательное Учреждение Начального Профессионального Образования Профессиональное Училище - № 17

РЕФЕРАТ НА ТЕМУ:

« Телескопы и история их создания »

Разработал:

Учащийся 1 курса гр. №2

Подкопаев Эдуард

Руководитель:

Обухова Н.С.

Абдулино,2010


Введение………………………………………………………………….2

1.1 История создания первых телескопов…………………………….5

1.2.Современные виды телескопов ……………………..…………….8

2. Глава 2………………………………………………………………….12

2.1 Домашний телескоп………………………………………………..12

Заключение…………………………………………………..…………13

Список используемой литературы……………………………………14

Приложения……………………………………………………………..15

Введение

Ведь каждый день пред нами солнце ходит,

Однако ж прав упрямый Галилей.

А.С.Пушкин

Телеско́п (от др.-греч. τῆλε - далеко + σκοπέω - смотрю) - прибор, предназначенный для наблюдения небесных светил. Действительно, это оптическое устройство представляет собой мощную зрительную трубу, предназначенную для наблюдения весьма удаленных объектов – небесных светил.

Существуют телескопы для всех диапазонов электромагнитного спектра: оптические телескопы, радиотелескопы, рентгеновские телескопы, гамма-телескопы. Кроме того, детекторы нейтрино часто называют нейтринными телескопами. Также, телескопами могут называть детекторы гравитационных волн.

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами, в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения. Также, телескоп может использоваться в качестве зрительной трубы, для решения задач наблюдения за удалёнными объектами.

Актуальность: созданный около четырехсот лет назад, телескоп является своеобразным символом современной науки, воплощая в себе извечное стремление человечества к познанию.

Объект исследования: различные виды телескопов.

Цель нашего исследования рассмотреть историю создания телескопа, создать домашний телескоп.

Задачи исследования: собрать и изучить теоретический материал о телескопе, используя все доступные источники информации.

Основная гипотеза – телескопы и грандиозные обсерватории вносят немалый вклад в развитие целых областей науки, посвященных исследованию структуры и законов нашей Вселенной.

Научная новизна нашей работы заключается в значимости телескопов на современном этапе развития науки и техники (в истории космических)

Практическая значимость: материалы исследования могут быть использованы на уроках физики, истории, географии, во внеклассной работе. Сегодня телескоп все чаще можно встретить не в научной обсерватории, а в обычной городской квартире, где живет обычный астроном-любитель, который ясными звездными ночами отправляется приобщаться к захватывающим красотам космоса.

Глава 1

1.1. История создания первых телескопов

Трудно сказать, кто первый изобрел телескоп. Годом изобретения телескопа, а вернее зрительной трубы, считают 1608 год, когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге. Тем не менее в выдаче патента ему было отказано, в силу того что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара, уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент. Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году, в «Дополнениях в Вителлию», опубликованных в 1604 г. Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены еще в записях Леонардо да Винчи датируемых 1509-м годом. Сохранилась его запись: «Сделал стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).(2,136)

Известно, что еще древние употребляли увеличительные стекла. Дошла до нас легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бекон, один из наиболее замечательных ученых и мыслителей XIII века, в одном из своих трактатов утверждал, что он изобрел такую комбинацию линз, с помощью которой удаленные предметы на расстоянии кажутся близкими. (1, 46)

Так ли это было в действительности – неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика: Липерсчей, Меунус, Янсен. Как бы там ни было, к концу 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических приборах быстро распространялись по Европе.

В Падуе в это время уже был широко известен Галилео Галилей, профессор местного университета, красноречивый оратор и страстный сторонник учения Коперника. Услышав о новом оптическом инструменте, Галилей решил собственноручно построить подзорную трубу. 7 января 1610 года навсегда останется памятной датой в истории человечества. Вечером того же дня Галилей впервые направил построенный им телескоп на небо. (Приложение №1.рис.1)

