Белковый, углеводный, жировой и водно-солевой обмен веществ. Обмен белков, жиров (липидов), углеводов, обмен воды и минеральных веществ в организме человека

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Белок занимает одно из самых важных мест среди всех органических элементов живой клетки. Он составляет почти половину клеточной массы. В организме человека происходит постоянный обмен белков, которые поступают вместе с продуктами питания. В пищеварительном тракте осуществляется до аминокислот. Последние проникают в кровь и, пройдя через клетки и сосуды печени, попадают в ткани внутренних органов, где снова синтезируются в специфические для данного органа белки.

Белковый обмен

Человеческий организм использует белок в качестве пластического материала. Его потребность определяется минимальным объёмом, который уравновешивает белковые потери. В теле взрослого здорового человека обмен белков происходит непрерывно. В случае недостаточного поступления этих веществ с пищей десять из двадцати аминокислот могут синтезироваться организмом, в то время как другие десять остаются незаменимыми, и их необходимо восполнять. В противном же случае происходит нарушение белкового синтеза, что приводит к торможению роста и снижению массы тела. Следует отметить, что если отсутствует хотя бы одна организм не может нормально жить и функционировать.

Этапы белкового обмена

Обмен белков в организме происходит в результате поступления питательных веществ и кислорода. Существуют определённые этапы первый из которых характеризуется углеводов и жиров до растворимых аминокислот, моносахаридов, дисахаридов, жирных кислот, глицерина и других соединений, после чего они всасываются в лимфу и кровь. На втором этапе и кислород транспортируются кровью в ткани. При этом происходит их расщепление до конечных продуктов, а также синтез гормонов, ферментов и составных компонентов цитоплазмы. При расщеплении веществ происходит выделение энергии, которая необходима для природных процессов синтеза и нормализации работы всего организма. Вышеперечисленные этапы обмена белков заканчиваются удалением из клеток конечных продуктов, а также их транспортом и выделением легкими, почками, кишечником и потовыми железами.

Польза белков для человека

Для человеческого организма очень важно поступление полноценных белков, ведь только из них могут синтезироваться специфические вещества. Особую роль обмен белков играет в детском организме. Ведь ему необходимо большое количество новых клеток для роста. При недостаточном поступлении белков человеческий организм перестаёт расти, а его клетки обновляются намного медленней. К полноценным относятся животные белки. Из них особую ценность представляют белки рыбы, мяса, молока, яиц и других подобных продуктов питания. Неполноценные же преимущественно содержатся в растениях, поэтому рацион питания необходимо составлять так, чтобы удовлетворить все потребности своего организма. При переизбытке белков их излишек распадается. Это позволяет организму поддерживать необходимое Обмен белков очень важен для жизнедеятельности человека. При его нарушении организм начинает расходовать белок своих же тканей, что ведёт к серьёзным проблемам со здоровьем. Поэтому следует беречь себя и серьёзно подходить к выбору пищи.

Обмен веществ и энергии - это совокупность превращений веществ и энергии в живых телах и обмен веществ и энергией между организмом и окружающей средой, направленный на воспроизведение живой структуры. Это основное свойство которое отличает живое от неживого. Все организмы обмениваются с окружающей средой веществом, энергией, информацией.

В зависимости от способа получения углеводов делятся на:

l Аутотрофные - используют в качестве источника углевода углекислый газ, из которого они способны синтезировать органические соединения

l Гетероторофные - питающиеся за счет других. Живут за счет получения углевода в виде сложных органических соединений, например глюкозы.

По форме потребляемой энергии:

l Фототрофные - используют энергию солнечного света. Сине-зеленые водоросли, зеленые клетки растений, фотоситещирующие бактерии.

l Хемотрофные - клетки, которые живут за счет химической энергии, освобождающейся в ходе окислительо-востановительных процессов.

Принято выделять промежуточный обмен - превращение веществ и энергии в организме с момента поступления переваренных веществ в кровь и до момента выделения конечных продуктов. Он складывается из 2х процессов - катаболизма - диссимиляции и анаболизма - ассимиляция.

Катаболизм - расщепление крупных молекул окислительным путем, процесс идет с освобождением энергии, заключенной в химических связях. Эта энергия запасается в АТФ.

Анаболизм - ферментативный синтез из более простых соединений крупномолекулярных клеточных элементов. Происходит образование полисахаридов, белков, нуклеиновых кислот, липидов. Процессы анаболизма идут с поглощением энергии.

Процессы анаболизма и катаболизма тесно взаимосвязаны и протекаю через определенные стадии.

Процессы катаболизма.

1-ая стадия - крупные органические молекулы распадаются на структурные специфические блоки. Полисахариды распадаются до пептоз и гексоз, белки до аминокислот, жиры до глицерина и ирных кислот, холестерина. Нуклеиновые кислоты до нуклеотидов и нуклеозтдов.

2-ая стадия катаболизма - характеризуется образованием более простых молекул, их число уменьшается и существенным моментом является образование продуктов, которые являются общими для обмена разных веществ. Это узловые станции, которые соединяют разные пути обмена. Фумарат, сукцинат, пируват, ацетил-КоА, альфа-кетоглутарат.

3-я стадия - эти соединения вступают в процессы терминального окисления, котоыре осуществляются в цикле трикарбоновых кислот. Происходит из окончательный распад до углекислого газа и воды.

Процессы анаболизма протекают тоже в три стадии.

