Колбочки строение и функции. Смотреть что такое "палочки и колбочки" в других словарях. Диагностика и лечение заболеваний палочек и колбочек

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Колбочки сетчатки – это один из видов фоторецепторов, которые входят в состав светочувствительного слоя в глазах человека. Они представляют собой очень сложные и чрезвычайно важные структуры, без которых люди не могли бы различать цвета. Преобразуя энергию света в электрический импульс, они передают в мозг информацию об окружающем мире. Нейроны зрительного центра воспринимают эти сигналы и различают огромное количество оттенков, однако механизмы этого удивительного процесса еще до сих пор не изучены.

Особенности строения

Эти структуры очень малы, по форме они выглядят, как лабораторная колба. Их длина составляет всего 0,05 мм, ширина – 0,004 мм (в самом узком месте диаметр – 0,001 мм). При таких маленьких размерах они являются очень многочисленными: в каждом глазу их насчитывается 6–7 миллионов (у здорового человека со стопроцентным зрением). Удивительно, что этот микроскопический фоторецептор имеет сложнейшую анатомию и подразделяется на четыре сегмента или отдела. Каждый из них имеет свое специфическое строение и выполняет определенные функции:

  • Наружный сегмент – содержит специальный пигмент, йодопсин, который претерпевает химические изменения под действием света. В этом отделе колбочек находится много складок плазмалемы, образующих так называемые полудиски. Их количество исчисляется сотнями.
  • Перетяжка, или связующий отдел – самая узкая часть фоторецептора. Здесь цитоплазма имеет вид очень тонкого тяжа. Кроме того, через этот участок проходят две реснички, имеющие нетипичное строение (обычно они образованы девятью триплетами микротрубочек по периферии и двумя в центре, здесь же центральная пара отсутствует).

  • Во внутреннем сегменте находятся важные клеточные органоиды, ответственные за процессы жизнедеятельности рецептора и его функционирование. Здесь расположены ядро, большое количество митохондрий и рибосом (полисом). Это свидетельствует об интенсивных процессах выработки энергии для работы колбочек, а также активном синтезе необходимых белковых веществ.
  • Синаптическая область обеспечивает связь светочувствительных рецепторов с нервными клетками. Здесь содержатся пузырьки с веществом – медиатором, которое принимает участие в передаче нервного импульса от световоспринимающего в зрительный нерв. Отдельная колбочка может связываться с одной моносинаптической биполярной клеткой или горизонтальными и амакриловыми клетками (совместно с другими фоторецепторами, в том числе и с палочками).

Как работают фоторецепторы

Функционирование колбочек и восприятие ими различных цветов и оттенков до сих пор не имеет общепризнанного научного объяснения. Но на сегодняшний день существует две основные гипотезы, описывающие эти процессы.

Трехкомпонентная гипотеза зрения

Сторонники этой гипотезы утверждают, что в сетчатке глаза человека имеется три разных вида колбочек, в каждом из которых содержится определенный пигмент. Дело в том, что йодопсин – это неоднородное вещество, есть три его разновидности. Из них лишь два – эритролаб и хлоролаб – найдены и описаны учеными. Третий пигмент, цианолаб, существует лишь в теории, и его присутствие подтверждается лишь косвенными доказательствами.


Колбочки сетчатки глаза, содержащие эритролаб, принимают длинноволновое излучение, то есть желто-красную часть спектра.

Волны средней длины поглощаются хлоролабом, и рецепторы, в которых он находится, видят желто-зеленую часть спектра.

Логично, что должны существовать и фоторецепторы, воспринимающие коротковолновое излучение (синие оттенки), поэтому наличие цианолаба в светочувствительных клетках третьего типа весьма вероятно.

Нелинейная двухкомпонентная теория

Эта теория, наоборот, отрицает наличие третьего пигмента, цианолаба. Она предполагает, что для восприятия данной части спектра излучения достаточно работы палочек. Таким образом, воспринимает все видимые цвета при совместном функционировании обоих видов фоторецепторов. Причем, сторонники этой гипотезы подчеркивают, что эти чувствительные структуры способны определить содержание желтого цвета в смеси видимых оттенков.

