Вирусологические методы исследования при инфекционных болезнях. Вирусологические исследования Вирусологические методы исследования

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Этиологическая диагностика вирусных заболеваний проводится вирусологическим, вирусоскопическим, серологическим и молекулярно-генетическим методами. Три последних метода могут быть использованы как экспресс-диагностические.

Вирусологический метод диагностики.

Конечной целью метода является идентификация вирусов до вида или серологического варианта. Вирусологический метод включает несколько этапов:

1) отбор материала для исследования;

2) обработку вируссодержащего материала;

3) заражение материалом чувствительных живых систем;

4) индикацию вирусов в живых системах;

5) титрование выделенных вирусов;

6) идентификацию вирусов в иммунных реакциях.

1. Отбор материала для исследования .

Проводится в ранние сроки заболевания при соблюдении правил, предотвращающих контаминацию материала посторонней микрофлорой и инфицирование медицинского персонала. Для предупреждения инактивации вирусов при транспортировке материала, он помещается в вирусную транспортировочную среду (ВТС), состоящую из сбалансированного солевого раствора, антибиотиков и сывороточного альбумина. Транспортируется материал в специальном контейнере с термоизоляцией и закрытыми пластиковыми пакетами, содержащими лед. При необходимости материал хранят при -20˚С. Каждый образец материала для исследования должен иметь маркировку и этикетку с указанием фамилии больного, типа материала, даты его забора, развернутый клинический диагноз и другие сведения.

В зависимости от характера заболевания, материалом для исследования могут быть:

1) смывы с носовой части глотки и мазок из глотки;

2) спинномозговая жидкость;

3) кал и ректальные мазки;

6) жидкость из серозных полостей;

7) мазок с конъюнктивы;

8) содержимое везикул;

8) секционный материал.

Для получения смыва из ротоглотки используют 15-20 мл ВТС. Больной тщательно в течение 1 минуты полощет горло ВТС и собирает смыв в стерильный флакон.

Мазок с задней стенки глотки берут стерильным ватным тампоном, надавливая на корень языка шпателем. Тампон помещают в 2-3 мл ВТС, ополаскивают и отжимают.

Спинномозговую жидкость получают при спинномозговой пункции. 1-2 мл спинномозговой жидкости помещают в стерильную посуду и доставляют в лабораторию.

Пробы кала отбирают в течение 2-3 дней в стерильные флаконы. Из полученного материала готовят 10 % суспензию с использованием раствора Хенкса. Суспензию центрифугируют при 3000 об/мин, собирают надосадочную жидкость, вносят в нее антибиотики и помещают в стерильную посуду.



Кровь, полученную при венепункции в объеме 5-10 мл, дефибринируют путем добавления гепарина. Цельную кровь не замораживают, антибиотики не добавляют. Для получения сыворотки пробы крови выдерживают в термостате при 37˚С в течение 60 минут.

Жидкость из серозных полостей получают при их пункции в количестве 1-2 мл. Жидкость используется сразу или сохраняется в замороженном состоянии.

Мазок с конъюнктивы берут стерильным тампоном и помещают в ВТС, после чего проводят центрифугирование взятого материала и его замораживание.

Содержимое везикул отсасывают шприцем с тонкой иглой и помещают в ВТС. Материал посылается в лабораторию в виде высушенных мазков на предметных стеклах или в запаянных стерильных капиллярах или ампулах.

Секционный материал отбирают в возможно ранние сроки, соблюдая правила асептики. Для отбора каждой пробы используют отдельные наборы стерильных инструментов. Количество отбираемых тканей составляет 1-3 г, которые помещают в стерильные флаконы. Вначале берут пробы внеполостных органов (мозг, лимфатические узлы и др.). Ткани грудной полости берут до вскрытия брюшной полости. Полученные образцы тканей растирают в ступке с добавлением стерильного песка и стерильного раствора натрия хлорид, после чего материал центрифугируют. Надосадочную жидкость собирают во флаконы, добавляют антибиотики. Материал для вирусологического исследования используется сразу или хранится при -20˚С.

2. Обработка вируссодержащего материала.

Проводится с целью освобождения материала от сопутствующей бактериальной микрофлоры. Для этого используются физические и химические методы.

Физические методы:

1) фильтрование через различные бактериальные фильтры;

2) центрифугирование.

Химические методы:

1) обработка материала эфиром в случаях выделения вирусов, не имеющих суперкапсида;



2) добавление к материалу смеси гептана и фреона;

3) внесение антибиотиков (пенициллин – 200-300 ЕД/мл; стрептомицин – 200-500 мкг/мл; нистатин – 100-1000 ЕД/мл).

3. Заражение материалом чувствительных живых систем.

1) лабораторные животные;

2) куриные эмбрионы;

3) культуры органов;

4) культуры тканей.

Лабораторные животные . Используются белые мыши, морские свинки, хомяки, кролики и др. Белые мыши наиболее чувствительны к большому числу видов вирусов. Способ заражения животных определяется тропизмом вируса к тканям. Заражение в мозг применяется при выделении нейротропных вирусов (вирусы бешенства, полиовирусы и др.). Интраназальное заражение проводят при выделении возбудителей респираторных инфекций. Широко используются внутримышечный, внутривенный, внутрибрюшинный, подкожный и другие методы заражения. Заболевших животных усыпляют эфиром, вскрывают и производят забор материала из органов и тканей.

Куриные эмбрионы . Широко доступны и просты в работе. Применяют куриные эмбрионы в возрасте от 5 до 14 дней. Перед заражением куриные эмбрионы овоскопируют: определяют их жизнеспособность, отмечают на скорлупе границу воздушного мешка и месторасположение эмбриона («темный глаз» эмбриона). Работа с куриными эмбрионами проводится в стерильном боксе стерильными инструментами (пинцеты, шприцы, ножницы, копье и др.). После выполнения фрагмента работы инструменты погружают в 70 % этиловый спирт и перед следующей манипуляцией прожигают. Перед заражением скорлупу куриного эмбриона протирают горящим спиртовым тампоном и спиртовым раствором йода. Объем исследуемого материала, вводимого в эмбрион, составляет 0,1-0,2 мл. Для выделения вирусов из одного материала используют не менее 4 куриных эмбрионов.

методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

Вирусологические методы исследования основаны также на иммунологических процессах (взаимодействие антигена с антителами), биологических свойствах вируса (способность к гемагглютинации, гемолизу, ферментативная активность), особенностях взаимодействия вируса с клеткой-хозяином (характерцитопатического эффекта, образование внутриклеточных включений и т.д.).

В диагностике вирусных инфекций, при культивировании, выделении и идентификации вирусов, а также при получении вакцинных препаратов широко применяют метод культуры ткани и клеток. Используют первичные, вторичные, стабильные перевиваемые и диплоидные клеточные культуры. Первичные культуры получают при диспергировании ткани протеолитическими ферментами (трипсином, коллагеназой). Источником клеток могут быть ткани и органы (чаще почки) эмбрионов человека и животных. Суспензию клеток в питательной среде помещают в так называемые матрацы, бутыли или чашки Петри, где после прикрепления к поверхности сосуда клетки начинают размножаться. Для заражения вирусами используют обычно клеточный монослой. Питательную жидкость сливают, вносят вирусную суспензию в определенных разведениях и после контакта с клетками добавляют свежую питательную среду, обычно без сыворотки.

Клетки большинства первичных культур могут быть пересеяны, такая культура называется вторичной. При дальнейшем пассировании клеток формируется популяцияфибробластоподобных клеток, способных к быстрому размножению, большая часть которых сохраняет исходный набор хромосом. Это так называемые диплоидные клетки. При серийном культивировании клеток получают стабильные перевиваемые клеточные культуры. При пассажах появляются быстро делящиеся однородные клетки с гетероплоидным набором хромосом. Стабильные линии клеток могут быть однослойными и суспензионными. Однослойные культуры растут в виде сплошного слоя на поверхности стекла, суспензионные - в виде суспензий в различных сосудах с использованием перемешивающих устройств. Существует более 400 линий клеток, полученных от 40 различных видов животных (в т.ч. от приматов, птиц, рептилий, амфибий, рыб, насекомых) и человека.

В искусственных питательных средах можно культивировать кусочки отдельных органов и тканей (органные культуры). Эти типы культур сохраняют структуру ткани, что особенно важно для выделения и пассирования вирусов, которые не репродуцируются в недифференцированных тканевых культурах (например, коронавирусы).

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены. Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциальногоультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия, а также иммунофлюоресценция, метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул, секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизацияinsitu и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- μ-антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

20)Основным структурным компонентом вирионов (полных вирусных частиц) является нуклеокапсид, т.е. белковый чехол (капсид) в котором заключен вирусный геном (ДНК или РНК). Нуклеокапсид большинства семейств вирусов окружен липопротеиновой оболочкой. Между оболочкой и нуклеокапсидом у некоторых вирусов (орто-, парамиксо-, рабдо-, фило- и ретровирусов) находится негликозилированный матриксный белок, придающий дополнительную жесткость вирионам. Вирусы большинства семейств имеют оболочку, которая играет важную роль в инфекционности. Наружный слой оболочки вирионы приобретают, когда нуклеокапсид проникает через клеточную мембрану почкованием. Белки оболочки кодируются вирусом, а липиды заимствуются из мембраны клетки. Гликопротеины обычно в виде димеров и тримеров образуют пепломеры (выступы) на поверхности вирионов (орто-, парамиксовирусы, рабдо-, фило-, корона-, бунья-, арена-, ретровирусы). Гликозилированные белки слияния связаны с пепломерами и выполняют ключевую роль в проникновении вируса в клетку. Капсиды и оболочки вирионов образуются множеством копий одного или нескольких видов белковых субъединиц в результате процесса самосборки. Взаимодействие в системе белок-белок, благодаря слабым химическим связям, ведет к объединению симметричных капсидов. Различия вирусов по форме и размеру вирионов зависят от формы, размера и количества структурных белковых субъединиц и природы взаимодействия между ними. Капсид состоит из множества морфологически выраженных субъединиц (капсомеров), собранных из вирусных полипептидов строго определенным образом, в соответствии с относительно простыми геометрическими принципами. Белковые субъединицы, соединяясь друг с другом, образуют капсиды двух видов симметрии: изометрические и спиральные. Структура нуклеокапсида оболочечных вирусов сходна со структурой нуклеокапсида безоболочечных вирусов. На поверхности оболочки вирусов различают морфологически выраженные гликопротеиновые структуры - пепломеры. В состав суперкапсидной оболочки входят липиды (до 20-35%) и углеводы (до 7-8%), имеющие клеточное происхождение. Она состоит из двойного слоя клеточных липидов и вирусспецифических белков, расположенных снаружи и изнутри липидного биослоя. Наружный слой суперкапсидной оболочки представляют пепломеры (выступы) одного или более типов, состоящие из одной или нескольких молекул гликопротеинов. Нуклеокапсид у оболочечных вирусов часто называют сердцевиной (core), а центральную часть вирионов, содержащую нуклеиновую кислоту, называют нуклеоидом. Капсомеры (пепломеры) состоят из структурных единиц, построенных из одной либо из нескольких гомологичных или гетерологичных полипептидных цепей (белковых субъединиц). классификация вирусов Изометрические капсиды представляют собой не сферы, а правильные многогранники (икосаэдры). Их линейные размеры идентичны по осям симметрии. Согласно Каспару и Клугу (1962), капсомеры в капсидах расположены в соответствии с икосаэдрической симметрией. Такие капсиды состоят из идентичных субъединиц, образующих икосаэдр. Они имеют 12 вершин (углов), 30 граней и 20 поверхностей в виде равнобедренных треугольников. В соответствии с этим правилом капсид полиовируса и вируса ящура образован 60 белковыми структурными единицами, каждая из которых состоит из четырех полипептидных цепей. Икосаэдр оптимально решает проблему укладки повторяющихся субъединиц в строгую компактную структуру при минимальном объеме. Только некоторые конфигурации структурных субъединиц могут сформировать поверхности, образовать вершины и грани вирусного икосаэдра. Например, структурные субъединицы аденовируса на поверхностях и гранях формируют шестигранные капсомеры (гексоны), а на вершинах - пятигранные капсомеры (пептоны). У одних вирусов оба вида капсомеров образуются одними и теми же полипептидами, у других - разными полипептидами. Так как структурные субъединицы разных вирусов различаются между собой, то одни вирусы кажутся более гексагональными, другие - более сферическими. Все известные ДНК-содержащие вирусы позвоночных, за исключением вирусов оспы, а также многие РНК-содержащие вирусы (7 семейств) имеют кубический тип симметрии капсида. Реовирусы, в отличие от других вирусов позвоночных, имеют двойной кап-сид (наружный и внутренний), причем каждый состоит из морфологических единиц. Вирусы, обладающие спиральным типом симметрии, имеют вид цилиндрической нитевидной структуры, их геномная РНК имеет вид спирали и находится внутри капсида. Все вирусы животных спиральной симметрии окружены липопротеиновой оболочкой. Спиральные нуклеокапсиды характеризуются длиной, диаметром, шагом спирали и числом капсомеров, приходящихся на один оборот спирали. Так, у вируса Сендай (парамиксовирус) нуклеокапсид представляет собой спираль длиной около 1 мкм, диаметром 20 нм и шагом спирали 5 нм. Капсид состоит примерно из 2400 структурных единиц, каждая из которых является белком с молекулярной массой 60 кД. На каждый виток спирали приходится 11-13 субъединиц. У вирусов со спиральным типом симметрии нуклеокапсида укладка белковых молекул в спираль обеспечивает максимальное взаимодействие между нуклеиновой кислотой и белковыми субъединицами. У икосаэдрических вирусов нуклеиновая кислота находится внутри вирионов в скрученном состоянии и взаимодействует с одним или несколькими полипептидами, расположенными внутри капсида.

Антирецепторы (рецепторы) Вирусные - поверхностные вирионные белки, напр., гемагглютинин, связывающиеся по комплементарному типу с соответствующим рецептором восприимчивой клетки.

21) Иммунологические методы в вирусологических исследованиях.

Серологические реакции различаются по способности выявлять отдельные классы антител. Реакция агглютинации, например, хорошо выявляет lgM-антитела, но менее чувствительна для определения lgG-антител. Реакции связывания комплемента и гемолиза, которые требуют участия комплемента, не выявляют антитела, не присоединяющие комплемент, например lgA-антитела и lgE-антитела. В реакции нейтрализации вирусов участвуют лишь антитела, направленные против антигенных детерминант поверхности вириона, связанных с патогенностью. Чувствительность И. м. и. превосходит все другие методы исследования антигенов и антител, в частности радиоиммунный и иммуноферментный анализы позволяют улавливать присутствие белка в количествах, измеряемых в нанограммах и даже в пикограммах. С помощью И. м. и. определяют группу и проверяют безопасность крови (гепатит В и ВИЧ-инфекция). При трансплантации тканей и органов И. м. и. позволяют определять совместимость тканей и тестировать методы подавления несовместимости. В судебной медицине используют реакцию Кастеллани для определения видовой специфичности белка и реакцию агглютинации для определения группы крови.

Иммунологические методы широко применяют в лабораторной диагностике инфекционных болезней. Этиологию заболевания устанавливают также на основании прироста антител к возбудителю в сыворотке крови реконвалесцента по сравнению с пробой, взятой в первые дни болезни. На основе И. м. и. изучают иммунитет населения по отношению к массовым инфекциям, например к гриппу, а также оценивают эффективность профилактических прививок.

В зависимости от их механизма и учета результатов И. м. и. можно подразделить на реакции, основанные на феномене агглютинации; реакции, основанные на феномене преципитации; реакции с участием комплемента; реакция нейтрализации; реакции с использованием химических и физических методов.

Реакции, основанные на феномене агглютинации. Агглютинация представляет собой склеивание клеток или отдельных частичек - носителей антигена с помощью иммунной сыворотки к этому антигену.

Реакция агглютинации бактерий с использованием соответствующей антибактериальной сыворотки относится к наиболее простым серологическим реакциям. Взвесь бактерий добавляют к различным разведениям испытуемой сыворотки крови и через определенное время контакта при t°37° регистрируют, при каком наивысшем разведении сыворотки крови происходит агглютинация. Реакцию агглютинации бактерий используют для диагностики многих инфекционных болезней: бруцеллеза, туляремии, брюшного тифа и паратифов, бациллярной дизентерии, сыпного тифа.

Реакция пассивной, или непрямой, гемагглютинации (РПГА, РНГА). В ней используют эритроциты или нейтральные синтетические материалы (например, частицы латекса), на поверхности которых сорбированы антигены (бактериальные, вирусные, тканевые) или антитела. Их агглютинация происходит при добавлении соответствующих сывороток или антигенов.

Реакцию пассивной гемагглютинации используют для диагностики заболеваний, вызванных бактериями (брюшной тиф и паратифы, дизентерия, бруцеллез, чума, холера и др.), простейшими (малярия) и вирусами (грипп, аденовирусные инфекции, вирусный гепатит В, корь, клещевой энцефалит, крымская геморрагическая лихорадка и др.), а также для определения некоторых гормонов, выявления повышенной чувствительности больного к лекарственным препаратам и гормонам, например пенициллину и инсулину.

Реакция торможения гемагглютинации (РТГА) основана на феномене предотвращения (торможении) иммунной сыворотки гемагглютинации эритроцитов вирусами, используется для выявления и титрования противовирусных антител. Она служит основным методом серодиагностики гриппа, кори, краснухи, эпидемического паротита, клещевого энцефалита и других вирусных инфекций, возбудители которых обладают гемагглютинирующими свойствами. например, для серодиагностики клещевого энцефалита в лунки панели разливают двукратные разведения сыворотки больного на щелочном боратном буферном растворе. Затем добавляют определенное количество, обычно 8 АЕ (агглютинирующих единиц), антигена клещевого энцефалита и после 18 ч экспозиции при t°4° вносят взвесь гусиных эритроцитов, приготовленную на кислом фосфатно-буферном растворе. Если в сыворотке крови больного есть антитела к вирусу клещевого энцефалита, то антиген нейтрализуется и агглютинация эритроцитов не происходит.

Реакции, основанные на феномене преципитации. Преципитация происходит в результате взаимодействия антител с растворимыми антигенами. Простейшим примером реакции преципитации является образование в пробирке непрозрачной полосы преципитации на границе наслоения антигена на антитело. Широко применяют различные разновидности реакции преципитации в полужидких гелях агара или агарозы (метод двойной иммунодиффузии по Оухтерлоню, метод радиальной иммунодиффузии, иммуноэлетрофорез), которые носят одновременно качественный и количественный характер. В результате свободной диффузии в геле антигенов и антител в зоне оптимального их соотношения образуются специфические комплексы - полосы преципитации, которые выявляют визуально или при окрашивании. Особенностью метода является то, что каждая пара антиген - антитело формирует индивидуальную полосу преципитации, и реакция не зависит от наличия в исследуемой системе других антигенов и антител.

Реакции с участием комплемента, в качестве которого используют свежую сыворотку крови морской свинки, основаны на способности субкомпонента комплемента Clq и затем других компонентов комплемента присоединяться к иммунным комплексам.

Реакция связывания комплемента (РСК) позволяет титровать антигены или антитела по степени фиксации комплемента комплексом антиген - антитело. Эта реакция состоит из двух фаз: взаимодействия антигена с испытуемой сывороткой крови (исследуемая система) и взаимодействия гемолитической сыворотки с эритроцитами барана (индикаторная система). При положительной реакции в исследуемой системе происходит связывание комплемента, и тогда при добавлении сенсибилизированных антителами эритроцитов гемолиза не наблюдается. Реакцию применяют для серодиагностики сифилиса (реакция Вассермана), вирусных и бактериальных инфекций.

Реакция нейтрализации основана на способности антител нейтрализовать некоторые специфические функции макромолекулярных или растворимых антигенов, например активность ферментов, токсины бактерий, болезнетворность вирусов. Реакцию нейтрализации токсинов можно оценивать по биологическому эффекту, так, например, титруют антистолбнячные и антиботулинические сыворотки. Смесь токсина с антисывороткой, введенная животным, не вызывает их гибели. Различные варианты реакции нейтрализации применяют в вирусологии. При смешивании вирусов с соответствующей антисывороткой и введении этой смеси животным или в клеточные культуры патогенность вирусов нейтрализуется и при этом животные не заболевают, а клетки культур не подвергаются деструкции.

Реакции с использованием химических и физических меток. Иммунофлюоресценция заключается в использовании меченных флюорохромом антител, точнее, иммуноглобулиновой фракции антител lgG. Меченное флюорохромом антитело образует с антигеном комплекс антиген - антитело, который становится доступным наблюдению под микроскопом в УФ-лучах, возбуждающих свечение флюорохрома. Реакцию прямой иммунофлюоресценции используют для изучения клеточных антигенов, выявления вируса в зараженных клетках и обнаружения бактерий и риккетсий в мазках.

Более широко применяют метод непрямой иммунофлюоресценции. основанный на выявлении комплекса антиген - антитело с помощью люминесцирующей иммунной сыворотки против lgG-антител и используемой для обнаружения не только антигенов, но и титрования антител.

Иммуноферментные, или энзим-иммунологические, методы основаны на использовании антител, конъюгированных с ферментами, главным образом пероксидазой хрена или щелочной фосфатазой. Подобно иммунофлюоресценции иммуноферментный метод применяют для обнаружения антигенов в клетках или титрования антител на антигенсодержащих клетках.

Радиоиммунологический метод основан на применении радиоизотопной метки антигенов или антител. Является наиболее чувствительным методом определения антигенов и антител, используется для определения гормонов, лекарственных веществ и антибиотиков, для диагностики бактериальных, вирусных, риккетсиозных, протозойных заболеваний, исследования белков крови, тканевых антигенов.

Иммуноблоттинг применяют для выявления антител к отдельным антигенам или «узнавания» антигенов по известным сывороткам. Метод состоит из 3 этапов: разделения биологических макромолекул (например, вируса) на отдельные белки с помощью электрофореза в полиакриламидном геле; переноса разделенных белков из геля на твердую подложку (блот) путем наложения пластины полиакриламидного геля на активированную бумагу или нитроцеллюлозу (электроблоттанг); выявления на подложке искомых белков с помощью прямой или непрямой иммуноферментной реакции. Как диагностический метод иммуноблоттинг используют при ВИЧ-инфекции. Диагностическую ценность имеет обнаружение антител к одному из белков внешней оболочки вируса.

22) Типы симметрии вирусов (кубический, спиральный, смешанный). Взаимодействие белков и нуклеиновых кислот при упаковке геномов вирусов.

В зависимости от взаимодействия капсида с нуклеиновой кислотой частицы вирусов могут быть подразделены на несколько типов симметрии:

1). Кубический тип симметрии .

Кубические капсиды представляют собой икосайдеры обладающий примерно 20-ю треугольными поверхностями и 12 вершинами. Они формируют напоминающую сферическое образование структуру, но на самом деле это многогранник. В ряде случаев к вершинам таких икосаэдрических многогранников прикрепляются особые липопротеиновые образования именуемые шипами. Роль этих шипов предположительно сводится к взаимодействию вирионов или вирусных частиц с соответствующими участками чувствительных к ним клеток хозяев. При кубической симметрии вирусная нуклеиновая кислота уложена плотно (свернута в клубок), а белковые молекулы окружают ее, образуя многогранник (икосаэдр). Икосаэдр – многогранник с двадцатью треугольными гранями, имеющий кубическую симметрию и приблизительно сферическую форму. К икосаэдрическим вирусам относятся вирус простого герпеса, реовирусы и др.

2). Спиральный тип симметрии . Спиральные капсиды устроены несколько проще. Т.е. капсомеры составляющие капсид покрывают спиральную НК и формируют тоже достаточно стабильную белковую оболочку этих вирусов. И при использовании высокоразрешающих электронных микроскопов и соответствующих методов приготовления препарата можно видеть спирализованные структуры на вирусах. При спиральной симметрии капсида вирусная нуклеиновая кислота образует спиральную (или винтообразную) фигуру, полую внутри, и субъединицы белка (капсомеры) укладываются вокруг нее тоже по спирали (трубчатый капсид). Примером вируса со спиральной симметрией капсида является вирус табачной мозаики, который имеет палочковидную форму, а его длина составляет 300 нм с диаметром 15 нм. В состав вирусной частицы входит одна молекула РНК размером около 6000 нуклеотидов. Капсид состоит из 2000 идентичных субъединиц белка, уложенных по спирали.

3). Смешанный или сложный тип симметрии . Как правило, такой тип симметрии выявляется главным образом среди бактериальных вирусов. И классическими примерами служат те фаги, кишечной палочки или умеренные фаги. Это сложные образования, имеющие головку с внутренним нуклеиновым содержимым, различного рода придатки, хвостовой отросток, разной степени сложности устройства. И каждый компонент таких частиц наделён определённой функцией, реализующейся в процессе взаимодействия вируса с клеткой. Иными словами сложный тип симметрии представляет собой сочетание кубической симметрии, головка – это многогранник икосайдер и палочковидные образования – это хвостовые отростки. Хотя среди вирусов бактерий существуют тоже довольно просто организованные вирионы которые являются примитивными нуклеокапсидами, сферической или кубической формы. Наиболее сложно устроенными являются вирусы бактерий, по сравнению с вирусами растений и вирусами животных.


24)Взаимодействие фага с клеткой. Вирулентные и умеренные фаги.

Адсорбция.

Взаимодействие начинается с прикрепления вирусных частиц к клеточной поверхности. Процесс становится возможным при наличии соответствующих рецепторов на поверхности клетки и анти-рецепторов на поверхности вирусной частицы.

Вирусы используют рецепторы клетки, предназначенные для транспорта необходимых веществ: питательных частиц, гормонов, факторов роста и т.п.

Рецепторы: белки, углеводный компонент белков и липидов, липиды. Специфические рецепторы определяют дальнейшую судьбу вирусной частицы (транспорт, доставка в участки цитоплазмы или ядра). Вирус может прикрепляться и к неспецифическим рецепторам и даже проникать в клетку. Однако такой процесс не вызывает развития инфекции.

Вначале происходит образование единичной связи антирецептрора и рецептора. Такая связь непрочная и может разрываться. Для образования необратимой адсорбции необходимо мультивалентное прикрепление. Стабильное связывание происходит благодаря свободному перемещению молекул рецепторов в мембране. При взаимодействии вируса с клеткой наблюдается увеличение текучести липидов, и формирование рецепторных полей в области взаимодействия вируса и клетки. Рецепторы ряда вирусов могут быть представлены лишь в ограниченном наборе клеток-хозяев. Этим и определяется чувствительность организма к данному вирусу. Таким образом, вирусная ДНК и РНК обладает способностью инфицировать более широкий круг клеток-хозяев.

Антирецепторы могут находиться в составе уникальных вирусных органелл: структуры отростка у Т-бактериофагов, фибры у аденовирусов, шипы на поверхности вирусных мембран, корона у коронавирусов.

Проникновение.

2 механизма – рецепторный эндоцитоз и слияние мембран.

Рецепторный эндоцитоз:

Обычный механизм поступления в клетку питательных и регуляторных веществ. Происходит в специализированных участках - где имеются специальные ямки, покрытые клатрином, на дне ямки располагаются специфические рецепторы. Ямки обеспечивают быструю инвагинацию и образование покрытых клатрином вакуолей (с момента адсорбции проходит не более 10 мин, за одну минуту может образоваться до 2000 вакуолей). Вакуоли сливаются с более крупными цитоплазматическими вакуолями, образуя рецепторосомы (уже не содержат клатрин), которые в свою очередь сливаются с лизосомами.

Слияние вирусной и клеточной мембран:

У оболочечных вирусов слияние обусловлено точечными взаимодействиями вирусного белка с липидами клеточной мембраны, в результате чего вирусная липопротеидная оболочка интегрирует с клеточной мембраной. У безоболочечных вирусов один из поверхностных белков также взаимодействует с липидами клеточных мембран и внутренний компонент проходит через мембрану (у парамиксовирусов – F-белок, у ортомиксовирусов – HA2 гемагглютинирующая субъединица). На конформацию поверхностных белков влияет рН.

Раздевание.

При этом процессе исчезает инфекционная активность, часто появляется чувствительность к нуклеазам, возникает устойчивость к антителам. Конечный продукт раздевания – нуклеиновые кислоты, связанные с внутренним вирусным белком. Стадия раздевания является так же лимитирующей возможность инфекции (вирусы способны раздеваться не в каждой клетке). Раздевание происходит в специализированных участках клетки: лизосомы, аппарат Гольджи, околоядерном пространстве.

Раздевание проходит в результате ряда реакций. Например, у пикорнавирусов раздевание идёт с образованием промежуточных субвирусных частиц с размерами от 156 до 12S. У аденовирусов в цитоплазме и ядерных порах и имеет как минимум 3 стадии:

Образование субвирусных частиц с большей плотностью, чем вирионы;

Образование сердцевин, в которых отсутствует 3 вирусных белка;

Образование ДНК-белкового комплекса, в котором ДНК ковалетно соединена с терминальным белком.

Характеристика вирулентных и умеренных фагов.

При заражении бактерии фагом имеет место так называемая литическая инфекция т.е инфекция завершающаяся лизисом клетки хозяина, но это свойственно только так называемым вирулентным фагам, взаимодействие которых с клеткой приводит к гибели клетки и формированию фагового потомства.

При этом различают следующие этапы по взаимодействиям фага с клеткой: смешивание фага с культурой клеток (множественность инфецирования 1 фаг на 10 клеток), причём концентрация должна быть достаточно высокой, с тем чтобы имелась возможность контактирования фагов с клетками. Чтобы не было повторного заражения – после инфицирования в течение 5 минут максимум, когда фаги адсорбируются – разводится эта смесь клеток с фагом. Выделяется латентный период в течение, которого количество фага не увеличивается, затем очень короткий период выхода, когда резко повышается количество фаговых частиц, когда клетка лизируется и высвобождается фаговое потомство и потом кол-во фагов остаётся на одном уровне, потому что повторного заражения не происходит. На основании этой кривой можно выделить вот эти фазы: вегетативный период «роста» (латентный период), период выхода и рассчитать урожайность фага на 1-у инфицированную клетку. На протяжении латентного периода не удается обнаружить в бактериях ничего похожего на фаговые частицы и не удаётся выделить из таких клеток находящихся в латентном периоде инфекционное начало. Только зрелые фаговые частицы способны вызвать заражение бактерий. Таким образом, вирулентные фаги всегда вызывают гибель бактерий и продуцируют инфекцию, выявляющуюся в продуцировании новых вирусных частиц способных инфицировать следующие и другие чувствительные к ним клетки.

В отличие от вирулентных, заражение умеренными фагам не приводит к лизису бактериальных клеток, а реализуется становление особого состояния сосуществования фага с бактериальной клеткой. Это сосуществование выражается в том, что некое начало фага присутствует в бактериальной клетке без всяких неблагоприятных условий для нее и сохраняется из поколения в поколение. На определенных этапах такого сосуществования фаг активируется в клетке и переходит в состояние литического цикла развития, вызывая лизис клетки и высвобождения фагового потомства. Такие фаги получили название лизогенезирующих или умеренных фагов, а состояние умеренного существования с фагом лизогенией, а бактерии, которые содержат в себе такой скрытый фаг - лизогенных бактерий. Термин лизогенные бактерии происходил из того, что когда-то были обнаружены культуры, у которых спонтанно появлялся фаг, и этот бактериафаг стал рассматриваться как загрязнение культуры, то есть в культуру попадает бактериальный вирус, и такие культуры получили название лизогенных, то есть они генерируют лизис.

занятие № 2 7

ТЕМА: ВЗАИМОДЕЙСТВИЕ ВИРУСОВ С ЧУВСТВИТЕЛЬНЫМИ КЛЕТКАМИ. КУЛЬТИВИРОВАНИЕ. СПОСОБЫ ИНДИКАЦИИ и идентификации. ПРОТИВОВИРУСНЫЙ ИММУНИТЕТ.

ПЕРЕЧЕНЬ КОНТРОЛЬНЫХ ВОПРОСОВ

1. Вирусы, природа и происхождение. История открытия. Этапы развития вирусологии. Понятие о вирионе, его структура. Химический состав и свойства вирусов.

2. Принципы классификации вирусов - критерии. Семейства РНК и ДНК-содержащих вирусов (контрольная).

3. Тропизм вирусов. Взаимодействие вирусов с чувствительными клетками - фазы.

4. Культивирование вирусов. Индикация и идентификация вирусов при культивировании их на клеточных культурах и курином эмбрионе. Клеточные культуры, линии клеток, получение, условия культивирования.

5. Классификация вирусных инфекций: а) на уровне клетки; б) на уровне организма.

6. Методы лабораторной диагностики вирусных инфекций. Прямые методы исследования клинического материала (обнаружение вирусов, вирусных антигенов или вирусных НК). Вирусологический метод диагностики. Серодиагностика вирусных инфекций.

7. Противовирусный иммунитет - факторы. Видовая резистентность. Неспецифические факторы антивирусной защиты (ингибиторы, интерферон, комплемент, фагоцитоз). Приобретенный иммунитет (гуморальные и клеточные механизмы).

8. Принципы специфической профилактики и терапии вирусных инфекций: вакцины, иммунные сыворотки (иммуноглобулины), интерфероны, этиотропная химиотерапия.

ЛАБОРАТОРНАЯ РАБОТА

ЛАБОРАТОРНАЯ ДИАГНОСТИКА ВИРУСНЫХ ИНФЕКЦИЙ

1. Экспресс-диагностика

Выявление антигена вируса в исследуемом материале с помощью диагностических противовирусных сывороток в реакциях: РИФ, ИФА, РИА, встречного иммуноэлектрофореза (ВИЭФ), реакции пассивной гемагглютинации (РПГА), реакции торможения гемагглютинации (РТГА) и др.;

2. Вирусологический метод

Культивирование вирусов в культурах клеток, куриных эмбрионах, лабораторных животных

3. Серодиагностика

Выявление антител против вируса в сыворотке крови пациента с помощью диагностикумов, содержащих вирусы или их антигены в реакциях: ИФА, непрямой РИФ или в парных сыворотках в РН, РТГА, РПГА, РСК.

1. Для экспресс-диагностики используют:

а) определение вирусного антигена в исследуемом материале с помощью диагностических противовирусных сывороток в реакциях: РИФ, ИФА, РИА, встречного иммуноэлектрофореза (ВИЭФ), реакции пассивной гемагглютинации (РПГА), реакции торможения гемагглютинации (РТГА) и др.;

в) обнаружение вирионов в патологическом материале с помощью электронной микроскопии или ИЭМ.

г) обнаружение геномов вируса молекулярно-генетическими методами: ПЦР; молекулярная гибридизация нуклеиновых кислот с помощью меченых зондов.

2. Вирусологический метод

Основные этапы:

1. Забор исследуемого материала.

2.Выбор по принципу цитотропизма и получение чувствительной тест-системы, определение ее жизнеспособности.

3. Заражение выбранной системы.

4.Индикация вируса на основании обнаружения его нуклеиновой кис­лоты, антигенов, гемагглютинина, ЦПД, включений.

5. Идентификация и титрование вируса проводится на основании:

а) определения антигенов вируса с помощью иммунологических реакций (РИФ, ИФА, РПГА, РСК, РН, ВИЭФ и др.); б) патогистологического исследования органов и тканей; в) ЦПД; г) клинических симптомов, биологических проб (кератоконьюнктивальная и др.).

Вирусологический метод (схема)

Исследуемый материал (фекалии, носоглоточные смывы, секционный материал и др.)

Обработка антибиотиками для подавления бактериальной и грибковой

микрофлоры, центрифугирование, фильтрация

Заражение серии

Куриных эмбрионов

Культур клеток

Животных

Индикация вирусов по следующим феноменам

Отставание в развитии,

гибель, изменение

оболочек эмбриона, РГА

ЦПД, образование бляшек, РИФ, РГадс, интерференция

Заболевание, гибель,

гистологические изменения

в тканях, включения

Титрование выделенного вируса; выбор рабочей дозы .

Титр вируса - максимальное разведение вируссодержащего материала, в котором еще наблюдается ожидаемый эффект (ЦПД, РГА, гибель животного).

Идентификация выделенного вируса в реакциях нейтрализации, РТГадс, РСК, подавление бляшкообразования и др. с диагностическими сыворотками. Вид (тип) вируса определяется по нейтрализации специфического эффекта вируса соответствующей иммунной сыворотокой.

Примечание: титрование и идентификация вируса проводится с использованием одного и того же феномена.

Культивирование вирусов

Курсовая работа

"Методы клинической вирусологии"


Введение

Лабораторную диагностику вирусных инфекций проводят в основном с помощью электронной микроскопии, чувствительных культур клеток и иммунологическими методами. Как правило, для постановки диагноза выбирают какой-либо один метод в зависимости от стадии вирусной инфекции. Так, например, все три подхода могут оказаться полезными при диагностике ветряной оспы, однако успешное применение микроскопии и метода культуры клеток зависит от возможности сбора удовлетворительных образцов на относительно раннем этапе заболевания.

В большой степени успех вирусной диагностики зависит и от качества полученных образцов. По этой причине сами сотрудники лаборатории должны принимать непосредственное участие в сборе необходимых образцов. Характеристики образцов, а также способы их доставки в лабораторию описаны Леннетом, Шмидтом, Кристом и др.

Большинство реактивов и инструментов, используемых в лабораторной диагностике, можно приобрести у различных фирм. В большинстве случаев один и тот же реактив выпускается одновременно несколькими фирмами. По этой причине мы не указывали отдельные фирмы, кроме тех случаев, когда реактив поставляется только одной фирмой. Во всех остальных случаях следует обратиться к общему перечню поставщиков, указанных в табл. 1.

Мы не ставили своей целью всестороннее описание всех имеющихся в настоящее время методов диагностики вирусных инфекций человека. Прежде всего мы охарактеризовали основные методы. По мере накопления опыта самостоятельной работы эти основные методы можно будет использовать для решения более сложных задач.


1. Электронная микроскопия

Для электронно-микроскопической диагностики вирусных инфекций можно использовать тонкие срезы пораженной ткани. Чаще всего материалом для электронной микроскопии служат фекалии или жидкость

Таблица 1. Список фирм, поставляющих реактивы и оборудование

Flow Laboratories: Gibco Europe: Tissue Culture Services: Wellcome Diagnostics: Northumbria Biologicals: Oxoid: Dynatech Laboratories Ltd.: Sterilin Ltd.: Abbott Laboratories Ltd.: Woodcock Hill, Harefield Road, Rickmansworth, Hertfordshire WD3 1PQ, UK Unit 4, Cowley Mill Trading Estate, Longbridge Way, Uxbridge, Middlesex UB8 2YG, UK 10 Henry Road, Slough, Berkshire SL1 2QL, UK Temple Hill, DartfordT Kent DAI 5BR, UK South Nelson Industrial Estate, Cramlington, Northumberland NE23 9HL, UK Wade Road, Basingstoke, Hampshire RG24 OPW, UK Daux Road, Ballingshurst, Sussex RH14 9SJ, UK 43/45 Broad Street, Teddington, Middlesex TW11 8QZ, UK Brighton Hill Parade, Basingstoke, Hampshire RG22 4EH, UK

везикул, характеризующих некоторые болезни, например ветряную оспу. При анализе такого материала вирусы можно обнаружить с помощью негативного окрашивания, приводящего к очерчиванию компонентов вириона электронно-плотным материалом. Метод эффективен при высокой концентрации вируса в исследуемых образцах, как, например, в фекалиях или везикулярной жидкости. В тех случаях, когда содержание вирусных частиц в образцах невелико, вероятность обнаружения вируса можно увеличить, концентрируя вирус ультрацентрифугированием или агрегируя его специфическими антителами. Последний метод удобен и для идентификации вирусов. Здесь мы опишем электронно-микроскопический метод диагностики ротавирусной инфекции и метод иммуноэлектронной микроскопии на примере обнаружения специфических антител к парвовирусам. Более подробно методы электронной микроскопии изложены Филдом.


2.1 Прямое электронно-микроскопическое исследование фекалий

1. Конец пастеровской пипетки погружают в фекалии и набирают достаточное количество материала для получения мазка размером 1 см.

2. Ресуспендируют фекальный мазок в электронно-микроскопической краске для негативного контрастирования до получения полупрозрачной суспензии. Краска для негативного контрастирования представляет собой 2%-ный раствор фосфорно-вольфрамовой кислоты в дистиллированной воде.

3. Для получения электронно-микроскопического препарата капельку суспензии помещают на сетку для электронного микроскопирования, покрытую углеродно-формваровой пленкой. Во время этой операции сетку держат парой тонких пинцетов.

4. Препарат оставляют на воздухе на 30 с.

5. Излишки жидкости удаляют, прикасаясь к краю стекла фильтровальной бумагой.

6. Препарат высушивают на воздухе.

7. В случае необходимости жизнеспособный вирус инактиви-руют, облучая обе стороны сетки ультрафиолетом с интенсивностью 440 000 мкВт-с/см 2 . При этом используют коротковолновую ультрафиолетовую лампу с фильтром. Лампа должна находиться на расстоянии 15 см от сетки; время облучения каждой стороны - 5 мин.

8. Вирионы ротавирусов можно охарактеризовать под трансмиссионным электронным микроскопом с увеличением от 30 000 до 50 000.

2.2 Иммуноэлектронная микроскопия

Описанный ниже метод иммуноэлектронной микроскопии представляет собой только один из множества подобных иммунологических методов. Для исследования вирусоспецифических антител, кроме того, используют метод, предполагающий связывание с микроскопической сеткой белка А. Рабочую концентрацию антивирусных антител определяют методом проб и ошибок в диапазоне от 1/10 до 1/1000. Указанная нами концентрация, как правило, используется в рутинной работе. Для получения оптимальных результатов взаимодействия антител с вирусом таким же образом титруют сыворотку, содержащую парвовирус.

1. 10 мкл антисыворотки к парвовирусу человека в 100 раз разводят PBS. Раствор нагревают в водяной бане до 56°С.

2. Обычным способом расплавляют 10 мл 2%-ной агарозы в PBS и охлаждают до 56 °С в водяной бане.

3. При 56 °С смешивают 1 мл разведенной антисыворотки с 1 мл 2%-ной агарозы.

4. Переносят по 200 мкл полученной смеси в две лунки 96-луночного планшета для микротитрования.

5. Агарозе дают застыть при комнатной температуре. Планшет можно хранить при 4°С в течение нескольких недель, если заклеить его клейкой лентой.

6. В лунку, содержащую смесь агарозы с антисывороткой, вносят 10 мкл сыворотки, содержащей парвовирус.

7. Сетку для электронной микроскопии с заранее приготовленным углеродно-формваровым покрытием кладут менее блестящей стороной на каплю сыворотки.

8. Сетку выдерживают 2 ч при 37 °С во влажной камере.

9. Тонким пинцетом достают сетку и наносят каплю 2%-ной фосфорно-вольфрамовой кислоты на ту поверхность сетки, которая находилась в контакте с сывороткой.

10. Через 30 с отмывают избыток краски, высушивают препарат и инактивируют вирус.

Агрегированные вирусные частицы исследуют под трансмиссионным электронным микроскопом при увеличении от 30000 до 50000.


3. Идентификация вирусных антигенов

Вирусы, находящиеся в тканях или тканевых жидкостях, можно идентифицировать по вирусоспецифическим белкам с помощью реакции антиген - антитело. Продукт реакции антиген - антитело тестируют по метке, которую вводят либо непосредственно в антивирусные антитела, либо в антитела, направленные против вирусоспецифических антител. Антитела можно пометить флуоресцеином, радиоактивным иодом или ферментом, расщепляющим субстрат с изменением окраски. Кроме того, для идентификации вируса используют реакцию гемагглютинации. В повседневной практике описанные методы применяют главным образом для обнаружения в крови антигенов вируса гепатита В и поиска антигенов разных вирусов, вызывающих различные респираторные заболевания.

В настоящее время многими фирмами выпускаются эритроцитарные, радиоактивные и ферментативные диагностикумы, в том числе для обнаружения вируса гепатита В. Мы не считаем целесообразным излагать методы работы с указанными диагностикумами: вполне достаточно следовать прилагаемым инструкциям. Ниже мы остановимся на иммунофлуоресцентном методе идентификации респираторно-синцитиального вируса в носоглоточных выделениях.

3.1 Идентификация респираторно-синцитиального вируса в носоглоточных выделениях методом иммунофлуоресценции

Метод получения препаратов носоглоточных выделений описан Гарднером и Мак-Квилином. В лабораторных условиях эта операция выполняется в два этапа. Сначала готовят мазок из носоглоточной слизи на предметном стекле. Полученные мазки можно хранить в фиксированном состоянии при -20 °С в течение многих месяцев. На втором этапе окрашивают мазки для выявления антигена респираторно-синцитиального вируса. Для этой цели используют метод непрямой иммунофлуоресценции.

3.1.1 Приготовление препаратов носоглоточных выделений

1. Слизь со специальных щипцов смывают 1-2 мл PBS и переносят в центрифужную пробирку.

2. Центрифугируют 10 мин при 1500 об/мин в настольной центрифуге.

3. Надосадочную жидкость сливают.

4. Осадок клеток осторожно ресуспендируют в 2-3 мл PBS до получения гомогенной суспензии. Для этого используют ши-рокогорлую пастеровскую пипетку.

5. Полученную суспензию переносят в пробирку.

6. К суспензии добавляют еще 2-4 мл PBS и перемешивают пипетированием. Крупные сгустки слизи удаляют.

7. Центрифугируют 10 мин при 1500 об/мин в настольной центрифуге.

8. Супернатант сливают, осадок ресуспендируют в таком объеме PBS, чтобы полученная суспензия легко отделялась от стенок пробирки.

9. Полученную суспензию наносят на размеченное предметное стекло.

10. Стекло подсушивают на воздухе.

Фиксируют в ацетоне 10 мин при 4°С.

12. После фиксации стекло опять подсушивают на воздухе.

13. Полученные препараты окрашивают немедленно либо хранят при -20 °С.

3.1.2. Методика окрашивания

1. Распечатывают и разводят в PBS коммерческую антисыворотку против РСВ до рекомендованной рабочей концентрации.

2. Пастеровской пипеткой наносят одну каплю антисыворотки на приготовленный препарат.

3. Препарат помещают во влажную камеру.

4. Препарат инкубируют 30 мин при 37 °С.

5. Образцы осторожно отмывают PBS от избытка антител в специальном резервуаре.

6. Отмывку образцов проводят в трех сменах PBS по 10 мин в каждой.

7. Образцы высушивают, удаляют избыток PBS фильтровальной бумагой и высушивают на воздухе.

ВИРУСОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ - исследования, проводимые с целью диагностики вирусных инфекций, изучения соответствующих возбудителей, их распространения в природе, а также при производстве вирусных препаратов. В вирусологических лабораториях (см.) мед. профиля изучают как вирусы человека, так в ряде случаев и вирусы животных (напр., проводят диагностику бешенства у собак, обследование животных, используемых для производства вирусных препаратов). Методы исследования тех и других сходны.

Одним из основных этапов В. и. является выделение вирусов. При выделении вирусов от людей используют кровь, различные секреты и экскреты, кусочки органов. Наиболее часто кровь исследуют при арбовирусных заболеваниях. Используется цельная дефибринированная или Гемолизированная кровь, отдельные ее элементы или сгустки (на поздних стадиях заболевания). Вирусы бешенства, эпид, паротита, простого герпеса могут быть обнаружены в слюне. Носоглоточные смывы служат для выделения возбудителей гриппа, кори, пситтакоза, риновирусов, респираторно-синцитиального вируса, аденовирусов. В смывах с конъюнктивы также обнаруживаются аденовирусы. Смыв берут путем полоскания носа и глотки (отдельно) и промывания конъюнктивы изотоническим раствором хлорида натрия. Можно протирать носовые ходы и заднюю стенку глотки тампонами, смоченными бульоном. Нестерильный материал обрабатывают антибиотиками (по 1000 ЕД пенициллина и стрептомицина на 1 мл) в течение 30 мин. Из фекалий выделяют различные энтеровирусы, адено- и реовирусы. Пробы разводят 1:10 фосфатным буфером, центрифугируют дважды по 20 мин. при 8000 об I мин. Антибиотики прибавляют, как указано выше. Реже для В. и. берут содержимое пустул (при оспе, ветрянке, герпесе) и пунктаты органов (при венерической лимфогранулеме). Секционный материал следует брать как можно скорее после гибели организма. Его хранят до момента исследования при t°-20° и ниже. Для проведения В. и. ткань измельчают (растирают) и готовят 10-20% взвесь на изотоническом растворе хлорида натрия или питательной среде для клеточных культур. Ее центрифугируют 20 мин. при 1500 об/мин; надосадочную жидкость используют для дальнейшего исследования.

С целью выделения вирусов заражают лабораторных животных, эмбрионы птиц, клеточные и тканевые культуры. Животные оказываются пригодными в том случае, если вирус вызывает у них четкие клинические симптомы заболевания или патологоанатомические изменения (напр., параличи, пневмонию и т. п.). От тропизма вируса зависит эффективность того или иного пути введения материала. Широко применяют заражение под кожу, внутрибрюшинно и внутривенно. Нейротропные вирусы выявляют при заражении животных в полушария головного мозга (арбовирусы, вирус бешенства и др.), зрительный бугор (вирус полиомиелита в опытах на обезьянах), спинной мозг. Вирусы оспы и герпеса можно обнаружить путем нанесения материала кроликам на скарифицированную роговицу. Некоторые вирусы легко выявить при инокуляции в переднюю камеру глаза (напр., вирус гепатита собак в опыте на щенках). Для изучения возбудителей респираторных инфекций обычно применяют интраназальное заражение животных (закапывание материала в нос наркотизированным животным или введение его в виде аэрозоля в специальной камере). В пищеварительный тракт материал вводят с пищей или через рот тупой иглой. При изучении некоторых онкогенных вирусов применяют метод заражения золотистых хомячков в слизистую оболочку защечных мешков.

Ко многим вирусам новорожденные животные и сосунки восприимчивее половозрелых особей. Мышей-сосунков широко используют для выделения арбовирусов и вирусов Коксаки (после заражения в мозг). Некоторые аденовирусы способны индуцировать опухоли при подкожном заражении новорожденных золотистых хомячков. Изучение ряда вирусов птиц проводят на цыплятах первых дней жизни.

Использование куриных эмбрионов имеет ряд преимуществ. Их недифференцированные ткани обладают широким спектром чувствительности в отношении многих вирусов. О наличии инфекции судят по гибели эмбрионов, появлению изменений (оспин) на хорион-аллантоисной оболочке (рис. 1), накоплению в эмбриональных жидкостях гемагглютининов и комплемент-связывающего вирусного антигена. Заражают эмбрионы на хорионаллантоисную оболочку (в возрасте 11 - 12 дней вирусами группы оспы), в аллантоисную и амниотическую полости (10-11-дневными миксовирусами), желточный мешок (в возрасте 5-6 дней возбудителями пситтакозаорнитоза и др.). Инокуляцию материала эмбрионам в мозг и внутривенно (в сосуды оболочек) производят редко. При любом способе заражения эмбрионы могут быть травмированы, поэтому погибших в первые 24-48 час. из учета исключают.

Для изучения действия на вирусы хим. веществ весьма удобны деэмбрионированные яйца, в которых удален эмбрион, но сохранена хорионаллантоисная оболочка. Внутрь помещают вирус и изучаемое вещество в 20 мл изотонического раствора хлорида натрия. Отверстие в скорлупе закрывают колпачком с трубочкой, через к-рую можно брать пробы для анализа.

При оценке опытов на животных и эмбрионах птиц следует иметь в виду возможность провокации у них латентных инфекций или выделения находящегося в латентном состоянии вируса.

Исключительно широко для выделения и накопления вирусов применяют культуры клеток и тканей (см.). Этими методами можно культивировать большинство известных вирусов (см. Культивирование вирусов). Некоторые из них интенсивно накапливаются уже при первичном заражении культур, для адаптации других требуется несколько пассажей. Размножение большинства вирусов в клеточных культурах сопровождается развитием цитопатического эффекта. По его характеру в известной степени можно судить о принадлежности вирусов к тому или иному роду: пикорнавирусы вызывают округление и сморщивание клеток, аденовирусы - образование округлившимися клетками скоплений в виде виноградных гроздьев, миксовирусы и герпетические вирусы - формирование многоядерных синцитиев. Ряд вирусов культивировать вне организма не удается.

Размножение некоторых вирусов (оспенная группа, миксо- и арбовирусы) можно обнаружить с помощью реакции гемадсорбции, поскольку пораженные клетки приобретают способность адсорбировать эритроциты. Соответствующие эритроциты (человека, обезьяны, морской свинки, курицы) в концентрации 0,4-0,5% помещают на монослой при t° 4° или при комнатной температуре на 20- 30 мин. Эритроциты адсорбируются диффузно по всей культуре (напр., парагриппозными вирусами) или формируют островки (вирусы гриппа, паротита).

О размножении вируса иногда судят путем исследования культуральной жидкости на животных (клещевой энцефалит) или в РСК. Наличие вируса, не обладающего цитопатической активностью, иногда определяют по его способности интерферировать с цитопатогенным вирусом. Так, в культурах клеток эмбрионов кур, инфицированных вирусами лейкозов птиц, подавляется размножение вируса саркомы Рауса. Для обнаружения нецитопатогенных штаммов вирусов диареи крупного рогатого скота и холеры свиней предложен метод END (exaltation of Newcastle disease virus) - суперинфицирование культур вирусом болезни Ньюкасла. При совместном действии обоих вирусов наступает разрушение клеток.

При появлении цитопатических изменений или других признаков размножения вируса культуральную жидкость используют для идентификации вируса или пассажа. Ряд вирусов остается связанным с клетками даже при дегенерации культуры (аденовирусы, вирусы группы оспы), вследствие чего производят замораживание и оттаивание культур перед сбором жидкости. Некоторые герпетические вирусы, напр, вирус болезни Марека у кур, необходимо пересевать вместе с неповрежденными клетками.

Для изучения респираторных корона-вирусов человека и некоторых других используют метод тканевых культур, т. е. заражение культивируемых in vitro тканевых фрагментов. Чаще всего используют ткань трахеи кролика. Размножающийся вирус поражает клетки эндотелия слизистой оболочки, что определяют по прекращению движения ресничек.

Следует учитывать возможность присутствия в культурах тканей и клеток посторонних вирусов. Они могут быть внесены с клетками, если последние взяты из инфицированного организма, попасть из трипсина или сыворотки, использованной для культивирования клеток.

Помимо посева биопсийного или секционного материала на уже выращенные культуры, применяют непосредственное культивирование клеток исследуемого органа после его трипсинизации, что нередко более эффективно в отношении выделения вируса (напр., обнаружение аденовирусов в миндалинах). Используют также методику смешанных культур, когда клетки исследуемого органа выращивают вместе с какими-либо чувствительными к данному вирусу клетками (напр., посев клеток мозга больных подострым склерозирующим панэнцефалитом вместе с клетками почек обезьян или Hela-клетками для выделения вируса кори). Метод смешанных культур является зачастую единственным способом выделения вируса из индуцированных им у животных опухолей, которые не продуцируют активного вируса, однако содержат вирусный геном.

Однослойные клеточные культуры дают возможность получить колонии вируса - бляшки (рис. 2). Как правило, бляшки формируют вирусы, обладающие цитопатической активностью. В то же время этот метод позволяет обнаруживать некоторые нецитопатогенные вирусы (напр., ряд штаммов вируса диареи крупного рогатого скота). Для получения бляшек вирус вносят на клеточный монослой в чашках или плоских флаконах. Множественность заражения, т. е. число вирусных частиц на одну клетку, должна быть небольшой, чтобы образовавшиеся бляшки не сливались. После 30-60 мин. адсорбции наслаивают питательную среду с 1,35 - 1,5% агара и нейтральным красным в конечном разведении 1: 40 000. Культуры в чашках Петри инкубируют в атмосфере с 5-10% углекислоты, а герметически закрытые флаконы - в обычном термостате. Через несколько дней среди прижизненно окрашенных клеток начинают выделяться неокрашенные фокусы из дегенерированных клеток.

Можно на клетки помещать агар без нейтрального красного, а через несколько дней нанести второй слой агара с красителем; бляшки становятся видимыми через несколько часов. Агар иногда содержит сульфаты полисахаридов, которые являются ингибиторами роста вирусов; для их нейтрализации в среду добавляют протамин-сульфат (60 мг на 100 мл). Для получения бляшек ряда вирусов можно использовать в качестве покрытия метилцеллюлозу и другие вещества. Некоторые вирусы (оспы, кори) формируют бляшки и без агарового покрытия. Метод бляшек позволяет провести клональный анализ вирусных штаммов. Для выделения генетически однородных клонов извлекают одну бляшку, к-рую используют для следующего заражения. Обычно клонирование проводят на протяжении трех пассажей.

Метод бляшек пригоден также для определения в зараженной культуре количества клеток, продуцирующих вирус (т. е. число инфекционных центров). Для этого клетки суспендируют, помещают на однослойную культуру чувствительных к вирусу индикаторных клеток и заливают агаром. Вокруг зараженных клеток формируются бляшки.

Для диагностики вирусных инфекций и изучения антигенной структуры вирусов применяется реакция преципитации в геле. Чаще всего с этой целью используют агар. Антигены и специфические антитела, помещенные в агаровый гель на определенном расстоянии, диффундируют и образуют при встрече преципитат в виде белых полос. 0,8-1% агар в изотоническом растворе хлорида натрия или фосфатном буфере помещают в капилляры или наносят слоем на предметные стекла. Антигены предпочтительно иметь очищенные и концентрированные. Ингредиенты реакции вносят на агар в противоположные концы капилляра или в лунки, сделанные в слое агара на стеклах на расстоянии 5-6 мм. Инкубация продолжается 4-20 час.

Значительное число В. и. выполняют с помощью световой и электронной микроскопии. Наиболее крупные вирусы (напр., оспы) после соответствующей обработки (серебрение, окраска викторияблау и др.) могут быть выявлены при обычной световой микроскопии. Этот метод применяют при диагностике оспы путем обследования материала из пустул. Характерным для некоторых инфекций является формирование в клетках телец - включений. Так, в ядрах появляются включения при герпетической и аденовирусной инфекции, в цитоплазме - при оспе (тельца Гуарниери) и бешенстве (тельца Бабеша- Негри). Обнаружение включений имеет значение для диагностики бешенства, оспы, цитомегалии, подострого склерозирующее панэнцефалита и др.

Микроскопию в темном поле (см. Темнопольная микроскопия) и фазово-контрастную микроскопию (см.) используют гл. обр. для изучения динамики изменений в пораженных вирусом клетках. Более широко применяют люминесцентную микроскопию (см.).

Исследуют мазки, отпечатки и выращенные на стеклах однослойные клеточные культуры. Препараты (нативные или фиксированные) чаще всего окрашивают акридином оранжевым. Метод позволяет выявлять крупные вирусы и скопления вирусных компонентов. Образования, содержащие ДНК, светятся ярко-зеленым светом, а содержащие РНК - кирпично-красным. Еще чаще при В. и. производят обработку зараженных клеток флюоресцирующими антителами, что позволяет выявить скопления вирусного антигена. При прямом методе используют иммунный гамма-глобулин, меченный флюоресцентным красителем, напр, флюоресцеин-изотиоцианатом. При непрямом методе препарат обрабатывают обычной иммунной сывороткой какого-либо животного, а затем мечеными антителами против гамма-глобулина этого животного. Препараты просматривают в ультрафиолетовом свете, вирусный антиген обнаруживают по светло-зеленому свечению (см. Иммунофлюоресценция). Метод мазков из носоглотки позволяет проводить раннюю диагностику респираторных вирусных инфекций - гриппозной, парагриппозной, рино- и аденовирусной, респираторно-синцитиальной.

Хим. состав вирусов исследуют общепринятыми хим. методами. Нуклеиновую к-ту обычно получают фенольной экстракцией, реже применяют анионные детергенты - додецил- или лаурилсульфат натрия.

Для идентификации вирусов (см.) в первую очередь следует установить их родовую принадлежность. Для этого необходимо определить размеры и структуру вирусных частиц, вид входящей в их состав нуклеиновой к-ты, наличие липоидной оболочки. Вид нуклеиновой к-ты чаще всего определяют косвенными методами, напр, используя способность бромдезоксиуридина подавлять размножение ДНК-содержащих вирусов. Наличие липоидной оболочки у вируса устанавливают по его чувствительности к действию эфира и хлороформа (имеющие оболочку вирусы инактивируются). Дальнейшую идентификацию проводят с набором иммунных сывороток к известным вирусам, используя различные реакции - нейтрализации, РСК, РТГА и др. Реже производят иммунизацию животных известным вирусом с дальнейшим их заражением неизвестным или наоборот.

Библиография: Лабораторная диагностика вирусных и риккетсиозных заболеваний, под ред. Э. Леннета и Н. Шмидт, пер. с англ., М., 1974, библиогр.; Лурия G. Е. и Д а р н e л л Дж. Е. Общая вирусология, пер. с англ., М., 1970, библиогр.; Методы вирусологии и молекулярной биологии, пер. с англ., М., 1972; П ш e н и ч-н о в В. А., Семенов Б.Ф. иЗезе-р о в Е. Г. Стандартизация методов вирусологических исследований, М., 1974, библиогр.; Руководство по лабораторной диагностике вирусных и риккетсиозных болезней, под ред. П. Ф. Здродовского и М. И. Соколова, М., 1965; Соколов М. И., С и н и ц к и й А. А. и Ремезов П. И. Вирусологические и серологические исследования при вирусных инфекциях, Л., 1972; Virologische Praxis, hrsg, v. G. Starke, Jena, 1968, Bibliogr.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Использование страдательных конструкций Использование страдательных конструкций