1-ая стадия анаболизма может рассматриваться как третья стадия катаболизма. Исходные продукты синтеза белка - альфа-кетокислоты. Они также нужны для образования аминокислот, т.к. на следующей стадии к альфа-кетокислотам присоединяются аминогруппы. Что происходит в реакциях аминирования и трансаминирования - способствуют превращению альфа-кетокисот в аминокислоты. Дальше синтезируются полипептидные цепи белка.

Обмен веществ имеет 3 ключевых значения:

  1. Пластическое - синтез органических соединений - белков, углеводов, липидов, клеточных компонентов.
  2. Энергетическое значение - происходит извлечение энергии из окружающей среды и преобразуется в энергию макроэргических соединений.
  3. Обезвреживающее значение. Обезвреживаются продукты распада веществ и осуществляется их выведение. Обмен веществ - как химическое производство, а все хим. Заводы образуют побочные продукты, которые загрязняют окружающую среду.

Методы изучения делятся на:

l Обмена веществ - основной метод - метод составления баланса. По соотношению веществ, поступивших в организм с пищей с продуктами и продуктами выделения. Содержание питательных веществ могут быть определены по таблицам - сколько белка, жира и углевода. Или содержание питательных веществ может быть определено экспериментально. Белок может быть определено по количеству полученного азота. Содержание жира - извлекают жир эфиром, а углеводы определяют колориметрическим способом. Конечные продукты распада - углекислый газ и вода, а белки дают содержащие продукты, но они выводятся из организма с мочой.

l Обмена энергии

Обмен белка.

Белки имеют особое значение для организма. Они обладают двумя функциями:

  1. Пластическая - входят в состав всех веществ,
  2. Энергетическая - 1 г белка дает 4,0 ккал (16,7 кДж), 1 ккал = 4,1185 кДж.

Нормы суточного потребления отличаются в разных странах: 1-1,5 г/кг в России, 0,5-0,8 г/кг - США. Для детей - от 1 до 4 лет - 4 г/кг, так как ребенок растет.

Организм получает белок из двух источников:

  • Экзогенный белок - белок пищи - 75-120 г/сутки
  • Эндогенный белок - секреторные белки, белки кишечного эпителия - 30 - 40 г/сутки.

Эти источники обеспечивают поступление белка в пищеварительный тракт, где будет происходит его расщепление до аминокислот. Распад аминокислот происходит в печени - дезаминирование, трансаминирование, когда аминокислота теряет группу и превращается в аммиак, аммоний или мочевину, и эти продукты подлежат выведению из организма.

Особенностью белка является то, что он построен из 20 аминокислот. Аминокислоты могут быть заменимыми и незаменимыми(не могут синтезироваться в организма - триптофан, лизин, лейцин, валин, изолейцин, треонин, метионин, фенилаланин, гистидин и аргинин). Полноценные белки - содержат незаменимые аминокислоты. Неполноценные белки - содержат не все незаменимые аминокислоты.

Биологическая ценность белка - под ней понимается то количество белка, специфическое для данного организма, которое образуется из 100 г поступившего белка с пищей. Молоко - 100, кукуруза - 30, пшеничного хлеба — 40.

Аминокислоты, которые образуются в кишечнике в ходе расщепления белка подвергаются процессам всасывания, причем для аминокислот существуют специфические натрий зависимые переносчики. Такой комплекс проходит через мембрану. Аминокислоты поступят в кровь, а натрий будет в натрий - калиевой АТФазе (насоса), который поддерживает градиент для натрия. Такой транспорт называется вторично активным. L-изомеры аминокислот проникают легче, чем D. На транспорт аминокислот влияет строение молекулы. Легко проходит аргинин, метионин, лейцин. Фенилаланин проникает медленней. Очень плохо всасывается аланин и серин. Одни аминокислоты могут способствовать прохождению других. Например глицин и метионин облегчают поход друг другу.

Распад осуществляется в печени. Основной путь распада - дезаминирование, в ходе которого образуются без азотистый остаток и образуется азотистые соединения. Без азотистые осадки могут превращаться в углеводы и жиры и затем использовать в ходе получения энергии. Азотистые соединения удаляются с мочой. Второй путь - это трансаминирование. Идет с участием трансаминаз. При повреждении клеток трансаминазы могут проходить в плазму крови. При гепатитах, инфарктах увеличивается содержание трансаминаз в крови. Это диагностический признак.

Метод азотистого баланса.

Отложить азот про запас не возможно. В крови запас аминокислот составляет 35-65мг %. Существует понятие минимума (1 г на 1кг веса). Азот в белке содержится в строго определенных соотношения - 1 г азота содержится в 6,25 г белка. Для определения азотистого баланса нужно знать поступление белка с пищей. Часть белка пройдет через ЖКТ транзитом. Нужно определить азот кала. По разнице азота пищи и азота кала, мы определим азот усвоенного белка, т.е. тот, который поступил в кровь и пошел в реакции обмена. Распавшийся белок оценивается по азоту мочи. Азотистый баланс оценивается между усвоенным и распавшимся:

Состояние азотистого баланса:

l А-B=C - азотистое равновесие, у здорового взрослого человека с достаточным потреблением белка с пищей. Чтобы поддержать надо употреблять 1 г белка на кг веса. Но это равновесие может быть не устойчиво - стресс, физическая работа, тяжелые заболевания.

l Белковый оптимум - 1,5 кг тела. Из этого нужно строить свой рацион

l А-B>C - положительный азотистый баланс. Это состояние характерно у растущего организма. Задержка белка в организме, и он расходуется на процессы роста. Это может быть состояние при тренировках - нарастание массы мышц. Процесс восстановления организма после заболевания, при беременности.

l A-B<С. Распад преобладает над усвоением - отрицательный азотистый баланс - в старческом возрасте, пр белковом голодании или употреблении не полноценных белков и при тяжелых заболеваниях, сопровождающихся распадом ткани.

Углеводный обмен.

Человек получает углеводы в трёх формах. Это:

  1. Дисахарид сахарозы
  2. Дисахарид лактозы
  3. Полисахариды
    • Амилоза с неразветвленной цепью
    • Аминопептин - с разветвленной цепью
    • Целлюлоза - с растительными продуктами. Но нет фермента для ее расщепления

Суточное потребление углеводов составляет от 250 до 800, 7 г.кг.сутки. Энергетическая ценность глюкозы составляет 1г., глюкозы - 3,75 ккал. или 15,7 кДж.

В пищеварительном тракте углеводы распадаются до моносахаридов, которые подвергаются всасыванию. Начальное расщепление осуществляется амилазой слюны. Основное переваривание в тонкой кишке. Поджелудочная амилаза расщепляет углеводы до олигосахаридов. Далее расщепляются до моносахаридов углеводистыми ферментами в тонкой кишке. Здесь имеются 4 фермента - мальтаза, изомальтаза, лактаза и сахараза.

Конечные продукты расщепления - фруктоза, глюкоза и галактоза. Галактоза и фруктоза отличаются от глюкозы положением групп H и OH. Всасывание - вторичный натрий зависимый транспорт. Переносчики для углеводов присоединяют глюкозу и 2 иона натрия и такой комплекс проходит в клетку за счет разницы концентраций и зарядов натрия. Фруктоза проникает путем облегченной диффузии. Причем внутри клеток эпителия фруктоза превращается в глюкозу и молочную кислоту. Это поддерживает градиент для преодоления глюкозы. Кишечник может всосать до 5 кг углеводов в день. Если нарушается процесс всасывания, то изменяется осмотическое давление(повышается), вода выходит в просвет кишечника - понос. Углеводы подвергаются брожению с образованием газов. Водород, метан и углекислый газ. Они являются раздражающими для слизистой оболочки. На мембране кишечного эпителия - недостаток лактазы, который расщепляет молочный сахар. Очень тяжелое состояние для детей. Если нет лактазы - проблемы с кишечником.

Пути использования моносахаридов в организме .

Они поступают в кровь и образуют сахар крови с нормальным содержанием 3,3-6,1 ммоль/л или 70-120 мг %. Далее поступают в печень и откладываются в виде гликогена. Могут превращаться в гликоген мышц и использоваться при мышечном сокращении. Углеводы могут превращаться в жиры и откладываться в жировых депо, что используется для вскармливания сельскохозяйственнных животных. Углеводы могут превращаться в аминокислоты при присоединение NH2. Они служат энергетическим источником. Для синтеза гликолипидов, гликопротеинов. Поддержание уровня сахара в крови происходит за счет гормонов поджелудочной железы - инсулин (способствует отложению гликогенов), глюкагон - появляется при снижении уровня глюкозы в крови, способствует распаду гликогена в печени. Содержание сахара увеличивает адреналин - увеличивает распад гликогена. Глюкокортикоиды - стимулируют процессы глюконеогенеза. Тироксин(щитовидная железа) Усиливает всасывание глюкозы в кишечнике.

Жировой обмен.

Мужчина -12-18 %, свыше 20% - ожирение, женщина 18-24% , свыше 25% - ожирение.

Суточное потребление жира - от 25 до 160 г или 1 г жира на 1 кг веса. Энергетическая ценность 1 г жира - 9,0 ккал или 37,7 кДж.

Этапы превращения жиров в организме.

  1. Эмульгирование(образование капель размером 0,5-1 мкм)
  2. Расщепление липазами до глицерина и жирных кислот
  3. Образование мицелл(4-6 нм в диаметре) которые содержат - глицерин, жирные кислоты, желчные соли, лецитин, холестерин, жирорастворимые витамины А,Д,Е,К
  4. Всасывание мицелл в энтероциты.
  5. Далее идет образование хиломикронов (до100 нм в диаметре), которые содержат - триглицерилы - 86%, холестерин - 3%, фосфолипиды - 9%, протеины -2 %, витамины.
  6. Извлечение из крови хиломикронов при участии фермента липопротеиновой липазы и кофермента гепарина.
  7. Распад эногенных жиров в жировых клетках происходит под влиянием гормон-зависимой липазы, которая активируется - адреналином, норадреналином, АКТГ, тиреотропным, лютеотропным гормонными, вазопрессином и серотонином.
  8. тормозится - инсулином, простагланином Е.

Комплексы с липопротеинами низкой плотности очень легко проникают через стенку кровеносных сосудов, что приводит к атеросклерозу. Липопротеиы высокой плотности - там развитие атеросклероза меньше. Липопротеины высокой плотности увеличиваются при:

  • регулярной физической нагрузке
  • у тех,кто не курит.

Вещества, образующиеся из ненасыщенных жирных кислот - арахидоновой, линолевой и линоленовой, содержат в своем составе 20 атомов углевода:

  1. Простогландины
  2. Лейкотриены
  3. Простациклеин
  4. Тромбоксан А2 и Б2
  5. Липоксины А и Б.

Лейкотриены - это медиаторы аллергических и воспалительных реакций. Они вызывают сужение бронхов, сужение артериолл, повышение проницаемости сосудов, выход нейтрофилов и эозинофилов в очаг воспаления.

Липоксин А - расширяет микроциркуляторные сосуды, оба липоксина А и Б тормозят цитотоксический эффект Т-киллеров.

Энергетический обмен.

Все проявления биологических процессов связаны с превращением Е. Изучение энергетических процессов даёт нам представление о ходе самого процесса. Получая энергию с пищевыми продуктами, мы получаем макроэргическую энергию (механическая, электрическая, тепловая и другая энергия). За счет этой Е мы способны совершать внешнюю работу, на которую тратиться 20% энергии, а остальное - это тканевая энергия. Соотношение между поступившей и выделившейся энергией называется энергетическим балансом, который находится в состоянии равновесия. Запасание Е в организме не превышает 1 % энергии. Изучение энергетического баланса имеет теоретическое(приложимость закона сохранения Е и к живым системам) и практическое значение (даёт возможность для научного обоснования правильного составления рациона).

Энергетическая ценность питательных веществ определяется колориметрическим методом, т.е. сжигание веществ в колориметре. Были определены колориметрические коэффициенты:

Белки - 5,7 ккал/г

Углеводы - 3,75 ккал/г

Жиры - 9,0 ккал/г.

В организме происходит распад окислительным путем, но до углекислого газа и воды (при поступлении в организм).

Правило Гесса (1836) :

Тепловой эффект химического процесса, развивающийся через ряд последовательных реакций, не зависит от промежуточных стадий, а определяется лишь начальным и конечным состоянием веществ, участвующих в реакции.

В организме 1 г белка дает 4 ккал/г. Зная количество граммов поглощенных веществ мы можем высчитать энергетический баланс. Для определения расхода Е были предложен метод прямой колориметрии, основанный на определении количества всей тепловой энергии. Были сконструированы колориметры и для человека. Это специальные камеры, в которые можно поместить человека и исследовать выделение энергии.

Метод прямой колориметрии обладает высокой точностью. Этот метод довольно трудоемкий. Этот метод не позволяет исследовать энергетический обмен при разных видах труда. В практическом отношении изучение энергии используют метод непрямой колориметрии . Этот метод основан на определении энергозатрат организмом косвенно по количеству потребленного кислорода и выделенного углекислого газа.

Реакция окисления глюкозы:

C6H12O6 + 6O2= 6CO2 + 6H2O + E,

E=2827 кДж, или 675 ккал/моль, 1 моль глюкозы = 180 г. При окислении 1 г глюкозы будет выделяться 15,7 кДж, или, 3,75 ккал/г.

Чтобы определить, что подвергается окислению, было предложено определение дыхательного коэффициента - отношение выделившегося углекислого газа к количеству поглощенного кислорода. Дыхательный коэффициент для углеводов будет равен 1.

Окисление жира - трипальмитина:

2С51H98O6 + 145 O2= 102 CO2 + 98 H2O,

Следовательно, ДК=102 CO2:145O2=0,7

В случае окисления глюкозы - кислород для воды получается из внутримолекулярного кислорода глюкозы и получаемый кислород идет на CO2. В жирах внутримолекулярного кислорода мало, поэтому он идет не только на CO2, но и на воду.

Определение дыхательного коэффициента дает нам установить, какие продукты подвергаются окислению.

Для метода непрямой колориметрии используется еще один показатель - калорический эквивалент кислорода - количество выделившейся энергии в окислительном процессе при поглощении одного литра кислорода.

1 моль O2 = 22,4 л, а 6 молей O2 занимают объем 134,4 л

КЭ (О2) = 2827 кДж: 134,4л=21,2 кДж/л

Калорический эквивалент кислорода будет зависеть от дыхательного коэффициента.

При уменьшении дыхательного коэффициента на 0,01 калорический эквивалент кислорода уменьшается на 12 малых калорий.

E= x V(O2) в л/ мин.,

где n - число сотых, на которое отличается дыхательный коэффициент.. При изменении ДК на 1 сотую КЭ O2 изменяется на 12 кал. Метод непрямой колориметрии дает подойти к изучению энергии в организме.

Дыхательный коэффициент иногда может быть больше 1. Это происходит в восстановительный период, после совершения мышечной работы. Это связано с тем, что в мышцах, во время нагрузки происходит накопление молочной кислоты и после прекращения нагрузки, молочная кислота начинает вытеснять углекислый газ из бикарбоната. Количество выделившегося углекислого газа может оказаться больше, чем поглощено кислорода.

Еще дыхательный коэффициент может быть больше 1, при переходе углеводов в жиры. Жиры требуют меньшего количества кислорода, для построения молекул. Часть кислорода используется в процессах окисления.

При изучении обмена энергии выделяют основной и общий обмен энергии .

Под основным понимается - величина энергетического обмена для бодрствующего организма в условиях физического и эмоционального покоя, при предельно возможном ограничении функций организма (момент пробуждения). Энергетические затраты в этом состоянии связаны с поддержанием окислительных процессов в клетке. Энергия расходуется на деятельность постоянно работающих органов - почки, печень, сердце, дыхательные мышцы, поддержание минимального тонуса мускулатуры. Исследуют основной обмен при соблюдении следующих условий: положение лежа, мышечный покой, расслабленная поза, при исключении эмоциональных раздражителей, состояние натощак (через 12 часов), при температуре комфорта - 18-20 градусов, при бодрствовании. При таких условиях для среднего мужчины - 1300-1600 ккал. У женщин на 10% меньше, т.е. 1200-1400. Для сравнения основной обмен определяют на кг веса тела - на 1 кг веса тела расходуется 1 ккал за 1 час.

При сопоставлении величины основного обмена у животных, оказалось что чем меньше масса, тем больше будет основной обмен. У мыши - 17 ккал на 1 кг за час. У лошади - 0,5 ккал на 1 кг веса тела. Если расчет производить на 1 поверхности, то величина примерно одинаковая.

Рубнер сформулировал закон поверхности , согласно которому величина основного обмена зависит от соотношения поверхности и массы тела. У человека на 1 кв.м. поверхности выделяется 1000 ккал.

Этот закон не абсолютен, т.е. при одинаковой S поверхности, величина основного обмена у людей может быть различна. Интенсивность обмена энергии определяется не только теплоотдачей, но и теплопродукцией. Теплопродукция зависит от состояния нервной и эндокринной системы. На величину основного обмена влияет возраст. У детей основной обмен выше, чем у взрослых. Это связано с большей интенсивностью окислительных процессов и с ростом организма. Величина основного обмена начинает возрастать со второй половины первого дня жизни и достигает максимальной величины к полутора годам. У новорожденного - величина основного обмена - 50-54 ккал на кг за сутки. В полтора года эта величина 55-60 ккал на кг за сутки. Половые различия - начинают проявляться со второй половины первого года жизни, когда основной обмен у мальчиков становится больше, чем у девочек. Повышение температуры тела на 1 градус увеличивают величину основного обмена на 10%.

Состояние нервной и эндокринной системы - увеличивают гормоны щитовидной железы, гормон роста и адреналин. Систематическое занятие спортом повышает основной обмен, а прекращение резко снижает. Люди, не употребляющие мясо - вегетарианцы, имеют основной обмен ниже. Курение повышает основной обмен на 9%. На основной обмен также влияют внешние факторы. Сезонные колебания - температура, солнечная радиация. В зимние месяцы основной обмен понижен. Затем он начинает повышаться и максимален в летние месяцы. У людей, проживающих на севере, в условиях полярно ночи - снижение основного обмена. Если человек переезжает в среднюю полосу - повышение обмена. Повышение окружающей температуры - снижает основной обмен. Понижение - повышает основной обмен. Определение основного обмена имеет большое клиническое значение. В работе половых желез гипофиза. Для практических целях определяют величину основного обмена по таблицам, которые учитывают вес, возраст, пол.

Отклонение от стандарта не должно превышать 10 %.

В энергетическом обмене выделяют также общий обмен , который складывается из основного обмена и дополнительных энергетических трат, связанных с приемом пищи и выполнением работы в течении суток. Если взять распределение в процентном отношении, то основной обмен затратит 60%. Специфическое динамическое действие пищи добавляет 8% энерготрат. Энергозатраты, связанные с направленной физической нагрузкой 25% и мышечная нагрузка 7%.

Прием пищи оказывает увеличение энергозатрат - это и есть специфическое динамическое действие пищи. Смешанная пища повышает обмен на 15-20%. Изолировано белки повышают на 30-40%, углеводы на 5-10%, жиры на 2-5%.

Основное значение - влияние пищи на процессы клеточного обмена. Происходит усиление химических реакций в клетках, что повышает уровень обмена веществ. Основной расход - синтез белковых клеточных компонентов. У новорожденных отмечается, что каждое кормление увеличивает специфическое - динамическое действие пищи. Максимально при 40-50 вскармливании. Физическая активность является мощным фактором, увеличивающим энергозатраты.

Расход энергии в зависимости от профессиональной деятельности обозначается в зависимости от категории профессий

Коэффициент физической активности

Работники умственного труда

Работники легкого физического труда

Работники средней физического труда

Четвертая

Работники тяжелого физического труда

Работники особо тяжелого физического труда

Коэффициент физической активности - это отношение общих энергозатрат за сутки к величине основного обмена.

Регуляция обмена веществ.

В ходе обмена веществ различают два взаимосвязанных процесса - анаболизма и катаболизма.

Анаболизм Катаболизм

гликоген глюкоза гликоген

ТАГ жиры ТАГ

белки аминокислоты белки

Глюкоза переходит в гликоген, жирные кислоты - в триацилглицериды, аминокислоты - в белки.

Процессы обмена веществ регулируются различными веществами:

анаболизм - инсулином, половыми гормонами, гормон роста, тироксин.

катаболизм - глюкагоном, адреналином, глюкокортикоидами.

Нервная регуляция обменных процессов связано с гипоталамической областью. Разрушение вентромедиальных ядер гипоталамуса повышает потребление пищи и вызывает ожирение. Разрушение латеральных ядер сопровождается отказом от пищи и вызывает похудание. Раздражение паравентрикулярного ядра вызывает жажду, и увеличивает потребность в воде. Укол в области продолговатого мозга вызывает стойкое повышение уровня сахара в крови.

Питание.

Питание - процесс поступления, переваривания, всасывания и усвоения в организме пищевых веществ(нутриентов), необходимых для покрытия пластических и энергетических нужд организма, образования физиологически активных веществ.

Нутрициология - это наука о питании.

Различают питание:

  • Естественное
  • Искусственное - клиническое парентеральное, зондовое энтеральное
  • Лечебное
  • Лечебно-профилактическое.

Принципы составления пищевого рациона.

  1. Калорийная ценность пищи - для восполнения энергозатрат.
  2. Качественный состав пищи(содержание белков, жиров, углеводов)
  3. Витаминный состав
  4. Минеральный состав
  5. Усвояемость пищевых веществ

Сбалансированное питание — это питание, которое характеризуется оптимальным соотношением количества и компонентов пищи физиологическим потребностям организма.

Адекватное питание — это питание, при котором имеется соответствие между пищевыми веществами рациона и ферментным и изоферментным спектром пищеварительной системы.

Распределение пищевой ценности при трёхразовом питании:

25-30%-завтрак

45-50%- на обед

25-30% - на ужин

Распределение пищевой ценности при пятиразовом питании:

20% - первый завтрак

5-10% - второй завтрак

Белковый обмен

Белковый обмен - использование и преобразование аминокислот белков в организме человека.

При окислении 1 г белка выделяется 17,2 кДж (4,1 ккал) энергии.

Но организм редко использует большое количество белков для покрытия своих энергетических затрат, так как белки нужны для выполнения других функций (основная функция - строительная ). Организму человека нужны не белки пищи, сами по себе, а аминокислоты, из которых они состоят.

В процессе пищеварения белки пищи, распадаясь в желудочно-кишечном тракте до отдельных аминокислот, всасываются в тонком кишечнике в кровяное русло и разносятся к клеткам, в которых происходит синтез новых собственных белков, свойственных человеку.

Остатки аминокислот используются, как энергетический материал (преобразуются в глюкозу, избыток которой превращается в гликоген).

Углеводный обмен

Углеводный обмен – совокупность процессов преобразования и использования углеводов.

Углеводы являются основным источником энергии в организме. При окислении 1 г углеводов (глюкозы) выделяется 17,2 кДж (4,1 ккал) энергии.

Углеводы поступают в организм человека в виде различных соединений: крахмал, гликоген, сахароза или фруктоза и др. Все эти вещества распадаются в процессе пищеварения до простого сахара глюкозы , всасываются ворсинками тонкого кишечника и попадают в кровь.

Глюкоза необходима для нормальной работы мозга. Снижение содержания глюкозы в плазме крови с 0,1 до 0,05 % приводит к быстрой потере сознания, судорогам и гибели.

Основная часть глюкозы окисляется в организме до углекислого газа и воды, которые выводятся из организма через почки (вода) и лёгкие (углекислый газ).

Часть глюкозы превращается в полисахарид гликоген и откладывается в печени (может откладываться до 300 г гликогена) и мышцах (гликоген является основным поставщиком энергии для мышечного сокращения).

Уровень глюкозы в крови постоянный (0,10–0,15%) и регулируется гормонами щитовидной железы, в том числе инсулином . При недостатке инсулина уровень глюкозы в крови повышается, что ведет к тяжёлому заболеванию - сахарному диабету.

Инсулин также тормозит распад гликогена и способствует повышению его содержания в печени.

Другой гормон поджелудочной железы – глюкагон способствует превращению гликогена в глюкозу, тем самым повышая ее содержание в крови (т.е. оказывает действие, противоположное инсулину).

При большом количестве углеводов в пище их избыток превращается в жиры и откладывается в организме человека.

1 г углеводов содержит значительно меньше энергии, чем 1 г жиров. Но зато углеводы можно окислить быстро и быстро получить энергию.

Обмен жиров

Обмен жиров - совокупность процессов преобразования и использования жиров (липидов).

При распаде 1 г жира выделяется 38,9 кДж (9,3 ккал) энергии (в 2 раза больше, чем при расщеплении 1 г белков или углеводов).

Жиры являются соединениями, включающими в себя жирные кислоты и глицерин. Жирные кислоты под действием ферментов поджелудочной железы и тонкого кишечника, а также при участии желчи всасываются в лимфу в ворсинках тонкого кишечника. Далее с током лимфы липиды попадают в кровоток, а затем в клетки.

Как и углеводы, жиры распадаются до углекислого газа и воды и выводятся тем же путём.

В гуморальной регуляции уровня жиров участвуют железы внутренней секреции и их гормоны.

Значение жиров

  • Значительная часть энергетических потребностей печени, мышц, почек (но не мозга!) покрывается засчёт окисления жиров.
  • Липиды являются структурными элементами клеточных мембран, входят в состав медиаторов, гормонов, образуют подкожные жировые отложения и сальники.
  • Откладываясь в запас в соединительнотканных оболочках, жиры препятствуют смещению и механическим повреждениям органов.
  • Подкожный жир плохо проводит тепло, что способствует сохранению постоянной температуры тела.

Потребность в жирах определяется энергетическими потребностями организма в целом и составляет в среднем 80-100 г в сутки. Избыток жира откладывается в подкожной жировой клетчатке, в тканях некоторых органов (например, печени), а также и на стенках кровеносных сосудов.

Если в организме недостает одних веществ, то они могут образовываться из других. Белки могут превращаться в жиры и углеводы, а некоторые углеводы - в жиры. В свою очередь, жиры могут стать источником углеводов, а недостаток углеводов может пополняться за счет жиров и белков. Но ни жиры, ни углеводы не могут превращаться в белки.


Подсчитано, что взрослому человеку для нормальной жизнедеятельности необходимо не менее 1500-1700 ккал в сутки. Из этого количества энергии на собственные нужды организма уходит 15-35 %, а остальное затрачивается на выработку тепла и поддержание температуры тела.

Обмен веществ (метаболизм) - совокупность очень сложных, тесно связанных между собой биологических процессов. Переваривание пищи, ее усвоение, последующее выведение шлаков – все это метаболизм.

В живом организме постоянно, беспрерывно происходят изменения: образуются вещества, необходимые для жизнедеятельности клеток, тканей, органов.

Параллельно происходят процессы разрушения и очищения. На все это тратится много энергии. Даже когда мы спим, органы ее расходуют.

Естественным источником энергии для живого организма являются белки, жиры, углеводы. Сюда же относят воду и минеральные соли. Они также необходимы для нормального обмена. Именно про белковый углеводный жировой и водно солевой обмен веществ мы и поговорим на www.сайт с вами сегодня:

Белковый обмен веществ

Не будет преувеличением сказать, что именно белки являются основой всех живых тканей, их строительным материалом. Белковые соединения – главные «кирпичики» из которых состоят органы, системы, стенки клеток организмов. Например, мышечная и кожная ткань, глазное яблоко, межсуставная жидкость состоят, в основном, из белков.

Они – главные участники общего метаболизма, процессов усвоения питательных веществ, необходимых для жизнедеятельности. Без них не обходятся важнейшие процессы регенерации, транспортировки, а также усвоения и выведения естественным путем отходов жизнедеятельности, продуктов распада.

Для нормального обмена белков организм должен получать необходимое ему количество аминокислот, поступающих с пищей. Всего известно 20 аминокислот.

При отсутствии даже одной, нарушается протеиновый обмен, происходит разрушение белковой структуры. Чтобы этого не случилось, а процессы синтеза белков и их расщепление проходили нормально, следует употреблять достаточное количество белковых продуктов.

Здоровому взрослому человеку рекомендуется употреблять 0,75 г белка на 1 кг веса за сутки. Например, при общей массе тела 70 кг., норма этого вещества составит, примерно, 52,5 г. Чтобы стабилизировать, улучшить азотистый баланс поступление белка с употребляемыми продуками можно увеличить до 85 - 90 г за сутки. Для беременных женщин, кормящих мам, этот показатель возрастает.

Углеводный обмен веществ

Также как белки, углеводы (глюциды) – основные, жизненно важные органические соединения, являющиеся источником энергии. Некоторые из них организм использует в качестве запасных питательных веществ, другие необходимы для прочности тканей. Кроме того они являются строительным материалом других сложных молекул – сложных белков, нуклеиновой кислоты и гликолипидов. Без них невозможны процессы окисления белков, жиров.

Весь процесс углеводного обмена зависит от соотношения количества поступающей в кровь и удаляемой из крови глюкозы:

При снижении этого уровня происходит выделение адреналина. Этот гормон усиливает функцию печени, а именно, активизирует ее ферменты, которые отвечают за поступление сахара (глюкозы) в кровь.

При завышенном уровне, при условии достаточного количества гликогена необходимого для печени и мышц, лишний сахар откладывается «про запас» в виде жировых отложений.

Жировой обмен веществ

Жиры это сложные органические соединения - липиды, состоящие из эфиров глицерина с одноосновными жирными кислотами. Также как белки и углеводы, эти соединения представляют собой основу всех клеток, входят в состав их цитоплазмы, ядра и мембран, являются источником энергии живого организма.

Многие витамины, которые содержат продукты питания, поступают вместе с жирами.
При регулярном недополучении жиров, может нарушаться работа мозга, ухудшается общий обмен веществ, снижается выносливость организма. Кроме того, постоянный недостаток этих веществ сокращает жизнь.

Как известно, жирные кислоты, поступающие с пищей делятся на насыщенные (твердые животные жиры) и ненасыщенные (растительные масла, морепродукты). Эти две большие группы одинаково важны для нормальной жизнедеятельности человека.

Например, животные жиры очень нужны головному мозгу для нормальной работы.
Растительные масла: подсолнечное, оливковое, льняное, кукурузное, активизируют общие обменные процессы, усиливают защитные силы организма. Поэтому диетологи рекомендуют употреблять по 50 г животных, по 50 г растительных жиров ежедневно.

Водно-солевой

Водно-солевой обмен веществ представляет собой совокупность многих процессов поступления, дальнейшего распределения в организме воды, электролитов, а также последующего их выделения.

Достаточное поступление воды – необходимое условие существования живого организма. Человек может достаточно долго обходиться без пищи, но без воды прожить не может. Она необходима буквально для всех жизненных процессов - пищеварения, кровообращения, а также всасывания нутриентов. Вода нужна для биосинтеза, для процесса расщепления поступающих веществ и удаления шлаков.

С водой поступают растворенные минеральные вещества (электролиты, соли). Их стабильная концентрация, регуляция очень важна для поддержания внутренней среды, обеспечения нормальной жизнедеятельности живого организма.

Например, минеральные вещества: натрий, калий, кальций, магний находятся в составе внутриклеточной жидкости, а также содержатся вне клетки. Количество минеральных солей связано и регулируется количеством жидкости, поступающей в организм. Благодаря водно-солевому обмену сохраняется нужная концентрация веществ, поддерживается кислотно-щелочное равновесие.

В заключение нужно отметить, что все происходящие в организме обменные процессы: накопление и расходование энергии, окисление и разрушение органических соединений – тесно связаны между собой. Все вместе они обеспечивают нужную активность, интенсивность процессов метаболизма, поддерживают баланс поступления, сохранения, расходования веществ и энергии.

Поступив организм, молекулы пищевых веществ участвуют во многих реакциях. Эти ре-акции и другие проявления жизнедеятельности – метаболизм (обмен веществ). Пищевые вещества используются в качестве сырья для синтеза новых клеток, окисляются, доставляя энергию. Часть ее используется для синтеза новых клеток, другая часть – для функциониро-вания этих клеток. оставшаяся энергия освобождается в виде тепла. Процессы обмена:

Анаболизм (ассимиляция) – химический процесс, при котором простые вещества объеди-няются между собой в сложные. Это приводит к накоплению энергии и росту. Катаболизм - диссимиляция – расщепление сложных веществ на простые с выделением энергии. Сущ-ность обмена веществ – поступление в организм веществ, их усвоение, использование и вы-деление продуктов обмена. Функции метаболизма:

· извлечение энергии из внешней среды в форме химической энер-гии органических веществ

· превращение этих веществ в строительные блоки

· сборка клеточных компонентов из этих блоков

· синтез и разрушение биомолекул, которые необходимы для вы-полнения функций

Обмен белков – совокупность процессов превращения белков в организме, включая об-мен аминокислот. Белки – основа всех клеточных структур, материальные носители жизни, основной строительный материал. Суточная потребность – 100 – 120гр. Белки состоят из аминокислот (23):

· заменимые – могут образовываться из других в организме

· незаменимые – не могут синтезироваться в организме и должны

поступать с пищей - валин, лейцин, изолейцин, лизин, аргинин, триптофан, гистидин Этапы белкового обмена:

1. ферментативное расщепление белков пищи до аминокислот

2. всасывание аминокислот в кровь

3. превращение аминокислот в свойственные данному организму

4. биосинтез белков из этих кислот

5. расщепление и использование белков

6. образование продуктов расщепления аминокислот Всосавшись в кровеносные капилляры тонкого кишечника, аминокислоты по воротной

вене поступают в печень, где используются или задерживаются. Часть аминокислот остает-ся в крови, поступает в клетки, где из них строятся новые белки.

Период обновления белка у человека – 80 дней. Если с пищей поступает большое коли-чество белка, то ферменты печени отщепляют от них аминогруппы (NH2) – дезаминирова-ние. Другие ферменты соединяют аминогруппы с СО2, и образуется мочевина, которая по-ступает с кровью в почки и в норме выделяется с мочой. Белки почти не откладываются в депо, поэтому после истощения запасов углеводов и жиров используются не резервные бел-ки, а белки клеток. Это состояние очень опасно – белковое голодание – страдают головной мозг и другие органы (безбелковые диеты). Различают белки животного и растительного происхождения. Животные белки – мясо, рыба и морепродукты, растительные – соя, бобы, горох, чечевица, грибы, которые являются необходимыми для нормального белкового об-мена.



Обмен жиров – совокупность процессов превращения жиров в организме. Жиры - энерге-тический и пластический материал, они входят в состав оболочек и цитоплазмы клеток. Часть жиров накапливается в виде запасов в подкожной жировой клетчатке, большом и ма-лом сальниках и вокруг некоторых внутренних органов (почки) – 30% всей массы тела. Ос-новная масса жиров – нейтральный жир, который участвует в жировом обмене. Суточная потребность в жирах – 100 гр.

Некоторые жирные кислоты являются незаменимыми для организма и должны посту-пать с пищей – это полиненасыщенные жирные кислоты: линоленовая, линолевая, арахидо-новая, гамма – аминомасляная (морепродукты, молочные продукты). Гамма – аминомасля-ная кислота является основным тормозным веществом в ЦНС. Благодаря ей происходит ре-гулярная смена фаз сна и бодровствования, правильная работа нейронов. Жиры делятся на животные и растительные (масла), которые очень важны для нормального жирового обмена.

Этапы жирового обмена:

1. ферментативное расщепление жиров в ЖКТ до глицерина и жир-ных кислот

2. образование липопротеидов в слизистой оболочке кишечника

3. транспорт липопротеидов кровью

4. гидролиз этих соединений на поверхности клеточных мембран

5. всасывание глицерина и жирных кислот в клетки

6. синтез собственных липидов из продуктов распада жиров



7. окисление жиров с выделением энергии, СО2 и воды

При избыточном поступлении жиров с пищей он переходит в гликоген в печени или от-кладывается в запас. С пищей, богатой жирами, человек получает жироподобные вещества – фосфатиды и стеарины. Фосфатиды необходимы для построения клеточных мембран, ядер и

цитоплазмы. Ими богата нервная ткань. Главным представителем стеаринов является холе-стерин. Норма его в плазме – 3,11 – 6,47 ммоль/л. Холестеином богат желток куриного яйца, сливочное масло, печень. Он необходим для нормального функционирования нервной сис-темы, половой системы, из него стоятся клеточные мембраны, половые гормоны. При пато-логии он приводит к атеросклерозу.

Обмен углеводов – совокупность превращения углеводов в организме. Углеводы – ис-точник энергии в организме для непосредственного использования (глюкозы) или образо-вания депо (гликоген). Суточная потребность – 500 гр.

Этапы углеводного обмена:

1. ферментативное расщепление углеводов пищи до моносахаридов

2. всасывание моносахаридов в тонком кишечнике

3. депонирование глюкозы в печени в виде гликогена или ее непосредственное использование

4. расщепление гликогена в печени и поступление глюкозы в кровь

5. окисление глюкозы с выделением СО2 и воды

Углеводы всасываются в ЖКТ в виде глюкозы, фруктозы и галактозы, поступают в кровь

– в печень поворотной вене – глюкоза переходит в гликоген. Процесс перехода глюкозы в гликоген в печени – гликогенез. Глюкоза – постоянная составляющая часть крови (80 – 120 млг/%). Увеличение уровня глюкозы в крови – гипергликемия, уменьшение – гипогликемия. Уменьшение уровня глюкозы до 70 млг/% вызывает чувство голода, до 40 млг/% - кому.

Процесс распада гликогена в печени до глюкозы – гликогенолиз. Процесс биосинтеза угле-водов из продуктов распада жиров и белков – гликонеогенез. Процесс расщепления углево-дов без кислорода с накоплением энергии и образованием молочной и пировиноградной кислот – гликолиз. При увеличении глюкозы в пище печень переводит ее в жир, который затем используется.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Использование страдательных конструкций Использование страдательных конструкций