Он увидел то, что ранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, сходным хотя бы по рельефу с Землей. Юпитер, предстал перед глазами изумленного Галилея крошечным диском, вокруг которого вращались четыре необычные звездочки – его спутники. При наблюдении в телескоп планета Венера оказалась похожа на маленькую Луну. Она меняла свои фазы, что свидетельствовало об ее обращении вокруг Солнца. На самом Солнце (поместив перед глазами темное стекло) ученый увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю Солнца, из чего сделал правильный вывод о вращении Солнца вокруг оси. В темные ночи, когда небо было чистым, в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженному глазу. Несовершенство первого телескопа не позволило ученому рассмотреть кольцо Сатурна. Вместо кольца он увидел по обе стороны Сатурна два каких-то странных придатка. Открытия Галилея положили начало телескопической астрономии. Но его телескопы, утвердившие окончательно мировоззрение Коперника, были очень несовершенны. Уже при жизни Галилея на смену пришли телескопы несколько иного типа. Изобретателем нового инструмента был Иоганн Кеплер.(Приложение №1.рис.2)

В 1611 году в трактате «Диоптрика» он дал описание телескопа, состоящего из двух двояковыпуклых линз. Сам Кеплер, будучи типичным астрономом – теоретиком, ограничился лишь описанием схемы нового телескопа, а первым, кто его построил, был Шейнер, оппонент Галилея в их горячих спорах. К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения. Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. (Приложение №2)

Исаак Ньютон в тот период сумел дать новую жизнь телескопам с помощью зеркала. Первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким.

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года.

Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света. А Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни – большой телескоп с зеркалом диаметром 122 см. (Приложение №3.рис 1 и 2).

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени.

К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым. (Приложение 4).

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна – хроматизма. (Приложение 5)

И лишь к концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. (Приложение №6)

В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях.

История телескопа прошла долгий путь – от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем. (Приложение №7.)

1.2.Современные виды телескопов.

Первое из двух главных преимуществ телескопа – это увеличение угла зрения, под которым мы видим небесные объекты. Человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает лишь крупные детали, поперечник которых превышает 100 километров. В благоприятных условиях, когда Солнце затянуто дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженный глаз на небесных телах не видит. Оптические телескопы увеличивают угол зрения в десятки и сотни раз. Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не более 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше, во сколько площадь объектива больше площади зрачка. Это отношение равно отношению квадратов диаметров объектива и зрачка.

В радиотелескопе радиоволны собирает металлическое зеркало, иногда сплошное, а иногда решетчатое. Форма зеркала в телескопе параболическая поверхность способна собирать в фокусе падающее на нее электромагнитное излучение. На самом деле приемником радиоволн в радиотелескопах служит не человеческий глаз или фотопластинка, а высокочувствительный радиоприемник. Зеркало концентрирует радиоволны на маленькой дипальной антенне, облучая её. Вот почему эта антенна называется облучатель. Радиоволны, как и всякое другое излучение, несут в себе некоторую энергию. Поэтому, попадая на облучатель, они возбуждают в этом металлическом проводнике упорядоченное перемещение электронов или, иначе говоря, электрический ток. Радиоволны с невообразимо большой скоростью «набегают» на облучатель. Поэтому в облучателе возникает быстропеременный электрический ток. От облучателя к радиоприемнику электрический ток передается по волноводам – специальным проводникам, имеющим форму полых трубок. Космические радиоволны, или точнее, возбужденные ими электрические токи поступают в радиоприемник. К приемнику радиотелескопа присоединяют специальный самопишущий прибор, который регистрирует поток радиоволн определенной длины. (Приложение № 10)

Благодаря сложным оптическим явлениям лучи от звезды, уловленные телескопом, сходятся не в одной точке (фокусе телескопа), а в некоторой небольшой области пространства вблизи фокуса, образуя так называемое фокальное пятно. В этом пятне объектив телескопа конденсирует электромагнитную энергию светила, уловленную телескопом. Если взглянуть в телескоп, звезда покажется нам не точкой, а кружком с заметным диаметром. Но это не настоящий диск звезды, а лишь её испорченное изображение, вызванное несовершенством телескопа. Мы видим, созданное телескопом фокальное пятно. Чем больше диаметр объектива телескопа, тем меньше фокальное пятно. Следовательно, большинство телескопов обладают большей «зоркостью», благодаря большим размерам. Радиотелескопы воспринимают весьма длинноволновое излучение. Таким образом, новая техника поставила перед наукой новые проблемы принципиального характера. В будущем, вероятно, радиотелескопы станут еще зорче. (Приложение № 9)

Инфракрасные телескопы – это вид телескопов, которые применяются в астрономии для исследования теплового излучения космических объектов. Инфракрасное излучение – электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны 0,74 мкм) и микроволновым излучением (1-2 мм). Другое название инфракрасного излучения – «тепловое» излучение. Действительно, все тела, твердые и жидкие, нагретые до определенной температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Первые эксперименты в области изучения инфракрасного излучения были проведены еще на рубеже 18-19 веков. Именно тогда английский ученый Уильям Гершель провел исследование нагревательных способностей лучей разных частей спектра. Обнаруженное невидимое излучение, способное, тем не менее, нагревать Гершель назвал инфракрасным.

Известно три составляющих диапазона инфракрасного излучения: коротковолновая, средневолновая и длинноволновая область. Длинноволновую область иногда называют терагерцовым излучением. Доказано, что земная атмосфера пропускает инфракрасное излучение только определенного диапазона: 0,75-5 мкм. Для остальной части лучей она непрозрачна. Тем не менее, инфракрасное наблюдение активно используется в астрономии с 19 века. С помощью инфракрасных телескопов зачастую можно сделать такие наблюдения, которые невыполнимы с помощью обычной астрономической техники. Основателем инфракрасной астрономии принято считать британского ученого Чарльза Пиацци Смита, который в 1856 году первым зарегистрировал тепловое излучение Луны.

Принцип действия инфракрасного телескопа состоит в принятии и обработке теплового излучения. Основным элементом первых радиотелескопов была полоска фольги, обладающая черной поверхностью. Если через фольгу пропустить ток, то при изменении температуры металла, меняется его сопротивление. Следовательно, изменяются и показатели тока. В зависимости от этих показателей можно рассчитать интенсивность теплового излучения. Существуют телескопы, которые одновременно являются оптическими и инфракрасными, например знаменитый Хаббл (Приложение № 7). Тепловые лучи отражаются обычным телескопическим объективом и фокусируются в одной точке, где размещается прибор, измеряющий тепло. Также существуют инфракрасные фильтры, пропускающие только тепловые лучи. С такими фильтрами происходит фотографирование.

В первую очередь возможности инфракрасных телескопов были использованы для изучения планет Солнечной системы. С помощью тепловых наблюдений удалось уточнить структуру атмосфер некоторых планет, обнаружить водяной лед на поверхности спутников планет-гигантов, открыть собственное тепловое излучение Сатурна и Юпитера. С помощью инфракрасных телескопов ученым удалось составить новую «тепловую» карту вселенной, которая во многом отличается от привычной карты звездного неба. На ней можно увидеть как остывшие планеты, так и места возможного образования новых звезд. (Приложение № 8)

Глава 2

Изучив материал по теме исследования, решили сделать телескоп сами.

В качестве объектива использовали два стекла для очков (мениски) по +0,5 диоптрии, расположив их выпуклыми сторонами одно наружу, а другое вовнутрь на расстоянии 30 мм одно от другого. Между ними поставили диафрагму с отверстием диаметром около 30 мм.

Для окуляра взяли лупу с 8 кратным увеличением.

Трубу телескопа, в которой укрепляется объектив, сделали из бумаги; можно, из пластмассы сделали выдвижную трубку меньшего диаметра для окуляра. Главную трубу делаем сантиметров на десять короче фокусного расстояния объектива-90 см. Длина окулярной трубки около 40 см.

Линзу объектива укрепили в передней части трубы с помощью оправы, состоящей из 2 картонных колец с разрезом и 2 коротких бумажных трубок чуть меньшего диаметра, чем линза. С помощью этих трубок линза плотно зажимается между кольцами.

Чтобы было удобнее вести наблюдение, изготовили для телескопа штатив, сделали деревянный азимутальный штатив, на котором труба поворачивается вокруг двух осей: вертикальной и горизонтальной. Трубу на другом конце горизонтальной оси уравновесили грузом. Чтобы не приходилось поддерживать все время трубу рукой, сделали два стопорных винта: для вертикальной и горизонтальной осей.

С помощью сделанного нами рефрактора, который увеличивает в 33 раза, мы сможем наблюдать горы на Луне, кольца Сатурна, фазы Венеры, диск Юпитера и 4 его спутника, двойные звезды, некоторые звездные скопления - Плеяды, Ясли. Солнечные пятна будем наблюдать, проецируя изображение Солнца на экран - лист белой бумаги, защитив его от прямых лучей Солнца куском картона с отверстием посредине, надетым на трубу. Для того, чтобы рассчитать увеличение телескопа необходимо фокусное расстояние объектива разделить на фокусное расстояние окуляра.

Заключение

В заключении можно сделать следующие выводы:

1. изучив теоретический материал по теме, установили, что существует большое разнообразие телескопов, узнали историю их создания.

2. сконструировав модель телескопа, можно наблюдать тела Вселенной.

С древних времен наблюдают астрономы за процессами, происходящими во Вселенной. Их открытия связаны, как правило, с появлением новых изобретений и технологий. Использование телескопа привело к резкому скачку количества открытий и существенному расширению области знаний о космических объектах. Дальнейшее увеличение мощности астрономических приборов продолжало увеличивать и количество открытий, сделанных с их помощью. Современная аппаратура способна обнаруживать даже невидимые глазу космические излучения. Благодаря таким приборам в течение XX- XX1 века во Вселенной было сделано больше открытий, чем за всю историю человечества.

Список используемой литературы и Интернет ресурсов:

1. Амбарцумян В.А. Загадки Вселенной.- М.: Педагогика, 1987.

2. Всё обо всём. Энциклопедия. – М: Аванта-Плюс, 2000.

3. Гурштейн А.А. Извечные тайны неба.- Просвещение, 1984.

4. Жиль Спэрроу «Вселенная. Как наблюдать и изучать звездное небо» / Пер. с англ. – М.: БММ АО, 2002.

5. Космос: Энциклопедия для детей. Я познаю мир-М.: Издательство «AСТ», 2001.

6. Петров Б.Н. Орбиты сотрудничества.-М.: «Машиностроение», 1975.

7. Энциклопедический словарь юного астронома/ Сост. Н.П. Ерпылев. – М.: Педагогика, 1980.

8. www.netfereta.ru

9. www.astrotime.ru

10. www.sky-watcher.ru

11. www.binoculars.ru

12. astronews.prao. ru

13. astrooptics.pisem.net

14. http://vsego.wordpress.com/2009/08/25/galileos-telescope/

Приложения

Приложение №1


Рис.1 Телескоп Галилея


Рис.2 Телескоп Кеплера

Приложение №2


Телескоп Галилея.

Приложение №3

Рис 2.Телеском А. Гершеля. Рис 1.Телескоп Я.В. Брюса.

Приложение №4


Приложение №5

Линзовый телескоп Фраунгофера.

Приложение № 6

Л. Фуко создал рефлекторы с параболическими зеркалами.

Приложение №7.

Космический телеском Хаббл.

Приложение № 8

Инфракрасный телескоп в Аризоне

Приложение № 9

Антенна радиотелескопа в Аризоне

В ночь на 7 января 1610 г. в истории наблюдательной астрономии произошел подлинный переворот: впервые зрительная труба была направлена на небо. В течение нескольких ночей великий Галилей (1564 — 1642) открыл недоступные невооруженному глазу кратеры, горные вершины и цепи на Луне, спутники Юпитера, мириады звезд, составляющих . Несколько позже Галилей наблюдал фазы Венеры и странные образования у Сатурна (что это были знаменитые кольца, стало известно значительно позже, в 1658 г., в результате наблюдений Гюйгенса).

С завидной оперативностью Галилей публикует результаты своих наблюдений в «Звездном вестнике». Книга почти в 10 печатных листов была набрана и отпечатана всего за несколько дней — явление, почти невозможное даже в наше время. Она вышла уже в марте того же 1610 г.

Галилей не считается изобретателем примененной им зрительной трубы, хотя и изготовил ее лично. Ранее до него дошли слухи, что оптические инструменты, в которых объективом служит плосковыпуклая линза, а окуляром — плосковогнутая, появились в Голландии. Приоритет изобретения оспаривали несколько голландских оптиков, в том числе Захарий Янсен, Якоб Меций и Генрих Липперсгей (последний, по-видимому, имел для этого больше оснований). Однако Галилей сумел самостоятельно разгадать устройство такого прибора и воплотить свое представление об этих трубах «в металл», построив за несколько дней три трубы. Качество каждой последующей было значительно выше предыдущей. Но главное, именно Галилей первым направил свою трубу на небо!

Появилась «голландская» труба не на пустом месте. Еще в 1604 г. вышла книга И. Кеплера «Дополнения к Вителлию, в которых излагается оптическая часть астрономии «.

Написанное в форме дополнения к трактату авторитетного польского ученого XII в. Вителлия (Вителло) это сочинение стало явлением в исследовании законов геометрической оптики. Действительно, Кеплер, рассматривая ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз, дает теоретическое обоснование устройству будущей «голландской» (или «галилеевой») оптической трубы.

Это тем более удивительно, что сам Кеплер из-за врожденного дефекта зрения не мог быть хорошим наблюдателем. Он страдал монокулярной полиопией (множественным зрением), при которой одиночный объект кажется множественным. Этот дефект усугублялся еще и сильной близорукостью. Но справедливы слова Гёте: «Когда историю жизни Кеплера сопоставляешь с тем, кем он стал и что он сделал, радостно изумляешься и при этом убеждаешься, что истинный гений преодолевает любые препятствия «.

Узнав об открытиях Галилея и получив от него экземпляр «Звездного вестника», Кеплер уже 19 апреля 1610 г. направляет Галилею восторженный отзыв, одновременно публикуя его («Разговор со звездным вестником»), и… возвращается к рассмотрению оптических вопросов. А через несколько дней после завершения «Разговора» Кеплер разрабатывает проект устройства зрительной трубы нового типа — телескопа-рефрактора , описание которого помещает в своем сочинении «Диоптрике». Книга была написана в августе — сентябре того же 1610 г., а вышла из печати в 1611 г.

В этой работе Кеплер среди других рассмотрел в качестве основы астрономической трубы нового типа комбинацию двух двояковыпуклых линз. Задача, поставленная им, формулировалась так: «С помощью двух двояковыпуклых стекол получить отчетливые, большие, но обратные изображения. Пусть линза, служащая объективом, находится на таком расстоянии от предмета, что его обратное изображение получается неотчетливым. Если теперь между глазом и этим неотчетливым изображением, недалеко от последнего, поставить второе собирательное стекло (окуляр), то оно сделает исходящие от предмета лучи сходящимися и даст благодаря этому отчетливое изображение «.

Кеплер показал, что возможно получение и прямого изображения. Для этого в данную систему необходимо ввести третью линзу.

Преимущество системы, предложенной Кеплером, заключалось прежде всего в большем поле зрения. Известно, что лучи света от звезды, находящейся далеко от оптической оси, не попадают в центр окуляра. И если в вогнутом окуляре «голландско-галилеевой» трубы они еще дальше отклоняются от центра (т. е. не видны), то в выпуклом окуляре Кеплера они соберутся к центру и попадут в зрачок глаза. Благодаря этому значительно увеличивается поле зрения, в котором все наблюдаемые объекты видны ясно и четко. К тому же в плоскости изображения в трубе Кеплера между объективом и окуляром можно поместить прозрачную пластинку с отградуированной на ней сеткой или шкалой. Это позволит производить не только наблюдения, но и необходимые измерения. Ясно, что «кеплерова» труба вскоре вытеснила «голландскую», которая в настоящее время применяется только в театральных биноклях.

У Кеплера не было необходимых средств и специалистов для изготовления телескопа своей конструкции. Но немецкий математик, физик и астроном К. Шейнер (1575-1650) по описанию, данному в «Диоптрике», в 1613 г. построил первый телескоп-рефрактор кеплеровского типа и применил его для наблюдения солнечных пятен и изучения вращения Солнца вокруг оси. Он же позже изготовил и трубу из трех линз, дающую прямое изображение.

Разработка эффективной конструкции телескопа была не единственным вкладом Кеплера в астрономическую и общую оптику. Среди его результатов отметим: доказательство основного фотометрического закона (интенсивность света обратно пропорциональна квадрату расстояния от источника), разработку математической теории рефракции и теории механизма зрения. Кеплер ввел термины «сходимость» и «расходимость» и показал, что очковые линзы исправляют дефекты зрения, изменяя сходимость лучей, прежде чем те попадут в глаз. Термины «оптическая ось» и «мениск» также введены в научное обращение Кеплером.

И в «Дополнениях», и в «Диоптрике» Кеплер изложил настолько революционный материал, что он вначале не был понят и не скоро одержал победу.