Что такое дополнительная колбочка

У некоторых людей встречается редкое явление – дополнительная колбочка сетчатки. Это значит, что у них есть не три, а четыре разновидности данного фоторецептора. Такие люди называются тетрахроматами, и они способны видеть 100 миллионов оттенков вместо 10 миллионов у обычного человека. В разных исследованиях называют различные данные о частоте встречаемости тетрахроматии. Одни ученые говорят о том, что аномалия возможна лишь у женщин, причем она есть только у 2 % женского населения. Другие исследователи утверждают, что это не столь редкое явление, и до четверти населения Земли (как женщины, так и мужчины) имеют такую особенность восприятия цвета.

38. Фоторецепторы (палочки и колбочки), различия между ними. Биофизические процессы, происходящие при поглощении кванта света в фоторецепторах. Зрительные пигменты палочек и колбочек. Фотоизомеризация родопсина. Механизм цветового зрения.

.3. БИОФИЗИКА ВОСПРИЯТИЯ СВЕТА В СЕТЧАТКЕ Строение сетчатки

Структура глаза, на которой получается изображение, назыывается сетчаткой (сетчатой оболочкой). В ней в самом наружном слое расположены фоторецепторные клетки -палочки и колбочки. Следующий слой образуют биполярные нейроны, а третий слой - ганглиозные клетки (рис. 4).Между палочками (колбочками) и дендритами биполяров, а также между аксонами биполяров и ганглиозными клетками имеются синапсы . Аксоны ганглиозных клеток образуют зрительный нерв . Снаружи сетчатки (считая от центра глаза) лежит чёрный слой пигментного эпителия, поглощающий прошедшее через сетчатку неиспользованное (не- поглощённое фоторецепторами) излучение 5*). С другой стороны сетчатки (ближе к центру) находится сосудистая оболочка , подводящая к сетчатке кислород и питательные вещества.

Палочки и колбочки состоят из двух частей (сегментов). Внутренний сегмент - это обычная клетка с ядром, митохондриями (их в фоторецепторах очень много) и другими структурами. Наружный сегмент . почти целиком заполнен дисками, которые образованы фосфолипидными мембранами (в палочках до 1000 дисков, в колбочках около 300). Мембраны дисков содержат примерно 50% фосфолипидов и 50% особого зрительного пигмента, который в палочках называется родопсин (по своему розовому цвету;родос- по-гречески розовый), а в колбочках иодопсин . Далее для краткости мы будем говорить только о палочках; процессы в колбочках аналогичны.Различия между колбочками и палочками будут рассмотрены в другом разделе. Родопсин состоит из белка опсина , к которому присоедина группа,называемая ретиналь . . Ретиналь по своей химической структуре очень близок к витамину А, из которого он и синтезируется в организме. Поэтому недостаток витамина А может вызвать ухудшение зрения.

Различия между палочками и колбочками

1. Различие в чувствительности . . Порог ощущения света у палочек значительно ниже, чем у колбочек. Это, во-первых, объясняется тем, что в палочках болье дисков, чем в колбочках и, значит, больше вероятность поглощения световых квантов. Однако, главная причина в другом. Соседние палочки с помощью электрических синапсов. объединяются в комплексы, на- зываемые рециптивными полями .. Электрические синапсы (коннексоны ) могут открываться и закрываться; поэтому число палочек в рециптивном поле может меняться в широких пределах в зависимости от величины освещённости: чем слабее свет, тем крупнее рецептивные поля. При очень малой освещённости в поле может объединиться свыше тысячи палочек. Смысл такого объединения в том, что оно повышает отношение полезного сигнала к шуму. В результате тепловых флюктуаций на мембранах палочек возникает хаотически меняющаяся разность потенциалов, которую называют шумом.При малой освещённости амплитуда шума может превысить полезный сигнал,то есть величину гиперполяризации, вызванной действием света. Может показаться, что в таких условиях рецепция света станет невозможной.Однако, в случае восприятия света не отдельной палочкой, а большим рецептивным полем, между шумом и полезным сигналом есть принципиальная разница. Полезный сигнал в этом случае возникает как сумма сигналов,создаваемых палочками,объединёнными в единую систему-рецептивное поле . Эти сигналы когерентны., они приходят от всех палочек в одной фазе. Шумовые сигналы из-за хаотического характера теплового движения некогерентны, они приходят в случайных фазах. Из теории сложения колебаний известно, что для когерентных сигналов суммарная амплитуда равна: Асумм = А 1 n , где А 1 - амплитуда единичного сигнала, n - число сигналов.В случае некогерентных. сигналов (шума) Асумм=А 1 5,7n . Пусть,например, амплитуда полезного сигнала 10 мкВ, а амплитуда шума 50 мкВ.Ясно, что сигнал потеряется на фоне шума. Если в рецептивное поле объединились 1000 палочек, суммарный полезный сигнал будет 10 мкВ

10 мВ, а суммарный шум - 50 мкВ 5. 7 = 1650 мкВ = 1,65 мВ, то есть сигнал будет в 6 раз больше шума. При таком отношении сигнал будет уверенно воспринят и создаст ощущение света. Колбочки работают при хорошй освещённости, когда даже в единичной колбочке сигнал (ПРП) много больше шума. Поэтому каждая колбочка обычно посылает свой сигнал в биполяр и ганглиозную клетку независимо от других. Однако, если освещённость понижается, колбочки тоже могут объединяться в рецептивные поля. Правда,число колбочек в поле, обычно, невелико (несколько десятков). В целом колбочки обеспечивают дневное зрение, палочки-сумеречное.

2.Разница в разрешающей способности .. Разрешающую способность глаза характеризуют минимальным углом, под которым две соседние точки предмета ещё видны по-отдельности. Разрешающая способность, в основном, определяется расстоянием между соседними фоторецепторными клетками. Чтобы две точки не слилимсь в одну,их изображение должно попасть на две колбочки, между которыми будет ещё одна (см.рис. 5). В среднем это соответствует минимальному углу зрения около одной минуты, то есть разрешающая способность колбочкового зрения высокая. Палочки, как правило, объединены в рецептивные поля. Все точки,изображения которых попадут на одно рецептивное поле, будут восприни-

маться, как одна точка, поскольку всё рецептивное поле посылает в ЦНС единый суммарный сигнал. Поэтому разрешающая способрность (острота зрения) при палочковом (сумеречном) зрении низкая. При недостаточной освещённости палочки тоже начинают объединяться в рецептивные поля, и острота зрения падает. Поэтому при определении остроты зрения таблица должна быть хорошо освещена, иначе можно сделать существенную ошибку.

3. Различие в размещении . Когда мы хотим получше рассмотреть предмет, мы так поворачиваемся, чтобы этот предмет оказался в центре поля зрения. Так как высокую разрешающую способность обеспечивают колбочки, в центре сетчатки преобладают именно колбочки - это способствует хорошей остроте зрения. Так как цвет колбочек желтый, это место сетчатки называют желтым пятном. На периферии, наоборот, гораздо больше палочек (хотя есть и колбочки). Там острота зрения заметно хуже,чем в центре поля зрения. Вообще же палочек в 25 раз больше, чем колбочек.

4. Различие в цветоощущении .Цветное зрение присуще только колбочкам; изображение, даваемое палочками, одноцветно.

Mеханизм цветного зрения

Чтобы возникло зрительное ощущение, необходимо, чтобы кванты света поглощались в фоторецепторных клетках, а точнее - в родопсине и иодопсине. Поглощение света зависит от длины волны света; каждое вещество имеет специфический спектр поглощения. Исследования показали,что существуют три вида иодопсина с различными спектрами поглощения. У

одного вида максимум поглощения лежит в синей части спектра , у другого -в зелёной и у третьего - в красной (рис. 5) . В каждой колбочке присутствует какой-то один пигмент, и посылаемый этой колбочкой сигнал соответствует поглощению света данным пигментом. Колбочки, содержащие другой пигмент, будут посылать другие сигналы. В зависимости от спектра света, падающего на данный участок сетчатки, соотношение сигналов,поступающих от колбочек разных типов, оказывается разным, а в целом совокупность сигналов, получаемых зрительным центром ЦНС, будет характеризовать спектральный состав воспринимаемого света, что и даёт субъективное ощущение цвета .

Колбочки и палочки относятся к рецепторному аппарату глазного яблока. Они отвечают за передачу световой энергии путем трансформации ее в нервный импульс. Последний проходит по волокнам зрительного нерва в центральные структуры головного мозга. Палочки обеспечивают зрение в условиях недостаточной освещенности, они способны воспринимать только светлое и темное, то есть черно-белое изображение. Колбочки способны воспринимать различные цвета, также они являются показателем остроты зрения. Каждый фоторецептор имеет строение, которое позволяет выполнять ему функции.

Строение палочек и колбочек

Палочки по форме напоминают цилиндр, в связи с чем они и получили свое название. Они разделены на четыре сегмента:

  • Базальный, соединяющий между собой нервные клетки;
  • Связующий, обеспечивающий соединение с ресничками;
  • Наружный;
  • Внутренний, содержащий митохондрии, которые вырабатывают энергию.

Энергии одного фотона вполне достаточно, чтобы привести к возбуждению палочки. Это воспринимается человеком как свет, что и позволяет ему видеть даже в условиях очень низкой освещенности.

В палочках имеется особый пигмент (родопсин), который поглощает световые волны в области двух диапазонов.
Колбочки по внешнему виду похожи на колбы, поэтому и имеют свое название. Они содержат в себе четыре сегмента. Внутри колбочек располагается другой пигмент (йодопсин), который обеспечивает восприятие красного и зеленого цвета. Пигмент, отвечающий за распознавание синего цвета до сих пор не установлен.

Физиологическая роль палочек и колбочек

Колбочки и палочки выполняют основную функцию, которая заключается в восприятии световых волн и трансформации их в зрительный образ (фоторецепия). Каждый рецептор при этом имеет свои особенности. Например, палочки нужны для того, чтобы видеть в сумерках. Если по каким-либо причинам они перестают выполнять свою функцию, человек не может видеть в условиях низкой освещенности. Колбочки же отвечают за четкое цветное зрение при нормальном освещении.

По-другому можно сказать, что палочки относятся к световоспринимающей системе, а колбочки – к цветовоспринимающей системе. Это является основанием для проведения дифференциальной диагностики.

Видео о строении палочек и колбочек

Симптомы поражения палочек и колбочек

При заболеваниях, сопровождающихся поражением палочек и колбочек, возникают следующие симптомы:

  • Снижение остроты зрения;
  • Появление вспышек или бликов перед глазами;
  • Снижение сумеречного зрения;
  • Невозможность различать цвета;
  • Сужение полей зрения (в крайнем случае формирование трубчатого зрения).

Некоторые заболевания имеют очень специфические симптомы, которые без труда позволяют диагностировать патологию. Это касается гемералопии или . Другие симптомы могут присутствовать при различных патологиях, в связи с чем необходимо проводить дополнительное диагностическое обследование.

Методы диагностики при поражении палочек и колбочек

Для диагностики заболеваний, при которых имеется поражение палочек или колбочек, необходимо выполнить следующие обследования:

  • с определением состояния ;
  • (изучение полей зрения);
  • Диагностика цветовосприятия с применением таблиц Ишихара или 100-оттеночного теста;
  • Ультразвуковое исследование;
  • Флуоресцентная агиография, обеспечивающая визуализацию сосудов;
  • Компьютерная рефрактометрия.

Стоит еще раз напомнить, что фоторецепторы отвечают за цветовосприятие и световосприятие. За счет из работы человек может воспринимать предмет, образ которого формируется в зрительном анализаторе. При патологиях

Палочки имеют форму цилиндра с неравномерным, но приблизительно равным диаметром окружности по длине. К тому же длина (равная 0,000006 м или 0,06 мм) в 30 раз превышает их диаметр (0,000002 м или 0,002 мм), из-за чего вытянутый в длину цилиндр действительно очень похож на палочку. В глазу здорового человека насчитывается порядка 115-120 миллионов палочек.

Палочка глаза человека состоит из 4 сегментов:

1 - Наружный сегмент (содержит мембранные диски),

2 - Связующий сегмент (ресничка),

4 - Базальный сегмент (нервное соединение)

Палочки крайне светочувствительны. Достаточно энергии одного фотона (мельчайшая, элементарная частица света) для реакции палочек. Этот факт помогает при так называемом ночном зрении, позволяя видеть в сумерках.

Палочки не способны различать цвета, в первую очередь, это связано с наличием в палочках всего одного пигмента родопсина. Родопсин, или иначе его называют зрительный пурпур, благодаря включенным в себя двум группам белков (хромофор и опсин) имеет два максимума светопоглощения, хотя, учитывая, что один из этих максимумов находится за гранью видимого человеческим глазом света (278 нм – это область ультрафиолета, не видимого глазом), стоит называть их максимумами волнопоглощения. Однако второй максимум поглощения всё же виден глазу - он находится на отметке 498 нм, что как бы на границе между зелёным цветовым спектром и синим.

Достоверно известно, что содержащийся в палочках родопсин реагирует на свет медленнее, чем йодопсин в колбочках. Потому палочки слабее реагируют на динамику светового потока и плохо различают объекты в движении. По этой же причине острота зрения тоже не специализация палочек.

Колбочки сетчатки глаза

Колбочки получили такое название благодаря своей форме, похожей на лабораторные колбы. Длина колбочки равна 0,00005 метра, или 0,05 мм. Ее диаметр в самом узком месте составляет около 0,000001 метра, или 0,001 мм, и 0,004 мм в самом широком. На здорового взрослого человека около 7 миллионов колбочек.

Колбочки менее чувствительны к свету, другими словами, для их возбуждения потребуется световой поток в десятки раз интенсивнее, чем для возбуждения палочек. Однако колбочки способны обрабатывать свет интенсивнее палочек, из-за чего они лучше воспринимают изменение светового потока (например, лучше палочек различают свет в динамике при движении объектов относительно глаза), а также определяют более четкое изображение.

Колбочка человеческого глаза состоит из 4 сегментов:

1 - Наружный сегмент (содержит мембранные диски с йодопсином),

2 - Связующий сегмент (перетяжка),

3 - Внутренний сегмент (содержит митохондрии),

4 - Область синаптического соединения (базальный сегмент).

Причиной вышеописанных свойств колбочек является содержание в них биологического пигмента йодопсина. На момент написания этой статьи были найдены (выделены и доказаны) два вида йодопсина: эритролаб (пигмент, чувствительный к красной части спектра, к длинным L-волнам), хлоролаб (пигмент, чувствительный к зеленой части спектра, к средним M-волнам). На сегодняшний день пигмент, который чувствителен к синей части спектра, к коротким S-волнам, не найден, хотя за ним уже закреплено название – цианолаб.

Разделение колбочек на 3 вида (по доминированию в них цветовых пигментов: эритролаба, хлоролаба, цианолаба) носит название трехкомпонентной гипотезы зрения. Однако существует и нелинейная двухкомпонентная теория зрения, приверженцы которой считают, что каждая колбочка одновременно содержит в себе и эритролаб, и хлоролаб, а значит, способна воспринимать цвета красного и зеленого спектра. При этом роль цианолаба принимает на себя выцветший родопсин из палочек. В поддержку этой теории говорит и то, что люди, страдающие , а именно в синей части спектра (тританопией), так же испытывают трудности с сумеречным зрением (куриная слепота), что является признаком ненормальной работы палочек сетчатки глаза.

Колбочки сетчатки – это один из видов фоторецепторов, которые входят в состав светочувствительного слоя в глазах человека. Они представляют собой очень сложные и чрезвычайно важные структуры, без которых люди не могли бы различать цвета. Преобразуя энергию света в электрический импульс, они передают в мозг информацию об окружающем мире. Нейроны зрительного центра воспринимают эти сигналы и различают огромное количество оттенков, однако механизмы этого удивительного процесса еще до сих пор не изучены.

Особенности строения

Эти структуры очень малы, по форме они выглядят, как лабораторная колба. Их длина составляет всего 0,05 мм, ширина – 0,004 мм (в самом узком месте диаметр – 0,001 мм). При таких маленьких размерах они являются очень многочисленными: в каждом глазу их насчитывается 6–7 миллионов (у здорового человека со стопроцентным зрением). Удивительно, что этот микроскопический фоторецептор имеет сложнейшую анатомию и подразделяется на четыре сегмента или отдела. Каждый из них имеет свое специфическое строение и выполняет определенные функции:

  • Наружный сегмент – содержит специальный пигмент, йодопсин, который претерпевает химические изменения под действием света. В этом отделе колбочек находится много складок плазмалемы, образующих так называемые полудиски. Их количество исчисляется сотнями.
  • Перетяжка, или связующий отдел – самая узкая часть фоторецептора. Здесь цитоплазма имеет вид очень тонкого тяжа. Кроме того, через этот участок проходят две реснички, имеющие нетипичное строение (обычно они образованы девятью триплетами микротрубочек по периферии и двумя в центре, здесь же центральная пара отсутствует).
  • Во внутреннем сегменте находятся важные клеточные органоиды, ответственные за процессы жизнедеятельности рецептора и его функционирование. Здесь расположены ядро, большое количество митохондрий и рибосом (полисом). Это свидетельствует об интенсивных процессах выработки энергии для работы колбочек, а также активном синтезе необходимых белковых веществ.
  • Синаптическая область обеспечивает связь светочувствительных рецепторов с нервными клетками. Здесь содержатся пузырьки с веществом – медиатором, которое принимает участие в передаче нервного импульса от световоспринимающего слоя сетчатки в зрительный нерв. Отдельная колбочка может связываться с одной моносинаптической биполярной клеткой или горизонтальными и амакриловыми клетками (совместно с другими фоторецепторами, в том числе и с палочками).

Как работают фоторецепторы

Функционирование колбочек и восприятие ими различных цветов и оттенков до сих пор не имеет общепризнанного научного объяснения. Но на сегодняшний день существует две основные гипотезы, описывающие эти процессы.

Трехкомпонентная гипотеза зрения

Сторонники этой гипотезы утверждают, что в сетчатке глаза человека имеется три разных вида колбочек, в каждом из которых содержится определенный пигмент. Дело в том, что йодопсин – это неоднородное вещество, есть три его разновидности. Из них лишь два – эритролаб и хлоролаб – найдены и описаны учеными. Третий пигмент, цианолаб, существует лишь в теории, и его присутствие подтверждается лишь косвенными доказательствами.

Колбочки сетчатки глаза, содержащие эритролаб, принимают длинноволновое излучение, то есть желто-красную часть спектра.

Волны средней длины поглощаются хлоролабом, и рецепторы, в которых он находится, видят желто-зеленую часть спектра.

Логично, что должны существовать и фоторецепторы, воспринимающие коротковолновое излучение (синие оттенки), поэтому наличие цианолаба в светочувствительных клетках третьего типа весьма вероятно.

Нелинейная двухкомпонентная теория

Эта теория, наоборот, отрицает наличие третьего пигмента, цианолаба. Она предполагает, что для восприятия данной части спектра излучения достаточно работы палочек. Таким образом, сетчатка воспринимает все видимые цвета при совместном функционировании обоих видов фоторецепторов. Причем, сторонники этой гипотезы подчеркивают, что эти чувствительные структуры способны определить содержание желтого цвета в смеси видимых оттенков.

Что такое дополнительная колбочка

У некоторых людей встречается редкое явление – дополнительная колбочка сетчатки. Это значит, что у них есть не три, а четыре разновидности данного фоторецептора. Такие люди называются тетрахроматами, и они способны видеть 100 миллионов оттенков вместо 10 миллионов у обычного человека. В разных исследованиях называют различные данные о частоте встречаемости тетрахроматии. Одни ученые говорят о том, что аномалия возможна лишь у женщин, причем она есть только у 2 % женского населения. Другие исследователи утверждают, что это не столь редкое явление, и до четверти населения Земли (как женщины, так и мужчины) имеют такую особенность восприятия цвета.

Сетчатка глаза человека может полноценно воспринимать зрительную информацию лишь тогда, когда в обоих типах светочувствительных рецепторов содержатся все необходимые пигменты и ферменты, необходимые для их преобразования.

Если в фоторецепторах не вырабатывается какая-либо разновидность таких веществ, человек не может видеть часть видимого спектра излучения. Такие нарушения объединяются под общим названием дальтонизм. Люди с цветовой слепотой не способны видеть некоторые цвета в течение всей жизни, так как данная патология обусловлена генетически.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии