Связь химии бав с другими науками. Новости здоровья, медицины и долголетия. Виды биологически активных веществ

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

    Неспецифические метаболиты .

    Специфические метаболиты :

а). тканевые гормоны (парагормоны);

б). истинные гормоны.

Неспецифические метаболиты - продукты метаболизма, вырабатываемые любой клеткой в процессе жизнедеятельности и обладающие биологической активностью (СО 2 , молочная кислота).

Специфические метаболиты - продукты жизнедеятельности, вырабатываемые определенными специализированными видами клеток, обладающие биологической активностью и специфичностью действия:

а) тканевые гормоны - БАВ, вырабатывающиеся специализированными клетками, оказывают эффект в основном на месте выработки.

б) истинные гормоны - вырабатываются железами внутренней секреции

Участие БАВ на различных уровнях нейро-гуморальной регуляции:

I уровень : местная или локальная регуляция Обеспечивается гуморальными факторами: в основном - неспецифическими метаболитами ив меньшей степени - специфическими метаболитами (тканевыми гормонами).

II уровень регуляции : региональный (органный). тканевыми гормонами.

III уровень - межорганное, межсистемное регулирование. Гуморальная регуляция представлена железами внутренней секреции.

IV уровень. Уровень целостного организма. Нервная и гуморальная регуляция соподчинены на этом уровне поведенческой регуляции.

Регулирующее влияние на любом уровне определяется рядом факторов:

    количество биологически активного вещества;

2. количество рецепторов;

3. чувствительность рецепторов.

В свою очередь чувствительность зависит:

а). от функционального состояния клетки;

б). от состояния микросреды (рН, концентрация ионов и т.д.);

в). от длительности воздействия возмущающего фактора.

Местная регуляция (1 уровень регуляции)

Средой является тканевая жидкость. Основные факторы:

    Креаторные связи.

2. Неспецифические метаболиты .

Креаторные связи - обмен между клетками макромолекулами, несущими информацию о клеточных процессах, позволяющую клеткам ткани функционировать содружественно. Это один из наиболее эволюционно старых способов регуляции.

Кейлоны - вещества, обеспечивающие креаторные связи. Представлены простыми белками или гликопротеидами, влияющими на деление клеток и синтез ДНК. Нарушение креаторных связей может лежать в основе ряда заболеваний (опухолевый рост) а также процесса старения.

Неспецифические метаболиты - СО 2 , молочная кислота - действуют в месте образования на соседние группы клеток.

Региональная (органная) регуляция (2 уровень регуляции)

1. неспецифические метаболиты,

2. специфические метаболиты (тканевые гормоны).

Система тканевых гормонов

Вещество

Место выработки

Эффект

Сератонин

слизистая кишечника (энтерохромафинная ткань), головной мозг, тромбоциты

медиатор ЦНС, сосудосуживающий эффект, сосудисто-тромбоци­тар­ный гемостаз

Простаглан-дины

производное арахидоновой и линоленовой кислоты, ткани организма

Сосудодвигательное действие, и дилятаторный и констрикторный эффект, усиливает сокращения матки, усиливает выведение воды и натрия, снижает секрецию ферментов и HCl желудком

Брадикинин

Пептид, плазма крови, слюнные железы, легкие

сосудорасширяющее действие, повышает сосудистую проницаемость

Ацетилхолин

головной мозг, ганглии, нервно-мышечные синапсы

расслабляет гладкую мускулатуру сосудов, урежает сердечные сокращения

Гистамин

производное гистидина, желудок и кишечник, кожа, тучные клетки, базофилы

медиатор болевых рецепторов, расширяет микрососуды, повышает секрецию желез желудка

Эндорфины, энкефалины

головной мозг

обезболивающий и адаптивный эффекты

Гастроинтестинальные гормоны

вырабатываются в различных отделах ЖКТ

участвуют в регуляции процессов секреции, моторики и всасывания

Для того чтобы после напряженных тренировок и соревнований спортсмен смог поддерживать нормальную деятельность организма и работоспособность, необходимо сбалансировать рацион в зависимости от индивидуальных потребностей спортсмена, которые должны соответствовать его возрасту, полу и виду спорта.

Как известно, физиологические потребности организма зависят от постоянно изменяющихся условий жизни спортсмена. Это не позволяет точно сбалансировать рацион.

Однако организм человека обладает регулирующими свойствами и может усваивать из пищи необходимые питательные вещества в том количестве, которое ему требуется в данный момент. Однако эти способы приспособления организма имеют определенные пределы.

Дело в том, что некоторые ценные витамины и незаменимые аминокислоты организм не может синтезировать в процессе обмена, и они могут поступить только с пищей. Если организм их не получает, питание будет несбалансированным, в результате чего и падает работоспособность, возникает угроза возникновения различных заболеваний.

Молоко, нежирные сыры и яйца богаты ценными минеральными веществами, которые защищают и укрепляют иммунную систему.

Для восстановления нормальной работы систем организма вместе с пищей спортсмен должен получать достаточное количество белков, жиров и углеводов, а также биологически активных веществ – витаминов и минеральных солей.

Белки

Эти вещества просто необходимы для спортсменов, поскольку они способствуют наращиванию мышечной массы.

Белки образуются в организме за счет поглощения белков из пищи. По пищевой ценности их невозможно заменить углеводами и жирами. Источниками белков являются продукты животного и растительного происхождения.

Белки состоят из аминокислот, которые подразделяются на заменимые (около 80%) и незаменимые (20%). Заменимые аминокислоты синтезируются в организме, а незаменимые организм синтезировать не может, поэтому они должны поступать вместе с пищей.

Белок – основной пластический материал. В составе скелетных мышц содержится приблизительно 20% белка. Белок входит в состав ферментов, ускоряющих разнообразные реакции и обеспечивающих интенсивность обмена веществ. Также белок содержится в гормонах, которые участвуют в регуляции физиологических процессов. Белок участвует в сократительной деятельности мышц. Помимо этого, белок является составной частью гемоглобина и обеспечивает транспортировку кислорода. Белок крови (фибриноген) участвует в процессе ее свертывания. Сложные белки (нуклеопротеиды) способствуют передаче по наследству качеств организма. Также белок является источником энергии, необходимой для выполнения упражнений: 1 г белка содержит 4,1 ккал.

Как уже упоминалось, мышечная ткань состоит из белка, поэтому культуристы для максимального увеличения размеров мышц вводят в рацион много белка, в 2-3 раза больше рекомендуемой нормы. Следует отметить, что мнение о том, что потребление большого количества белка увеличивает силу и выносливость, ошибочно. Единственным способом увеличения размеров мышц без вреда для здоровья является регулярная тренировка. Если спортсмен потребляет большое количество белковой пищи, это приводит к увеличению массы тела. Поскольку регулярные тренировки способствуют увеличению потребности организма в белке, большинство спортсменов употребляет насыщенную белками пищу с учетом нормы, рассчитанной диетологами.

К продуктам, обогащенным белком, относятся мясо, мясопродукты, рыба, молоко и яйца.

Мясо – источник полноценных белков, жиров, витаминов (В1, В2, В6) и минеральных веществ (калия, натрия, фосфора, железа, магния, цинка, йода). Также в состав мясных продуктов входят азотистые вещества, стимулирующие выделение желудочного сока, и безазотистые экстрактивные вещества, извлекающиеся при варке.

Признаками свежего мяса являются красный цвет, мягкий жир, часто окрашенный в яркие красные оттенки. На разрезе мякоть должна быть плотной, упругой, образующаяся при надавливании ямка должна быстро исчезать. Характерный запах свежего мяса – мясной, свойственный данному виду животного. Замороженное мясо должно иметь ровную поверхность, слегка покрытую инеем, на которой от прикосновения остаются пятна красноватого оттенка.

Срез замороженного мяса серовато-розового цвета, жир белого или светло-желтого оттенка. Свежесть мяса можно определить с помощью пробной варки. Для этого небольшой кусочек мякоти варят в кастрюле под крышкой, после чего определяют качество запаха бульона. Кислый или гнилостный запах показывает, что такое мясо употреблять в пищу нельзя. Мясной бульон должен быть прозрачным, жир на поверхности – светлым.

Почки, печень, мозги, легкие также содержат белок и имеют высокую биологическую ценность. Помимо белка, печень содержит много витамина А и жирорастворимых соединений железа, меди и фосфора. Она особенно полезна спортсменам, перенесшим тяжелую травму или операцию.

Ценным источником белка является морская и речная рыба. По наличию полезных веществ она не уступает мясу. По сравнению с мясом химический состав рыбы несколько разнообразнее. Она содержит до 20% белков, 20-30% жиров, 1,2% минеральных солей (соли калия, фосфора и железа). В морской рыбе содержится много фтора и йода.

Свежая рыба должна иметь гладкую, блестящую, плотно прилегающую к тушке чешую. Жабры свежей рыбы красного или розового цвета, глаза прозрачные, выпуклые. Мясо должно быть упругим, плотным, с трудно отделяющимися костями, ямка при нажатии пальцем не образуется, а при образовании тут же исчезает. Если тушку свежей рыбы бросить в воду, она утонет. Запах такой рыбы чистый, специфический. Мороженая доброкачественная рыба имеет плотно прилегающую чешую. Глаза на уровне орбит или выпуклые, запах, свойственный данному виду рыбы, не гнилостный. Признаками несвежей рыбы являются ввалившиеся глаза, чешуя без блеска, мутная липкая слизь на тушке, вздутый живот, желтоватые или сероватые жабры, дряблое мясо, легко отделяющееся от костей, запах гнилостный. Вторично замороженная рыба отличается тусклой поверхностью, измененным цветом мяса на разрезе, глубоко ввалившимися глазами. Использовать в пищу несвежую рыбу, имеющую указанные признаки, опасно.

Для определения качества рыбы, особенно замороженной, рекомендуется использовать пробу ножом, нагретым в кипящей воде. Нож вводится в мышцу, находящуюся сзади головы, после чего определяется запах мяса. Можно использовать и пробную варку, для чего небольшой кусок рыбы или вынутые жабры варят в воде и определяют после этого качество запаха.

В питании спортсменов разрешается использовать куриные и перепелиные яйца. Использование яиц водоплавающих птиц запрещается, так как они могут быть заражены возбудителями кишечных инфекций. Свежесть яиц определяется с помощью просмотра на свет через картонную трубку. Эффективен метод проверки, при котором яйца погружаются в раствор соли (30 г соли на 1 л воды). Свежие яйца в растворе соли тонут, длительно хранящиеся плавают в воде, усохшие и тухлые всплывают.

Кроме белков животного происхождения, существуют белки растительного происхождения, содержащиеся преимущественно в орехах и бобовых культурах, а также в сое.

Бобовые являются питательным и сытным источником обезжиренного белка, содержат нерастворимую клетчатку, сложные углеводы, железо, витамины С и группы В. Бобовые являются лучшим заменителем животного белка, снижают уровень холестерина, стабилизируют содержание сахара в крови. Включение их в рацион спортсменов обязательно не только из-за того, что в бобовых содержится большое количество белка. Такая пища позволяет контролировать массу тела. Бобовые лучше не употреблять в период соревнований, так как они являются довольно трудно усваиваемой пищей.

Соя содержит высококачественный белок, растворимую клетчатку, ингибиторы протеазы. Соевые продукты являются хорошими заменителями мяса, молока, незаменимы в рационе спортсменов-тяжелоатлетов и культуристов.

Орехи, помимо растительного белка, содержат витамины группы B, витамин E, калий, селен. Различные виды орехов включаются в рацион спортсменов в качестве питательного продукта, малый объем которого может заменить большое количество пищи. Орехи обогащают организм витаминами, белками и жирами, снижают риск онкологических заболеваний, предотвращают многие болезни сердца.

I . Введение.

К биологически активным веществам относятся: ферменты, витамины и гормоны . Это жизненно важные и необходимые соединения, каждое из которых выполняет незаменимую и очень важную роль в жизнедеятельности организма.

Переваривание и усвоение пищевых продуктов происходит при участии ферментов. Синтез и распад белков, нуклеиновых кислот, липидов, гормонов и других веществ в тканях организма представляет собой также совокупность ферментативных реакций. Впрочем, и любое функциональное проявление живого организма - дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и т.д. - тоже непосредственно связаны с действием соответствующих ферментных систем. Иными словами, без ферментов нет жизни. Их значение для человеческого организма не ограничивается рамками нормальной физиологии. В основе многих заболеваний человека лежат нарушения ферментативных процессов.

Витамины могут быть отнесены к группе биологически активных соединений , оказывающих свое действие на обмен веществ в ничтожных концентрациях. Это органические соединения различной химической структуры, которые необходимы для нормального функционирования практически всех процессов в организме. Они повышают устойчивость организма к различным экстремальным факторам и инфекционным заболеваниям, способствуют обезвреживанию и выведению токсических веществ и т.д.

Гормоны - это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме вызывая определенный биологический эффект.

Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция.

Нередко гормонами называют и некоторые другие продукты обмена веществ, образующиеся во всех [напр. углекислота] или лишь в некоторых [напр. ацетилхолин] тканях, обладающие в большей или меньшей степени физиологической активностью и принимающие участие в регуляции функций организма животных Однако такое широкое толкование понятия " гормоны" лишает его всякой качественной специфичности. Термином " гормоны" следует обозначать только те активные продукты обмена веществ, которые образуются в специальных образованиях - железах внутренней секреции. Биологически активные вещества, образующиеся в других органах и тканях, принято называть " парагормонами","гистогормонами","биогенными стимуляторами".

Биологически активные продукты обмена веществ образуются и в растениях, но относить эти вещества к гормонам совершенно не правильно.

А теперь познакомимся с каждой группой веществ, входящей в состав биологически активных, отдельно.

II . Ферменты.

1.История открытия.

В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т.е. в мягких условиях. Вещества, которые окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном [изолированном от воздуха] виде, так и на воздухе в присутствии кислорода. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов - ферментов . Термин "фермент" (fermentum по-латыни означает "бродило", "закваска") был предложен голландским ученым Ван-Гельмонтом в начале XYII века. Так он назвал неизвестный агент, принимающий активное участие в процессе спиртового брожения.

Экспериментальное изучение ферментативных процессов началось в XYIII столетии, когда французский естествоиспытатель Р. Реомюр поставил опыты, чтобы выяснить механизм переваривания пищи в желудке хищных птиц. Он давал хищным птицам глотать кусочки мяса, заключенные в просверленную металлическую трубочку, которая была прикреплена к тонкой цепочке. Через несколько часов трубочку вытягивали из желудка птицы и выяснилось, что мясо частично растворилось. Поскольку оно находилось в трубочке и не могло подвергаться механическому измельчению, естественно было предположить, что на него воздействовал желудочный сок. Это предположение подтвердил итальянский естествоиспытатель Л. Спалланцани. В металлическую трубочку, которую заглатывали хищные птицы, Л.Спалланцани помещал кусочек губки. После извлечения трубки из губки выжимали желудочный сок. Затем нагревали мясо в этом соке, и оно полностью в нем " растворялось".

Значительно позже (1836г) Т. Шванн открыл в желудочном соке фермент пепсин (от греческого слова pepto - "варю") под влиянием которого и происходит переваривания мяса в желудке. Эти работы послужили началом изучения так называемых протеолитических ферментов.

Важным событием в развитии науки о ферментах явились работы К.С. Киргоффа. В 1814 г. действительный член Петербургской Академии наук К.С.Киргофф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды - глюкозу и фруктозу. Это были первые исследования в ферментологии. Хотя на практике применение ферментативных процессов было известно с незапамятных времен (сбраживание винограда, сыроварение и др.)

В разных изданиях применяются два понятия: "ферменты" и " энзимы". Эти названия идентичны. Они обозначают одно и тоже - биологические катализаторы . Первое слово переводится как "закваска" , второе - "в дрожжах".

Долгое время не представляли,что происходит в дрожжах, какая сила, присутствующая в них, заставляет вещества разрушаться и превращаться в более простые. Только после изобретения микроскопа было установлено, что дрожжи - это скопление большого количества микроорганизмов, которые используют сахар в качестве своего основного питательного вещества. Иными словами, каждая дрожжевая клетка "начинена" ферментами способными разлагать сахар. Но в то же время были известны и другие биологические катализаторы, не заключенные в живую клетку, а свободно "обитающие" вне ее. Например, они были найдены в составе желудочных соков, клеточных экстрактов. В связи с этим в прошлом различали два типа катализаторов: считалось, что собственно ферменты неотделимы от клетки и вне ее не могут функционировать, т.е. они "организованы". А "неорганизованные" катализаторы, которые могут работать вне клетки, называли энзимами. Такое противопоставление "живых" ферментов и "неживых" энзимов объяснялось влиянием виталистов, борьбой идеализма и материализма в естествознании. Точки зрения ученых разделились. Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратиться и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки.

В 1871 г. русский врач М.М. Манассеина разрушила дрожжевые клетки, растирая их речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5*10 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода (IV):

C6H12O6--->2C2H5OH + 2CO2

Работы А.Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представления в теории биологического катализа, а термины "фермент" и "энзим" стали применять как равнозначные.

2.Свойства ферментов.

Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы. Эти качества отличают ферменты от катализаторов обычного типа. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.

Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.

Зависимость каталитической активности фермента от температуры выражается типичной кривой. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В то же время постепенно возрастает количество инактивированного фермента за счет денатурации его белковой части. При температуре выше 50°С денатурация ферментного белка резко усиливается и, хотя скорость реакций преобразования субстрата продолжает расти, активность фермента, выражающаяся количеством превращенного субстрата, падает.

Детальные исследования роста активности ферментов с повышением температуры, проведенные в последнее время, показали более сложный характер этой зависимости, чем указано выше: во многих случаях она не отвечает правилу удвоения активности на каждые 10°С в основном из-за постепенно нарастающих конформационных изменений в молекуле фермента.

Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом . Температурный оптимум для различных ферментов неодинаков. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина (фермент растительного происхождения, ускоряющий гидролиз белка) оптимум находится при 8О°С. В то же время у каталазы (фермент, ускоряющий распад Н2О2 до Н2О и О2) оптимальная температура действия находится между 0 и -10°С, а при более высоких температурах происходит энергичное окисление фермента и его инактивация.

доктор биологических наук, профессор В. М. Шкуматов ;

заместитель генерального директора по вопросам

инновационного развития РУП «Белмедпрепараты»

кандидат технических наук Т. В. Трухачева

Леонтьев, В. Н.

Химия биологически активных веществ: электронный курс текстов лекций для студентов специальности 1-48 02 01 «Биотехнология» очной и заочной форм обучения / В. Н. Леонтьев, О. С. Игнатовец. – Минск: БГТУ, 2013. – 129 с.

Электронный курс текстов лекций посвящен структурно-функциональным особенностям и химическим свойствам основных классов биологически активных веществ (белков, углеводов, липидов, витаминов, антибиотиков и др.). Описаны методы химического синтеза и структурного анализа перечисленных классов соединений, их свойства и воздействие на биологические системы, а также распространение в природе.


Тема 1. Введение

4

Тема 2. Белки и пептиды. Первичная структура белков и пептидов

Тема 3. Структурная организация белков и пептидов. Методы выделения

Тема 4. Химический синтез и химическая модификация белков и пептидов

Тема 5. Ферменты

45

Тема 6. Некоторые биологически важные белки

68

Тема 7. Структура нуклеиновых кислот

76

Тема 8. Строение углеводов и углеводсодержащих биополимеров

Тема 9. Структура, свойства и химический синтез липидов

104

Тема 10. Стероиды

117

Тема 11. Витамины

120

Тема 12. Введение в фармакологию. Фармакокинетика

134

Тема 13. Противомалярийные препараты

137

Тема 14. Средства, влияющие на центральную нервную систему

Тема 15. Сульфаниламидные препараты

144

Тема 16. Антибиотики

146

Список литературы

157

Тема 1. Введение
Химия биологически активных веществ изучает строение и биологические функции важнейших компонентов живой материи, в первую очередь биополимеров и низкомолекулярных биорегуляторов, уделяя осное внимание выяснению закономерностей взаимосвязи между структурой и биологическим действием. По существу, она является химическим фундаментом современной биологии. Разрабатывая основополагающие проблемы химии живого мира, биоорганическая химия способствует решению задач получения практически важных препаратов для медицины, сельского хозяйства, ряда отраслей промышленности.

Объекты изучения: белки и пептиды, нуклеиновые кислоты, углеводы, липиды, биополимеры смешанного типа – гликопротеины, нуклеопротеины, липопротеины, гликолипиды и т. п.; алкалоиды, терпеноиды, витамины, антибиотики, гормоны, простагландины, ростовые вещества, феромоны, токсины, а также синтетические лекарственные препараты, пестициды и др.

Методы исследования: основной арсенал составляют методы органической химии, однако для решения структурно-функциональных задач привлекаются и разнообразные физические, физико-химические, математические и биологические методы.

Основные задачи: выделение в индивидуальном состоянии изучаемых соединений с помощью кристаллизации, перегонки, различных видов хроматографии, электрофореза, ультрафильтрации, ультрацентрифугирования, противоточного распределения и т. п.; установление структуры, включая пространственное строение, на основе подходов органической и физико-органической химии с применением масс-спектрометрии , различных видов оптической спектроскопии (ИК, УФ, лазерной и др.), рентгеноструктурного анализа, ядерного магнитного резонанса, электронного парамагнитного резонанса, дисперсии оптического вращения и кругового дихроизма, методов быстрой кинетики и т. п. в сочетании с расчетами на ЭВМ; химический синтез и химическая модификация изучаемых соединений, включая полный синтез, синтез аналогов и производных, – с целью подтверждения структуры, выяснения связи строения и биологической функции, получения практически ценных препаратов; биологическое тестирование полученных соединений in vitro и in vivo .

Наиболее часто встречающиеся в биомолекулах функциональные группы:


гидроксильная (спирты)


аминогруппа (амины)


альдегидная (альдегиды)


амидная (амиды)


карбонильная (кетоны)


сложно-эфирная


карбоксильная (кислоты)


эфирная


сульфгидрильная (тиолы)


метильная


дисульфидная


этильная


фосфатная


фенильная


гуанидиновая


имидазольная

Тема 2. Белки и пептиды . Первичная структура белков и пептидов
Белки – высокомолекулярные биополимеры, построенные из остатков аминокислот. Молекулярная масса белков колеблется в пределах от 6 000 до 2 000 000 Да. Именно белки являются продуктом генетической информации, передаваемой из поколения в поколение, и осуществляют все процессы жизнедеятельности в клетке. Этим удивительным по разнообразию полимерам присущи одни из наиболее важных и разносторонних клеточных функций.

Белки можно разделить:
1) по строению : простые белки построены из остатков аминокислот и при гидролизе распадаются, соответственно, только на свободные аминокислоты или их производные.

Сложные белки – это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, образуются небелковая часть или продукты ее распада. В их состав могут входить ионы металлов (металлопротеины), молекулы пигментов (хромопротеины), они могут образовывать комплексы с другими молекулами (липо-, нуклео-, гликопротеины), а также ковалентно связывать неорганический фосфат (фосфопротеины);

2. растворимости в воде :

– водорастворимые,

– солерастворимые,

– спирторастворимые,

– нерастворимые;

3. выполняемым функциям : к биологическим функциям белков относятся:

– каталитическая (ферментативная),

– регуляторная (способность регулировать скорость химических реакций в клетке и уровень метаболизма в целом организме),

– транспортная (транспорт веществ в организме и перенос их через биомембраны),

– структурная (в составе хромосом, цитоскелета, соединительных, мышечных, опорных тканей),

– рецепторная (взаимодействие рецепторных молекул с внеклеточными компонентами и инициирование специфического клеточного ответа).

Кроме этого, белки выполняют защитные, запасные, токсические, сократительные и другие функции;

4) в зависимости от пространственной структуры:

– фибриллярные (они используются природой как структурный материал),

– глобулярные (ферменты, антитела, некоторые гормоны и др.).

АМИНОКИСЛОТЫ, ИХ СВОЙСТВА
Аминокислотами называются карбоновые кислоты, содержащие аминогруппу и карбоксильную группу. Природные аминокислоты являются 2-аминокарбоновыми кислотами, или α-аминокислотами, хотя существуют такие аминокислоты, как β-аланин, таурин, γ-аминомасляная кислота. В общем случае формула α-аминокислоты выглядит так:


У α-аминокислот при 2-м атоме углерода имеются четыре разных заместителя, т. е. все α-аминокислоты, кроме глицина, имеют асимметрический (хиральный) атом углерода и существуют в виде двух энантиомеров – L - и D -аминокислот. Природные аминокислоты относятся к L -ряду. D -аминокислоты встречаются в бактериях и пептидных антибиотиках.

Все аминокислоты в водных растворах могут существовать в виде биполярных ионов, причем их суммарный заряд зависит от рН среды. Величина рН, при которой суммарный заряд равен нулю, называется изоэлектрической точкой . В изоэлектрической точке аминокислота является цвиттер-ионом , т. е. аминная группа у нее протонирована, а карбоксильная – диссоциирована. В нейтральной области рН большинство аминокислот являются цвиттер-ионами:


Аминокислоты не поглощают свет в видимой области спектра, ароматические аминокислоты поглощают свет в УФ области спектра: триптофан и тирозин при 280 нм, фенилаланин при 260 нм.

Белки дают ряд цветных реакций, обусловленных наличием определенных аминокислотных остатков или общих химических группировок. Эти реакции широко используются для аналитических целей. Среди них наиболее известны нингидриновая реакция, позволяющая проводить количественное определение аминогрупп в белках, пептидах и аминокислотах, а также биуретовая реакция, применяемая для качественного и количественного определения белков и пептидов. При нагревании белка или пептида, но не аминокислоты, с CuSO 4 в щелочном растворе образуется окрашенное в фиолетовый цвет комплексное соединение меди, количество которого можно определить спектрофотометрически. Цветные реакции на отдельные аминокислоты используются для обнаружения пептидов, содержащих соответствующие аминокислотные остатки. Для идентификации гуанидиновой группы аргинина применяется реакция Сакагучи – при взаимодействии с а-нафтолом и гипохлоритом натрия гуанидины в щелочной среде дают красное окрашивание. Индольное кольцо триптофана может быть обнаружено реакцией Эрлиха – красно-фиолетовое окрашивание при реакции с п-диметиламино-бензальдегидом в H 2 SO 4 . Реакция Паули позволяет выявить остатки гистидина и тирозина, которые в щелочных растворах реагируют с диазобензол-сульфокислотой, образуя производные, окрашенные в красный цвет.

Биологическая роль аминокислот:

1) структурные элементы пептидов и белков, так называемые протеиногенные аминокислоты. В состав белков входят 20 аминокислот, которые кодируются генетическим кодом и включаются в белки в процессе трансляции, некоторые из них могут быть фосфорилированы, ацилированы или гидроксилированы;

2) структурные элементы других природных соединений – коферментов, желчных кислот, антибиотиков;

3) сигнальные молекулы. Некоторые из аминокислот являются нейромедиаторами или предшественниками нейромедиаторов, гормонов и гистогормонов;

4) важнейшие метаболиты, например, некоторые аминокислоты являются предшественниками алкалоидов растений, или служат донорами азота, или являются жизненно важными компонентами питания.

Номенклатура, молекулярная масса и значения pK аминокислот приведены в таблице 1.

Таблица 1
Номенклатура, молекулярная масса и значения pK аминокислот


Аминокислота

Обозначение

Молеку-лярная

масса


pK 1

(−СООН)


pK 2

(−NH3+)


pK R

(R -группы)


Глицин

Gly G

75

2,34

9,60



Аланин

Ala A

89

2,34

9,69



Валин

Val V

117

2,32

9,62



Лейцин

Leu L

131

2,36

9,60



Изолейцин

Ile I

131

2,36

9,68



Пролин

Pro P

115

1,99

10,96



Фенилаланин

Phe F

165

1,83

9,13



Тирозин

Tyr Y

181

2,20

9,11

10,07

Триптофан

Trp W

204

2,38

9,39



Серин

Ser S

105

2,21

9,15

13,60

Треонин

Thr T

119

2,11

9,62

13,60

Цистеин

Cys C

121

1,96

10,78

10,28

Метионин

Met M

149

2,28

9,21



Аспарагин

Asn N

132

2,02

8,80



Глутамин

Gln Q

146

2,17

9,13



Аспартат

Asp D

133

1,88

9,60

3,65

Глутамат

Glu E

147

2,19

9,67

4,25

Лизин

Lys K

146

2,18

8,95

10,53

Аргинин

Arg R

174

2,17

9,04

12,48

Гистидин

His H

155

1,82

9,17

6,00

Аминокислоты различаются по растворимости в воде. Это связано с их цвиттерионным характером, а также со способностью радикалов взаимодействовать с водой (гидратироваться). К гидрофильным относятся радикалы, содержащие катионные, анионные и полярные незаряженные функциональные группы. К гидрофобным – радикалы, содержащие алкильные или арильные группы.

В зависимости от полярности R -групп выделяют четыре класса аминокислот: неполярные, полярные незаряженные, отрицательно заряженные и положительно заряженные.

К неполярным аминокислотам относятся: глицин; аминокислоты с алкильными и арильными боковыми цепями – аланин, валин, лейцин, изолейцин; тирозин, триптофан, фенилаланин; иминокислота – пролин. Они стремятся попасть в гидрофобное окружение «внутри» молекулы белка (рис.1).

Рис. 1. Неполярные аминокислоты
К полярным заряженным аминокислотам относятся: положительно заряженные аминокислоты – гистидин, лизин, аргинин (рис. 2); отрицательно заряженные аминокислоты – аспарагиновая и глутаминовая кислота (рис. 3). Они обычно выступают наружу, в водное окружение белка.

Остальные аминокислоты образуют категорию полярных незаряженных: серин и треонин (аминокислоты-спирты); аспарагин и глутамин (амиды аспарагиновой и глутаминовой кислот); цистеин и метионин (серосодержащие аминокислоты).

Поскольку при нейтральном значении рН СООН-группы глутаминовой и аспарагиновой кислот полностью диссоциированы, их принято называть глутаматом и аспартатом независимо от природы присутствующих в среде катионов.

В ряде белков содержатся особые аминокислоты, образующиеся путем модификации обычных аминокислот после их включения в полипептидную цепь, например, 4-гидроксипролин, фосфосерин, -карбоксиглутаминовая кислота и др.

Рис. 2. Аминокислоты с заряженными боковыми группами
Все аминокислоты, образующиеся при гидролизе белков в достаточно мягких условиях, обнаруживают оптическую активность, т. е. способность вращать плоскость поляризованного света (за исключением глицина).

Рис. 3. Аминокислоты с заряженными боковыми группами
Оптической активностью обладают все соединения, способные существовать в двух стереоизомерных формах L- и D-изомеры (рис. 4). В состав белков входят только L -аминокислоты.

L -аланин D -аланин
Рис. 4. Оптические изомеры аланина

Глицин не имеет асимметрического атома углерода, а треонин и изолейцин содержат по два асимметрических атома углерода. Все остальные аминокислоты имеют один асимметрический атом углерода.

Оптически неактивная форма аминокислоты называется рацематом, представляющим собой эквимолярную смесь D - и L -изомеров, и обозначается символом DL -.

М

ономеры аминокислот, входящих в состав полипептидов, называются аминокислотными остатками. Остатки аминокислот соединяются друг с другом пептидной связью (рис. 5), в формировании которой принимает участие -карбоксильная группа одной аминокислоты и α-аминогруппа другой.
Рис. 5. Образование пептидной связи
Равновесие этой реакции сдвинуто в сторону образования свободных аминокислот, а не пептида. Поэтому биосинтез полипептидов требует катализа и затрат энергии.

Поскольку дипептид содержит реакционноспособные карбоксильную и аминогруппу, то к нему с помощью новых пептидных связей могут присоединяться другие аминокислотные остатки, в результате образуется полипептид – белок.

Полипептидная цепь состоит из регулярно повторяющихся участков – групп NHCHRCO, образующих основную цепь (скелет или остов молекулы), и вариабельной части, включающей характерные боковые цепи. R -группы аминокислотных остатков выступают из пептидного остова и формируют в значительной степени поверхность полимера, определяя многие физические и химические свойства белков. Свободное вращение в пептидном остове возможно между атомом азота пептидной группы и соседним -углеродным атомом, а также между -углеродным атомом и углеродом карбонильной группы. Благодаря этому линейная структура может приобретать более сложную пространственную конформацию.

Аминокислотный остаток, имеющий свободную -аминогруппу, называется N -концевым, а имеющий свободную -карбоксильную группу – С -концевым.

Структуру пептидов принято изображать с N -конца.

Иногда концевые -амино- и -карбоксильная группы связываются одна с другой, образуя циклические пептиды.

Пептиды различаются количеством аминокислот, аминокислотным составом и порядком соединения аминокислот.

Пептидные связи очень прочные, и для их химического гидролиза требуются жесткие условия: высокие температура и давление, кислая среда и длительное время.

В живой клетке пептидные связи могут разрываться с помощью протеолитических ферментов, называемых протеазами , или пептидгидролазами.

Так же, как и аминокислоты, белки являются амфотерными соединениями и в водных растворах заряжены. Для каждого белка существует своя изоэлектрическая точка – значение рН, при котором положительные и отрицательные заряды белка полностью скомпенсированы и суммарный заряд молекулы равен нулю. При значениях рН выше изоэлектрической точки белок несет отрицательный заряд, а при значениях рН ниже изоэлектрической точки – положительный.
СЕКВЕНАТОРЫ. СТРАТЕГИЯ И ТАКТИКА АНАЛИЗА ПЕРВИЧНОЙ СТРУКТУРЫ
Определение первичной структуры белков сводится к выяснению порядка расположения аминокислот в полипептидной цепочке. Эту задачу решают с помощью метода секвенирования (от англ. sequence –последовательность).

Принципиально первичную структуру белков можно определять путем непосредственного анализа аминокислотной последовательности или путем расшифровки нуклеотидной последовательности соответствующих генов с помощью генетического кода. Естественно, наибольшую надежность обеспечивает сочетание этих методов.

Собственно секвенирование на его сегодняшнем уровне позволяет определить аминокислотную последовательность в полипептидах, размер которых не превышает несколько десятков аминокислотных остатков. В то же время исследуемые полипептидные фрагменты значительно короче тех природных белков, с которыми приходится иметь дело. Поэтому необходимо предварительное разрезание исходного полипептида на короткие фрагменты. После секвенирования полученных фрагментов их необходимо снова сшить в первоначальной последовательности.

Таким образом, определение первичной последовательности белка сводится к следующим основным этапам:

1) расщепление белка на несколько фрагментов длиной, доступной для секвенирования;

2) секвенирование каждого из полученных фрагментов;

3) сборка полной структуры белка из установленных структур его фрагментов.

Исследование первичной структуры белка состоит из следующих стадий:

– определение его молекулярной массы;

– определение удельного аминокислотного состава (АК-состава);

– определение N - и С -концевых аминокислотных остатков;

– расщепление полипептидной цепи на фрагменты;

– расщепление исходной полипептидной цепи еще одним способом;

– разделение полученных фрагментов;

– аминокислотный анализ каждого фрагмента;

– установление первичной структуры полипептида с учетом перекрывающихся последовательностей фрагментов обоих расщеплений.

Поскольку пока не существует метода, позволяющего установить полную первичную структуру белка на целой молекуле, полипептидную цепь подвергают специфичному расщеплению химическими реагентами или протеолитическими ферментами. Смесь образовавшихся пептидных фрагментов разделяют и для каждого из них определяют аминокислотный состав и аминокислотную последовательность. После того как структура всех фрагментов установлена, необходимо выяснить порядок их расположения в исходной полипептидной цепи. Для этого белок подвергают расщеплению при помощи другого агента и получают второй, отличный от первого набор пептидных фрагментов, которые разделяют и анализируют аналогичным образом.

1. Определение молекулярной массы (нижеперечисленные методы подробно рассмотрены в теме 3):

– по вязкости;

– по скорости седиментации (метод ультрацентрифугирования);

– гельхроматография;

– электрофорез в ПААГ в диссоциирующих условиях.

2. Определение АК-состава. Анализ аминокислотного состава включает полный кислотный гидролиз исследуемого белка или пептида с помощью 6 н. соляной кислоты и количественное определение всех аминокислот в гидролизате. Гидролиз образца проводится в запаянных ампулах в вакууме при 150°С в течение 6 ч. Количественное определение аминокислот в гидролизате белка или пептида проводится с помощью аминокислотного анализатора.

3. Определение N- и С-аминокислотных остатков. В полипептидной цепи белка с одной стороны расположен аминокислотный остаток, несущий свободную α-аминогруппу (амино- или N -концевой остаток), а с другой – остаток со свободной α-карбоксильной группой (карбоксильный, или С -концевой остаток). Анализ концевых остатков играет важную роль в процессе определения аминокислотной последовательности белка. На первом этапе исследования он дает возможность оценить число полипептидных цепей, составляющих молекулу белка, и степень гомогенности исследуемого препарата. На последующих этапах с помощью анализа N -концевых аминокислотных остатков осуществляется контроль за процессом разделения пептидных фрагментов.

Реакции определения N-концевых аминокислотных остатков:

1) один из первых методов определения N -концевых аминокислотных остатков был предложен Ф. Сенгером в 1945 г. При реакции α- аминогруппы пептида или белка с 2,4-динитрофторбензолом получается динитрофенильное (ДНФ) производное, окрашенное в желтый цвет. Последующий кислотный гидролиз (5,7 н. НСl) приводит к разрыву пептидных связей и образованию ДНФ-производного N -концевой аминокислоты. ДНФ-аминокислота экстрагируется эфиром и идентифицируется хроматографическим методом в присутствии стандартов.

2) метод дансилирования. Наибольшее применение для определения N -концевых остатков в настоящее время находит разработанный в 1963 г. В. Греем и Б. Хартли дансильный метод. Как и метод динитрофенилирования, основан на введении в аминогруппы белка «метки», не удаляющейся при последующем гидролизе. Его первая стадия – реакция дансилхлорида (1-диметиламинонафталин-5-сульфохлорида) с непротонированной а-амино-группой пептида или белка с образованием дансилпептида (ДНС-пептида). На следующей стадии ДНС-пептид гидролизуется (5,7 н. НС1, 105°С, 12 - 16 ч) и освобождается N -концевая α-ДНС-аминокислота. ДНС-аминокислоты обладают интенсивной флуоресценцией в ультрафиолетовой области спектра (365 нм); обычно для их идентификации достаточно 0,1 - 0,5 нмоль вещества.

Имеется ряд методов, с помощью которых можно определять как N -концевой аминокислотный остаток, так и аминокислотную последовательность. К ним относятся деградация по методу Эдмана и ферментативный гидролиз аминопептидазами. Эти методы будут подробно рассмотрены ниже при описании аминокислотной последовательности пептидов.

Реакции определения С-концевых аминокислотных остатков:

1) среди химических методов определения С -концевых аминокислотных остатков заслуживают внимания метод гидразинолиза, предложенный С. Акабори, и оксазолоновый. В первом из них при нагревании пептида или белка с безводным гидразином при 100 - 120°С пептидные связи гидролизуются с образованием гидразидов аминокислот. С -концевая аминокислота остается в виде свободной аминокислоты и может быть выделена из реакционной смеси и идентифицирована (рис. 6).

Рис. 6. Расщепление пептидной связи гидразином
Метод имеет ряд ограничений. При гидразинолизе разрушаются глутамин, аспарагин, цистеин и цистин; аргинин теряет гуанидиновую группировку с образованием орнитина. Гидразиды серина, треонина и глицина лабильны и легко превращаются в свободные аминокислоты, что затрудняет интерпретацию результатов;

2) оксазолоновый метод, часто называемый методом тритиевой метки, основан на способности С -концевого аминокислотного остатка под действием уксусного ангидрида подвергаться циклизации с образованием оксазолона. В щелочных условиях резко увеличивается подвижность атомов водорода в положении 4 оксазолонового кольца и они могут быть легко заменена тритием. Образующиеся в результате последующего кислотного гидролиза тритиированного пептида или белка продукты реакции содержат радиоактивно меченную С -концевую аминокислоту. Хроматографирование гидролизата и измерение радиоактивности позволяют идентифицировать С -концевую аминокислоту пептида или белка;

3) чаще всего для определения С -концевых аминокислотных остатков используют ферментативный гидролиз карбоксипептидазами, позволяющий анализировать также и С-концевую аминокислотную последовательность. Карбоксипептидаза гидролизует только те пептидные связи, которые образованы С -концевой аминокислотой, имеющей свободную α-карбоксильную группу. Поэтому под действием этого фермента от пептида последовательно отщепляются аминокислоты, начиная с С -концевой. Это позволяет определить взаимное расположение чередующихся аминокислотных остатков.

В результате идентификации N - и С -концевых остатков полипептида получают две важных реперных точки для определения его аминокислотной последовательности (первичной структуры).

4. Фрагментация полипептидной цепи.

Ферментативные методы. Для специфического расщепления белков по определенным точкам применяются как ферментативные, так и химические методы. Из ферментов, катализирующих гидролиз белков по определенным точкам, наиболее широко используют трипсин и химотрипсин. Трипсин катализирует гидролиз пептидных связей, расположенных после остатков лизина и аргинина. Химотрипсин преимущественно расщепляет белки после остатков ароматических аминокислот – фенилаланина, тирозина и триптофана. При необходимости специфичность трипсина может быть повышена или изменена. Например, обработка цитраконовым ангидридом исследуемого белка приводит к ацилированию остатков лизина. В таком модифицированном белке расщепление будет проходить только по остаткам аргинина. Также при исследовании первичной структуры белков широкое применение находит протеиназа, которая также относится к классу сериновых протеиназ. Фермент имеет два максимума протеолитической активности при рН 4,0 и 7,8. Протеиназа с высоким выходом расщепляет пептидные связи, образованные карбоксильной группой глутаминовой кислоты.

В распоряжении исследователей имеется также большой набор менее специфичных протеолитических ферментов (пепсин, эластаза, субтилизин, папаин, проназа и др.). Эти ферменты используются в основном при дополнительной фрагментации пептидов. Их субстратная специфичность определяется природой аминокислотных остатков , не только образующих гидролизуемую связь, но и более удаленных по цепи.

Химические методы.

1) среди химических методов фрагментации белков наиболее специфичным и чаще всего применяемым является расщепление бромцианом по остаткам метионина (рис 7).

Реакция с бромцианом проходит с образованием промежуточного циансульфониевого производного метионина, спонтанно превращающегося в кислых условиях в иминолактон гомосерина, который, в свою очередь, быстро гидролизуется с разрывом иминной связи. Получающийся на С -конце пептидов лактон гомосерина далее частично гидролизуется до гомосерина (HSer), в результате чего каждый пептидный фрагмент, за исключением С -концевого, существует в двух формах – гомосериновой и гомосеринлактоновой;

Рис. 7. Расщепление полипептидной цепи бромцианом
2) большое число методов предложено для расщепления белка по карбонильной группе остатка триптофана. Одним из используемых для этой цели реагентов является N -бромсукцинимид;

3) реакция тиолдисульфидного обмена. В качестве реагентов используют восстановленный глутатион, 2-меркаптоэтанол, дитиотреитол.

5. Определение последовательности пептидных фрагментов. На этой стадии устанавливается аминокислотная последовательность в каждом из пептидных фрагментов, полученных на предыдущей стадии. Для этой цели обычно используют химический метод, разработанный Пером Эдманом. Расщепление по Эдману сводится к тому, что метится и отщепляется только N -концевой остаток пептида, а все остальные пептидные связи не затрагиваются. После идентификации отщепленного N -концевого остатка метка вводится в следующий, ставший теперь N -концевым, остаток, который точно так же отщепляется, проходя через ту же серию реакций. Так, отщепляя остаток за остатком, можно определить всю аминокислотную последовательность пептида, используя для этой цели всего одну пробу. В методе Эдмана вначале пептид взаимодействует с фенилизотиоционатом, который присоединяется к свободной α-аминогруппе N -концевого остатка. Обработка пептида холодной разбовленной кислотой приводит к отщеплению N -концевого остатка в виде фенилтиогидантоинового производного, которое можно идентифицировать хроматографическими методами. Остальная часть пептидной цени после удаления N -концевого остатка оказывается неповрежденной. Операция повторяется столько раз, сколько остатков содержит пептид. Таким способом можно легко определить аминокислотную последовательность пептидов, содержащих 10 - 20 аминокислотных остатков. Определение аминокислотной последовательности проводится для всех фрагментов, образовавшихся при расщеплении. После этого возникает следующая проблема – определить, в каком порядке располагались фрагменты в первоначальной полипептидной цепи.

Автоматическое определение аминокислотной последовательности . Крупным достижением в области структурных исследований белков явилось создание в 1967 г. П. Эдманом и Дж. Бэггом секвенатора – прибора, который с высокой эффективностью осуществляет последовательное автоматическое отщепление N -концевых аминокислотных остатков по методу Эдмана. В современных секвенаторах реализованы различные методы определения аминокислотной последовательности.

6. Расщепление исходной полипептидной цепи еще одним способом. Чтобы установить порядок расположения образовавшихся пептидных фрагментов, берут новую порцию препарата исходного полипептида и расщепляют его на более мелкие фрагменты каким-либо другим способом, при помощи которого расщепляются пептидные связи, устойчивые к действию предыдущего реагента. Каждый из полученных коротких пептидов подвергается последовательному расщеплению по методу Эдмана (так же, как на предыдущей стадии), и таким путем устанавливают их аминокислотную последовательность.

7. Установление первичной структуры полипептида с учетом перекрывающихся последовательностей фрагментов обоих расщеплений. Аминокислотные последовательности в пептидных фрагментах, полученных двумя способами, сравнивают, чтобы во втором наборе найти пептиды, в которых последовательности отдельных участков совпадали бы с последовательностями тех или иных участков пептидов первого набора. Пептиды из второго набора с перекрывающимися участками позволяют соединить в правильном порядке пептидные фрагменты, полученные в результате первого расщепления исходной полипептидной цепи.

Иногда второго расщепления полипептида на фрагменты оказывается недостаточно, для того чтобы найти перекрывающиеся участки для всех пептидов, полученных после первого расщепления. В этом случае применяется третий, а иногда и четвертый способ расщепления, чтобы получить набор пептидов, обеспечивающих полное перекрывание всех участков и установление полной последовательности аминокислот в исходной полипептидной цепи.

Биологически активными называют органические вещества, способные изменять скорость обмена веществ в организме. Среди них есть и относительно простые органические молекулы (например, природные амины), и очень сложные высокомолекулярные соединения (например, белки, обладающие ферментативными свойствами).

К биологически активным относят ферменты, гормоны, витамины, антибиотики, феромоны, пестициды, биогенные стимуляторы и другие вещества. Их применяют для лечения людей и сельскохозяйственных животных, защиты растений, регуляции численности особей, например снижают численность насекомых, привлекая их половыми феромонами в ловушки, и т. п.

Биогенные стимуляторы образуются в организме при неблагоприятных условиях - при травме, облучении, воспалении.

Среди биологически активных веществ отдельную группу составляют фитонциды, убивающие микроорганизмы. Их открыл советский ученый Б. П. Токин. Фитонциды - вещества растительного происхождения. Активные фитонциды содержатся в луке и чесноке: пары и вытяжки из них убивают холерный вибрион, дифтерийную палочку, гноеродных микробов. Стоит пожевать несколько минут чеснок, как большинство бактерий, живущих в полости рта, погибают. По родовому латинскому названию чеснока - allium - его активное начало названо аллицином. Уснино-вая кислота - фитонцид из лишайника уснеи - угнетает туберкулезных бактерий.

Многие фитонциды выделяются из растений в газообразном состоянии. Листья смородины, грецкого ореха, дуба, ольхи, желтой акации выделяют гексенал, в очень малых концентрациях убивающий простейших.

Устойчивость картофеля и моркови к грибным заболеваниям определяется содержащимся в них фитонцидом - хлорогеновой кислотой. Болезнь «снежную плесень» на злаках, вызываемую грибом фузариумом, уничтожает фитонцид бензоксазолин, образующийся в тканях злаков при повреждениях.

Все биологически активные вещества, включая и фитонциды, относят к продуктам вторичного обмена, считая первичными в обмене белки, углеводы, жиры (см. Липиды). Однако роль этих веществ в организме не второстепенна: ведь именно от них зависит его выживание в экстремальных условиях и при взаимодействии с соседними видами.

Кроме того, для нас именно они часто определяют вкус растительной пищи, именно за ними мы обращаемся в зеленую аптеку природы.

Важную роль в жизни животных играют феромоны, которые вырабатываются специализированными железами или специальными клетками (см. Эндокринная система). Эти биологически активные вещества, выделяемые животными в окружающую среду, влияют на поведение, а иногда и на рост и развитие особей того же вида или даже других видов. Феромонами могут быть отдельные химические соединения, но чаще это совокупность нескольких веществ. У разных животных они, как правило, разные. К феромонам относятся половые аттрактанты - привлекающие вещества, способствующие встрече самца и самки; вещества тревоги, сбора и др. Особенно велико значение феромонов в жизни насекомых. У общественных насекомых они также регулируют состав колонии и специфическую деятельность ее членов.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Использование страдательных конструкций Использование страдательных конструкций