Не так давно итальянский ученый-оптик В. Ронки писал: «Гениальный комплекс работ Кеплера содержит все основные понятия современной геометрической оптики: ничто не утратило здесь значения за минувшие три с половиной столетия. Если какое-либо из положений Кеплера забыто, то об этом можно только пожалеть. Нынешнюю оптику можно с полным правом назвать кеплеровской».

После Кеплера важные шаги в развитии теории и ее практических приложений в оптике были сделаны Р. Декартом (1596-1650) и X. Гюйгенсом (1629-1695). Еще Кеплер пытался сформулировать закон преломления, однако точного выражения для коэффициента преломления ему найти не удалось, хотя в ходе экспериментов им открыто явление полного внутреннего отражения. Точная формулировка закона преломления была дана Декартом в разделе «Диоптрика» знаменитого сочинения «Рассуждение о методе» (1637). Для устранения сферических Декарт комбинирует сферические поверхности линз с гиперболическими и эллиптическими.

Гюйгенс работал с перерывами над своим сочинением «Диоптрика» 40 лет. При этом вывел основную формулу линзы, связав положение предмета на оптической оси с положением его изображения. Для уменьшения сферических аберраций телескопа он предложил конструкцию «воздушного телескопа «, в котором объектив, имевший большое фокусное расстояние, располагался на высоком столбе, а окуляр — на штативе, установленном на земле. Длина такого «воздушного телескопа» достигала 64 м.

С его помощью Гюйгенс обнаружил, в частности, кольца Сатурна и спутник Титан. В 1662 г. Гюйгенс предложил новую оптическую систему окуляра, впоследствии получившую его имя. Окуляр состоял из двух двояковыпуклых линз, разделенных значительным воздушным промежутком. Конструкция позволяла устранить хроматическую аберрацию и астигматизм. Известно также, что Гюйгенсу принадлежит и разработка волновой теории света.

Но для дальнейшего решения теоретических и практических проблем оптики был необходим гений И. Ньютона . Следует отметить, Ньютон (1643-1727) стал первым, кто уяснил, что размытость изображений в телескопе-рефракторе, какие бы усилия не предпринимались для устранения сферической аберрации, связана с разложением белого света на цвета радуги в линзах и призмах оптических систем (хроматическая аберрация ). Ньютон выводит формулу хроматической аберрации.

После многочисленных попыток создать конструкцию ахроматической системы, Ньютон остановился на идее зеркального телескопа (рефлектора) , объектив которого представлял собою вогнутое сферическое зеркало, не обладающее хроматической аберрацией. Овладев искусством получения сплавов и шлифовки металлических зеркал, ученый приступил к изготовлению телескопов нового типа.

Первый рефлектор, построенный им в 1668 г. имел весьма скромные размеры: длина — 15 см, диаметр зеркала — 2,5 см. Второй, созданный в 1671 г., был значительно больше. Он сейчас находится в музее Лондонского королевского общества.

Ньютон изучил также явление интерференции света, измерил длину световой волны, сделал ряд других замечательных открытий в оптике. Он считал свет потоком мельчайших частиц (корпускул), хотя и не отрицал его волновой природы. Только в XX в. удалось «примирить» волновую теорию света Гюйгенса с корпускулярной Ньютона — в физике утвердились представления о корпускулярно-волновом дуализме света.

Историки науки утверждают, что в XVII в. произошла естественно-научная революция. Кеплер был у ее истоков, открыв законы обращения планет вокруг Солнца. Ньютон на завершающем этапе стал основоположником современной механики, создателем математики непрерывных процессов. Эти ученые навечно вписали свои имена и в становлении астрономической оптики.

Развитие ахроматической оптики связано с именем Йозефа Фраунгофера. Иозеф Фраунгофер (1787-1826) был сыном стекольщика. В детстве работал учеником в зеркальной и стекольной мастерских. В 1806 г. поступил на службу в известную в то время крупную оптическую мастерскую Утцшнейдера в Бенедиктбейерне (Бавария); позднее стал ее руководителем и владельцем.

Выпускавшиеся мастерской оптические приборы и инструменты получили широкое распространение во всем мире. Им были введены существенные усовершенствования в технологию изготовления больших ахроматических объективов. Совместно с П. Л. Гинаном, Фраунгофер наладил фабричное производство хорошего флинтгласа и кронгласа, а также внес существенные усовершенствования во все процессы изготовления оптического стекла. Им была разработана оригинальная конструкция станка для полировки линз.

Фраунгофером был предложен также принципиально новый способ обработки линз, так называемый «способ шлифования по радиусу». Для контроля качества обработки поверхностей линз Фраунгофер использовал пробное отекло, а для измерения радиусов кривизны линз — сферометр, конструкция которого была разработана Георгом Райхенбахом в начале XIX в.

Использование пробного отекла для контроля поверхностей линз посредством наблюдения интерференционных «колец Ньютона» является одним из первых методов контроля качества обработки линз. Открытие Фраунгофером темных линий в солнечном спектре и использование их для точных измерений показателя преломления впервые создали реальную возможность использования уже довольно точных методов расчета аберраций оптических систем в практических целях. До тех пор пока нельзя было с достаточной точностью определить относительную дисперсию стеклянных линз, невозможно было и изготовление хороших ахроматических объективов.

В период после 1820 г. Фраунгофер выпустил большое количество высококачественных оптических инструментов с ахроматической оптикой. Крупнейшим его достижением было изготовление в 1824 г. ахроматического телескопа-рефрактора «Большой Фраунгофер». С 1825 по 1839 гг. на этом инструменте работал В. Я. Струве. За изготовление этого телескопа Фраунгофер был возведен в дворянство.

Ахроматический объектив телескопа Фраунгофера состоял из двояковыпуклой линзы из кронгласа и слабой плосковогнутой линзы из флинтгласа. Первичная хроматическая аберрация исправлялась относительно хорошо, сферическая аберрация была исправлена только для одной зоны. Интересно отметить, что хотя Фраунгофер не знал об «условии синусов», его ахроматический объектив практически не имел аберрации комы.

Изготовлением больших ахроматических телескопов-рефракторов занимались в начале XIX в. также и другие немецкие мастера: К. Утцшнейдер, Г. Мерц, Ф. Малер. В старой обсерватории г. Тарту, в Казанской обсерватории и Главной астрономической обсерватории РАН в Пулково до сих пор хранятся телескопы-рефракторы, выполненные этими мастерами.

В начале XIX в. производство ахроматических зрительных труб было также налажено в России — в Механических заведениях Главного Штаба в Петербурге. Одна из таких труб с восьмигранным тубусом из красного дерева и латунными оправами объектива и окуляра, установленная на треноге (1822 г.), хранится в Музее М. В. Ломоносова в Санкт-Петербурге.

Высоким качеством отличались телескопы, изготовленные Альваном Кларком . По профессии Альван Кларк был художник-портретист. Шлифовкой линз и зеркал занимался как любитель. С 1851 г. он научился перешлифовке старых линз и, проверяя качество их изготовления по звездам, открыл рад двойных звезд — 8 Секстанта, 96 Кита и др.

Получив подтверждение высокого качества обработки линз, он вместе с сыновьями — Джорджем и Грейамом организовал сначала небольшую мастерскую, а затем хорошо оборудованное предприятие в Кембридже, специализировавшееся на изготовлении и испытании объективов телескопов. Последнее осуществлялось в тоннеле длиной 70 м по искусственной звезде. Вскоре возникла крупнейшая в западном полушарии фирма «Альван Кларк и сыновья».

В 1862 г. фирмой Кларка был построен 18-дюймовый рефрактор, который был установлен на Дирбонской обсерватории (штат Миссисипи). Ахроматический объектив этого телескопа диаметром 47 см был изготовлен из кроновых и флинтовых дисков, полученных Кларком от фирмы «Ченс и братья». Фирма Кларка имела самое лучшее по тому времени оборудование для шлифовки линз.

В 1873 г. в Вашингтоне начал действовать 26-дюймовый ахроматический рефрактор Альвана Кларка. С его помощью Асаф Холл в 1877 г. открыл два спутника Марса — Фобос и Деймос.

Стоит отметить, что уже в то время, мощные телескопы практически приблизились к пределу возможностей традиционных оптических систем. Время революций прошло, и постепенно традиционная техника наблюдения за звездами достигла максимума своих возможностей. Впрочем, до изобретения радиотелескопов в середине 20-го века, другой возможности наблюдать межзвездное пространство, у астроном все равно не было.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии