Разложение матрицы 4 порядка. Определитель матрицы онлайн

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Лекция 2. определители

    Определители второго порядка

    Определители третьего порядка

    Алгебраические дополнения и миноры

    Разложение определителя по строке или столбцу

    Свойства определителей

    Обратная матрица

    Свойства обратной матрицы

1. Определители второго порядка

Понятие определителя вводится только для квадратной матрицы .

Определитель – это число, которое считается по определенным правилам. Порядок определителя – это порядок квадратной матрицы. Если для задания матриц использовались круглые скобки, то в теории определителей используют прямые скобки.

Каждой квадратной матрице поставим в соответствие некоторое число, которое будем называть определителем матрицы, и укажем правило его вычисления. Обозначения:


.

Пример 1.
.

2. Определители третьего порядка


В каждом произведении нет чисел из одного столбца или одной строки.

Приведем схему для запоминания порядка получения слагаемых в определителе.

Произведение чисел на одной диагонали берется со знаком «+» (это главная диагональ матрицы), а на другой – с противоположным знаком.

Пример 2 .

3. Алгебраические дополнения и миноры

Для вычисления определителей порядка больше третьего применяют другие способы вычисления.

Пример 3. Минор
определителя есть.

.

Полезно запомнить, что
и
.

Пример 4. В примере 3алгебраическое дополнение

4. Разложение определителя по строке или столбцу

Вычисление определителя -го порядка можно свести к вычислению определителей порядка
, используя следующие формулы.

Это число равно сумме произведений элементов любой строки на их алгебраические дополнения .

Пример 5 . Вычислить определитель третьего порядка
разложением по первой строке.

Решение

Это число равно сумме произведений элементов любого -го столбца на их алгебраические дополнения.

Независимо от способа разложения всегда получается один и тот же ответ.

5. Свойства определителей

1. При транспонировании квадратной матрицы ее определитель не меняется:
.

Вывод. Свойства определителей, сформулированных для строк, справедливы и для столбцов.

2. При перестановке двух строк (столбцов) определитель меняет знак на противоположный. Например,
.

3. Определитель равен нулю , если:

а) он имеет нулевую строку (столбец)
;

б) он имеет пропорциональные (одинаковые) строки (столбец)
.

4. Общий множитель в строке (столбце) можно выносить за знак определителя. Например,
.

5. Определитель не изменяется , если к элементам какой-либо строки прибавить (вычесть) соответствующие элементы другой строки, умноженные на любое число.

Например,
.

6. Если в определителе каждый элемент строки есть сумма двух слагаемых, то этот определитель равен сумме двух определителей:

.

7. Определитель произведения двух квадратных матриц одного и того же порядка равен произведению определителей этих матриц:

.

8. Определитель квадратной матрицы треугольного вида равен произведению элементов, стоящих на главной диагонали:

.

6. Обратная матрица

Вместо операции деления матриц вводится понятие обратной матрицы.

Обозначается обратная матрица
, то есть .

Очевидна аналогия с числами: для числа 2 число ½ есть обратное, так как
. Именно поэтому матрица, обратная к А, обозначается
.

Теорема «Необходимое и достаточное условие существования обратной матрицы». Для того чтобы квадратная матрица имела обратную матрицу
, необходимо и достаточно, чтобы определитель матрицыбыл не равен нулю.

Правило нахождения обратной матрицы

0) Смотрим, является ли матрица квадратной. Если нет, то обратной матрицы не существует; если квадратная, то переходим к пункту 1.

1) Вычисляем определитель матрицы
: если он не равен нулю, то обратная матрица существует:
; если равен нулю, то обратной матрицы нет.

2) Для каждого элемента матрицы вычисляем его алгебраическое дополнение.

3) Составляем матрицу из алгебраических дополнений, которая затем транспонируем:
.

4) Каждый элемент матрицы
делим на определитель:
Получаем матрицу, обратную данной.

7. Нахождение обратной матрицы для матриц второго порядка

Пример 6. Дана матрица
. Найти обратную матрицу.

Решение .


Проверка. Убедимся, что найдена действительно обратная матрица. Найдем произведение матриц и
.

8. Свойства обратной матрицы

1.
,

где А и В – невырожденные квадратные матрицы одинакового порядка.

2.
.

3.
.

4.
.

Контрольные вопросы

    Что называется определителем второго порядка?

    Как вычислить определитель третьего порядка?

    Как вычислить определитель 3 порядка по правилу треугольников?

    Что называется алгебраическим дополнением элемента определителя? Приведите примеры для определителей 2 и 3 порядков.

    Напишите разложения определителя третьего порядка по элементам произвольной строки и произвольного столбца.



Постановка задачи

Задание подразумевает знакомство пользователя с основными понятиями численных методов, такими как определитель и обратная матрица , и различными способами их вычислений. В данном теоретическом отчете простым и доступным языком сначала вводятся основные понятия и определения, на основании которых проводится дальнейшее исследование. Пользователь может не иметь специальных знаний в области численных методов и линейной алгебры , но с легкостью сможет воспользоваться результатами данной работы. Для наглядности приведена программа вычисления определителя матрицы несколькими методами, написанная на языке программирования C++. Программа используется как лабораторный стенд для создания иллюстраций к отчету. А также проводится исследование методов для решения систем линейных алгебраических уравнений . Доказывается бесполезность вычисления обратной матрицы, поэтому в работе приводится более оптимальные способы решения уравнений не вычисляя ее. Рассказывается почему существует такое количество различных методов вычисления определителей и обратных матриц и разбираются их недостатки. Также рассматриваются погрешности при вычислении определителя и оценивается достигнутая точность. Помимо русских терминов в работе используются и их английские эквиваленты для понимания, под какими названиями искать численные процедуры в библиотеках и что означают их параметры.

Основные определения и простейшие свойства

Определитель

Введем определение определителя квадратной матрицы любого порядка. Это определение будет рекуррентным , то есть чтобы установить, что такое определитель матрицы порядка , нужно уже знать, что такое определитель матрицы порядка . Отметим также, что определитель существует только у квадратных матриц.

Определитель квадратной матрицы будем обозначать или det .

Определение 1. Определителем квадратной матрицы второго порядка называется число .

Определителем квадратной матрицы порядка , называется число

где - определитель матрицы порядка , полученной из матрицы вычеркиванием первой строки и столбца с номером .

Для наглядности запишем, как можно вычислить определитель матрицы четвертого порядка:

Замечание. Реальное вычисление определителей для матриц выше третьего порядка на основе определения используется в исключительных случаях. Как правило, вычисление ведется по другим алгоритмам, которые будут рассмотрены позже и которые требуют меньше вычислительной работы.

Замечание. В определении 1 было бы точнее сказать, что определитель есть функция, определенная на множестве квадратных матриц порядка и принимающая значения в множестве чисел.

Замечание. В литературе вместо термина "определитель" используется также термин "детерминант", имеющий тот же самый смысл. От слова "детерминант" и появилось обозначение det .

Рассмотрим некоторые свойства определителей, которые сформулируем в виде утверждений.

Утверждение 1. При транспонировании матрицы определитель не меняется, то есть .

Утверждение 2. Определитель произведения квадратных матриц равен произведению определителей сомножителей, то есть .

Утверждение 3. Если в матрице поменять местами две строки, то ее определитель сменит знак.

Утверждение 4. Если матрица имеет две одинаковые строки, то ее определитель равен нулю.

В дальнейшем нам потребуется складывать строки и умножать строку на число. Эти действия над строками (столбцами) мы будем выполнять так же, как действия над матрицами-строками (матрицами-столбцами), то есть поэлементно. Результатом будет служить строка (столбец), как правило, не совпадающая со строками исходной матрицы. При наличии операций сложения строк (столбцов) и умножения их на число мы можем говорить и о линейных комбинациях строк (столбцов), то есть суммах с числовыми коэффициентами.

Утверждение 5. Если строку матрицы умножить на число , то ее определитель умножится на это число.

Утверждение 6. Если матрица содержит нулевую строку, то ее определитель равен нулю.

Утверждение 7. Если одна из строк матрицы равна другой, умноженной на число (строки пропорциональны), то определитель матрицы равен нулю.

Утверждение 8. Пусть в матрице i-ая строка имеет вид . Тогда , где матрица получается из матрицы заменой i-ой строки на строку , а матрица - заменой i-ой строки на строку .

Утверждение 9. Если к одной из строк матрицы добавить другую, умноженную на число, то определитель матрицы не изменится.

Утверждение 10. Если одна из строк матрицы является линейной комбинацией других ее строк, то определитель матрицы равен нулю.

Определение 2. Алгебраическим дополнением к элементу матрицы называется число, равное , где - определитель матрицы, полученной из матрицы вычеркиванием i-ой строки и j-ого столбца. Алгебраическое дополнение к элементу матрицы обозначается .

Пример. Пусть . Тогда

Замечание. Используя алгебраические дополнения, определение 1 определителя можно записать так:

Утверждение 11. Разложение определителя по произвольной строке.

Для определителя матрицы справедлива формула

Пример. Вычислите .

Решение. Воспользуемся разложением по третьей строке, так выгоднее, поскольку в третьей строке два числа из трех - нули. Получим

Утверждение 12. Для квадратной матрицы порядка при выполнено соотношение .

Утверждение 13. Все свойства определителя, сформулированные для строк (утверждения 1 - 11), справедливы и для столбцов, в частности, справедливо разложение определителя по j-ому столбцу и равенство при .

Утверждение 14. Определитель треугольной матрицы равен произведению элементов ее главной диагонали.

Следствие. Определитель единичной матрицы равен единице, .

Вывод. Перечисленные выше свойства позволяют находить определители матриц достаточно высоких порядков при сравнительно небольшом объеме вычислений. Алгоритм вычислений следующий.

Алгоритм создания нулей в столбце. Пусть требуется вычислить определитель порядка . Если , то поменяем местами первую строку и любую другую, в которой первый элемент не нуль. В результате определитель , будет равен определителю новой матрицы с противоположным знаком. Если же первый элемент каждой строки равен нулю, то матрица имеет нулевой столбец и по утверждениям 1, 13 ее определитель равен нулю.

Итак, считаем, что уже в исходной матрице . Первую строку оставляем без изменений. Прибавим ко второй строке первую строку, умноженную на число . Тогда первый элемент второй строки будет равен .

Остальные элементы новой второй строки обозначим , . Определитель новой матрицы по утверждению 9 равен . Первую строку умножим на число и прибавим к третьей. Первый элемент новой третьей строки будет равен

Остальные элементы новой третьей строки обозначим , . Определитель новой матрицы по утверждению 9 равен .

Процесс получения нулей вместо первых элементов строк продолжим дальше. Наконец, первую строку умножим на число и прибавим к последней строке. В результате получается матрица, обозначим ее , которая имеет вид

причем . Для вычисления определителя матрицы используем разложение по первому столбцу

Так как , то

В правой части стоит определитель матрицы порядка . К нему применим тот же алгоритм, и вычисление определителя матрицы сведется к вычислению определителя матрицы порядка . Процесс повторяем до тех пор, пока не дойдем до определителя второго порядка, который вычисляется по определению.

Если матрица не обладает какими-то специфическими свойствами, то заметно уменьшить объем вычислений по сравнению с предложенным алгоритмом не удается. Еще одна хорошая сторона этого алгоритма - по нему легко составить программу для компьютера для вычисления определителей матриц больших порядков. В стандартных программах вычисления определителей используется этот алгоритм с не принципиальными изменениями, связанными с минимизацией влияния ошибок округления и погрешностей входных данных при вычислениях компьютера.

Пример. Вычислите определитель матрицы .

Решение. Первую строку оставляем без изменения. Ко второй строке прибавляем первую, умноженную на число :

Определитель не меняется. К третьей строке прибавляем первую, умноженную на число :

Определитель не меняется. К четвертой строке прибавляем первую, умноженную на число :

Определитель не меняется. В результате получаем

По тому же алгоритму считаем определитель матрицы порядка 3, стоящий справа. Первую строку оставляем без изменений, ко второй строке прибавляем первую, умноженную на число :

К третьей строке прибавляем первую, умноженную на число :

В результате получаем

Ответ. .

Замечание. Хотя при вычислениях использовались дроби, результат оказался целым числом. Действительно, используя свойства определителей и то, что исходные числа - целые, операций с дробями можно было бы избежать. Но в инженерной практике числа крайне редко бывают целыми. Поэтому, как правило, элементы определителя будут десятичными дробями и применять какие-то ухищрения для упрощения вычислений нецелесообразно.

Обратная матрица

Определение 3. Матрица называется обратной матрицей для квадратной матрицы , если .

Из определения следует, что обратная матрица будет квадратной матрицей того же порядка, что и матрица (иначе одно из произведений или было бы не определено).

Обратная матрица для матрицы обозначается . Таким образом, если существует, то .

Из определения обратной матрицы следует, что матрица является обратной для матрицы , то есть . Про матрицы и можно говорить, что они обратны друг другу или взаимно обратны.

Если определитель матрицы равен нулю, то обратная к ней не существует.

Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.

Определение 4. Квадратную матрицу назовем вырожденной или особенной матрицей , если , и невырожденной или неособенной матрицей , если .

Утверждение. Если обратная матрица существует, то она единственна.

Утверждение. Если квадратная матрица является невырожденной, то обратная для нее существует и (1) где - алгебраические дополнения к элементам .

Теорема. Обратная матрица для квадратной матрицы существует тогда и только тогда, когда матрица - невырожденная, обратная матрица единственна, и справедлива формула (1).

Замечание. Следует обратить особое внимание на места, занимаемые алгебраическими дополнениями в формуле обратной матрицы: первый индекс показывает номер столбца , а второй - номер строки , в которые нужно записать вычисленное алгебраическое дополнение.

Пример. .

Решение. Находим определитель

Так как , то матрица - невырожденная, и обратная для нее существует. Находим алгебраические дополнения:

Составляем обратную матрицу, размещая найденные алгебраические дополнения так, чтобы первый индекс соответствовал столбцу, а второй - строке: (2)

Полученная матрица (2) и служит ответом к задаче.

Замечание. В предыдущем примере было бы точнее ответ записать так:
(3)

Однако запись (2) более компактна и с ней удобнее проводить дальнейшие вычисления, если таковые потребуются. Поэтому запись ответа в виде (2) предпочтительнее, если элементы матриц - целые числа. И наоборот, если элементы матрицы - десятичные дроби, то обратную матрицу лучше записать без множителя впереди.

Замечание. При нахождении обратной матрицы приходится выполнять довольно много вычислений и необычно правило расстановки алгебраических дополнений в итоговой матрице. Поэтому велика вероятность ошибки. Чтобы избежать ошибок следует делать проверку: вычислить произведение исходной матрицы на итоговую в том или ином порядке. Если в результате получится единичная матрица, то обратная матрица найдена правильно. В противном случае нужно искать ошибку.

Пример. Найдите обратную матрицу для матрицы .

Решение. - существует.

Ответ: .

Вывод. Нахождение обратной матрицы по формуле (1) требует слишком много вычислений. Для матриц четвертого порядка и выше это неприемлемо. Реальный алгоритм нахождения обратной матрицы будет приведен позже.

Вычисление определителя и обратной матрицы с помощью метода Гаусса

Метод Гаусса можно использовать для нахождения определителя и обратной матрицы .

Именно, определитель матрицы равен det .

Обратная матрица находится решением систем линейных уравнений методом исключения Гаусса:

Где есть j-тый столбец единичной матрицы , - искомый вектор.

Полученные векторы решений - образуют, очевидно, столбцов матрицы , поскольку .

Формулы для определителя

1. Если матрица невырожденная, то и (произведение ведущих элементов).

Второго порядка называется число, равное разности между произведением чисел, образующих главную диагональ, и произведением чисел, стоящих на побочной диагонали, можно встретить следующие обозначения определителя: ; ; ; detA (детерминант).

.

Пример:
.

Определителем матрицы третьего порядка называется число или математическое выражение, вычисляемое по следующему правилу

Наиболее простым способом вычисления определителя третьего порядка является дописывание снизу определителя двух первых строк.

В образованной таблице чисел перемножаются элементы, стоящие на главной диагонали и на диагоналях параллельных главной, знак результата произведения не изменяется. Следующим этапом вычислений является аналогичное перемножение элементов, стоящих на побочной диагонали и на параллельных ей. Знаки у результатов произведений меняются на противоположные. Затем складываем полученные шесть слагаемых.

Пример:

Разложение определителя по элементам некоторой строки (столбца).

Минором М ij элемента а ij квадратной матрицы А называется определитель, составленный из элементов матрицы А , оставшихся после вычеркивания i- ой строки и j -го столбца.

Например, минором к элементу а 21 матрицы третьего порядка
будет определитель
.

Будем говорить, что элемент а ij занимает четное место, если i+j (сумма номеров строки и столбца на пересечении которых находится данный элемент) - четное число, нечетное место, если i+j - нечетное число.

Алгебраическим дополнением А ij элемента а ij квадратной матрицы А называется выражение (или величина соответствующего минора, взятого со знаком «+», если элемент матрицы занимает четное место, и со знаком «-», если элемент занимает нечетное место).

Пример:

а 23 = 4;

- алгебраическое дополнение элемента а 22 = 1.

Теорема Лапласа . Определитель равен сумме произведений элементов некоторой строки (столбца) на соответствующие им алгебраические дополнения.

Проиллюстрируем на примере определителя третьего порядка. Вычислить определитель третьего порядка разложением по первой строке можно следующим образом

Аналогично можно вычислить определитель третьего порядка, разложив по любой строке или столбцу. Удобно раскладывать определитель по той строке (или столбцу), в которой содержится больше нулей.

Пример :

Таким образом, вычисление определителя 3-го порядка сводится к вычислению 3-х определителей второго порядка. В общем случае можно вычислить определитель квадратной матрицы n -го порядка, сводя его к вычислению n определителей (n-1 )-го порядка

Замечание. Не существует простых способов для вычисления определителей более высокого порядка, аналогичных способам вычисления определителей 2-го и 3-го порядка. Поэтому для вычисления определителей выше третьего порядка может использоваться только метод разложения.


Пример . Вычислить определитель четвертого порядка.

Разложим определитель по элементам третьей строки

Свойства определителей:

1. Определитель не изменится, если его строки заменить столбцами и наоборот.

2. При перестановке двух соседних строк (столбцов) определитель меняет знак на противоположный.

3. Определитель с двумя одинаковыми строками (столбцами) равен 0.

4. Общий множитель всех элементов некоторой строки (столбца) определителя можно вынести за знак определителя.

5. Определитель не изменится, если к элементам одного из его столбцов (строки) прибавить соответствующие элементы любого другого столбца (строки), умноженные на некоторое число.

a i , j

Определители

det(2A )= det(2E ) detA = 0 2 0 (− 2)= 23 (− 2)= − 16 . 0 0 2

(d) Аналогично,

det(− 3A )= det(− 3E ) detA = (− 3)3 (− 2)= 54.

(e) Сначала найдем матрицу (A − 2E ) , а затем ее определитель:

− 1 5

A − 2 E=

−1

−3

det(A − 2E )= 0 (− 1) (− 3)= 0 .

2.4. Вычисление определителей

Здесь мы рассмотрим два метода вычисления определителей. Суть одного из них заключается в разложении определителя по элементам строки или столбца, в результате чего исходный определитель n -го порядка выражается черезn определителей меньшего порядка. Другой метод основывается на свойствах определителей и связан с преобразованием определителя к более простому виду. Комбинация двух методов дает наиболее эффективный путь вычисления определителей.

2.4.1. Разложение определителя по элементам строки или столбца

Предварительно введем некоторые важные для последующего изложения понятия.

Рассмотрим квадратную матрицу n- го порядка. Выберем i,j -ый элемент этой матрицы и вычеркнем i -ую строку и j -ый столбец. В результате

мы получаем матрицу (n –1)-го порядка, определитель которой называетсяминором элементаa i , j и обозначается символомM i , j .

Определители

Алгебраическое дополнение A i , j элементаa i , j определяется формулой

A i, j= (− 1) i + j M i, j.

Нетрудно заметить, что алгебраическое дополнение i,j -го элемента совпадает с минором этого элемента, если сумма индексов, нумерующих строку и столбец элемента, является четным числом. Для нечетных значенийi+j алгебраическое дополнение отличается от минора только знаком.

Теорема о разложении определителя по элементам строки.

Определитель матрицы A равен сумме произведений элементов строки на их алгебраические дополнения:

det A = a i ,1A i ,1+ a i ,2A i ,2+K+ a i ,n A i ,n =

= ∑ a i, jA i, j j= 1

Доказательство : По определению, определитель матрицыA представляет собой сумму

det A =

∑ a 1,k 1 a 2,k 2 K a i ,k i K a n ,k n (− 1) P { k 1 , k 2 , K , k n }

{k 1 ,k 2 ,K k i ,K k n }

по все возможным перестановкам индексов, нумерующих столбцы. Выберем произвольным образом некоторую строку, например, с

номером i . Один из элементов этой строки представлен в каждом произведенииa 1, k 1 a 2, k 2 K a i , k i K a n , k n . Поэтому слагаемые суммы (*)

можно перегруппировать, объединив в первую группу те, что содержат элемент a i ,1 в качестве общего множителя, во вторую группу – члены,

Другими словами, выражение (*) можно представить в виде линейной комбинации элементов a i , j (j = 1,2,L ,n ),

Определители

∑ a 1,k 1 a 2,k 2 K a i ,j K a n ,k n (− 1) P { k 1 , k 2 , K , k n } =

det A = ∑

j = 1{ k1 , k2 , K j, K kn }

∑ a 1, k1 a 2, k2 K a i− 1, ki − 1 a i+ 1, ki + 1 a n, kn (− 1) P { k 1 , k 2 , K , k n } =

= ∑ a i , j

j = 1

{k 1 ,k 2 ,K j ,K k n }

= ∑ a i ,j A i ,j = a i ,1A i ,1+ a i ,2A i ,2+K+ a i ,n A i ,n ,

j = 1

∑ a 1, k1 a 2, k2 L a i− 1, ki − 1 a i+ 1, ki + 1 K a n, kn (− 1) P (k 1 , L , k i − 1 , j , k i + 1 , L , k n ) .

A i, j=

{k 1 ,L ,k i − 1 ,k i = j ,k i + 1 ,L ,k n }

Покажем, что

A i , j представляет собой алгебраическое

дополнение

элемента a i , j .

Рассмотрим четность перестановки { k 1 , L , k i − 1 , j , k i + 1 , L , k n } .

Во-первых,

требуется i –1 транспозиций элементаj с

соседними

элементами, чтобы получить перестановку { j , k 1 , L , k i − 1 , k i + 1 , L , k n } .

Во-вторых, в полученной перестановке, элементj образует j –1 инверсий с другими элементами.

Следовательно,

(− 1) P (k 1 ,L ,k i − 1 ,j ,k i + 1 ,L ,k n )= (− 1) i − 1+ j − 1(− 1) P (k 1 ,L ,k i − 1 ,k i + 1 ,L ,k n )=

= (− 1) i+ j(− 1) P(k1 , L , ki − 1 , ki + 1 , L , kn )

∑ L a i− 1, ki − 1 a i+ 1, ki + 1 K (− 1) P (k 1 , L , k i − 1 , k i + 1 , L , k n ) = M i, j{ k 1 , L , k i − 1 , k i + 1 , L , k n }

представляет собой минор элемента a i , j .

Таким образом, A i , j = (− 1) i + j M i , j , что и требовалось доказать.

Поскольку det A = det A T , то тем самым справедлива и следующая

Теорема о разложении определителя по элементам столбца.

Определитель матрицы A равен сумме произведений элементов столбца на их алгебраические дополнения:

det A = a 1,j A 1,j + a 2,j A 2,j +K+ a n ,j A n ,j

= ∑ a i, jA i, j

i = 1

Определители

Теоремы о разложении определителя имеют важное значение в теоретических исследованиях. Они устанавливает, что проблема вычисления определителя n- го порядка сводится к проблеме вычисленияn определителей (n –1)-го порядка.

Примерs:

1) Вычислить определитель произвольной матрицы A = ||a ij || третьего

порядка разложением по элементам

(i) первой строки;

(ii) второго столбца.

Решение:

−a

det A =

A 11(a 22a 33− a 23a 32) − a 12(a 21a 33− a 23a 31) + a 13(a 21a 32− a 22a 31)

A 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32− a 11a 23a 32− a 12a 21a 33− a 13a 22a 31,

−a

det A =

= −a

= − a 12(a 12a 33− a 23a 31) + a 22(a 11a 33− a 13a 31) − a 32(a 11a 23− a 13a 21)

A 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32− a 11a 23a 32− a 12a 21a 33− a 13a 22a 31.

Результаты, полученные различными методами, идентичны.

Вычислить определитель

−5

разложением по элементам

−3

(i) первой строки,

(ii) второго столбца.

Решение:

Разложение определителя по элементам первой строки дает

−5

− (− 5)

−3

−3

− 3 7

2 4 5 + 5 1 5+ 3(7+ 12)= 122.

(ii) Тот же самый результат получается при разложении определителя по элементам второго столбца:

Определители

−5

= −(−5)

−7

−3

−3

− 3 5

5(5 + 0)+ 4 (10+ 9)− 7(0− 3)= 122.

2.4.2. Вычисление определителей методом элементарных

преобразований

Под элементарными преобразованиями понимаются следующие операции.

С учетом равноправия строк и столбцов определителя подобные операции в полной мере применимы к столбцам.

Идея метода заключается в том, чтобы с помощью элементарных преобразований строк и столбцов привести определитель к треугольному виду, что решает проблему его вычисления.

Можно поступать и несколько иначе: с помощью элементарных преобразований получить строку (или столбец), содержащую только один ненулевой элемент, и затем разложить полученный определитель по элементам этой строки (столбца). Подобная процедура понижает порядок определителя на одну единицу.

Примеры.

−4

−3

Вычислить det A , приведя матрицу к

1) Пусть A =

r 2+ 3 r 3

−3

↔r 3

→r 3

−8

−5

Определитель матрицы треугольного вида равен произведению ее диагональных элементов:

det A = − 1 8 9= − 72 . 2) Вычислить определитель матрицы

−2

−1

Решение : Сначала преобразуем первую строку с помощью элементарных операций над столбцами, стремясь получить в ней максимально возможное число нулей. С этой целью вычтем из второго столбца пятый столбец, предварительно умноженный на 5, а к третьему столбцу прибавим удвоенный второй столбец:

− 2 0

c → c− 5 c

−1

→c 2

2 c 1

− 14

−1

det A =

− 35

− 15

Теперь разложим определитель по элементам первой строки:

det A =

− 14

−1

− 35

− 15

Для определителя четвёртого и более высоких порядков обычно применяются иные методы вычисления, нежели использование готовых формул как для вычисления определителей второго и третьего порядков . Один из методов вычисления определителей высших порядков - использование следствия из теоремы Лапласа (саму теорему можно посмотреть, например, в книге А.Г. Куроша «Курс высшей алгебры»). Это следствие позволяет разложить определитель по элементам некоторой строки или столбца. При этом вычисление определителя n-го порядка сводится к вычислению n определителей (n-1)-го порядка. Именно поэтому такое преобразование именуют понижением порядка определителя. Например, вычисление определителя четвёртого порядка сводится к нахождению четырёх определителей третьего порядка.

Допустим, нам задана квадратная матрица n-го порядка, т.е. $A=\left(\begin{array} {cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \\ \end{array} \right)$. Вычислить определитель этой матрицы можно, разложив его по строке или по столбцу.

Зафиксируем некоторую строку, номер которой равен $i$. Тогда определитель матрицы $A_{n\times n}$ можно разложить по выбранной i-й строке, используя следующую формулу:

\begin{equation} \Delta A=\sum\limits_{j=1}^{n}a_{ij}A_{ij}=a_{i1}A_{i1}+a_{i2}A_{i2}+\ldots+a_{in}A_{in} \end{equation}

$A_{ij}$ обозначает алгебраическое дополнение элемента $a_{ij}$. Для подробной информации об этом понятии рекомендую глянуть тему Алгебраические дополнения и миноры . Запись $a_{ij}$ обозначает элемент матрицы или определителя, расположенный на пересечении i-й строки j-го столбца. Для более полной информации можно глянуть тему Матрицы. Виды матриц. Основные термины .

Допустим, мы хотим найти сумму $1^2+2^2+3^2+4^2+5^2$. Какой фразой можно охарактеризовать запись $1^2+2^2+3^2+4^2+5^2$? Можно сказать так: это сумма единицы в квадрате, двойки в квадрате, тройки в квадрате, четвёрки в квадрате и пятёрки в квадрате. А можно сказать покороче: это сумма квадратов целых чисел от 1 до 5. Чтобы выражать сумму более коротко и служит запись с помощью буквы $\sum$ (это греческая буква "сигма").

Вместо $1^2+2^2+3^2+4^2+5^2$ мы можем использовать такую запись: $\sum\limits_{i=1}^{5}i^2$. Буква $i$ именуется индексом суммирования , а числа 1 (начальное значение $i$) и 5 (конечное значение $i$) называются нижним и верхним пределами суммирования соответственно.

Расшифруем запись $\sum\limits_{i=1}^{5}i^2$ подробно. Если $i=1$, то $i^2=1^2$, поэтому первым слагаемым данной суммы будет число $1^2$:

$$ \sum\limits_{i=1}^{5}i^2=1^2+\ldots $$

Следующее целое число после единицы - двойка, поэтому подставляя $i=2$, получим: $i^2=2^2$. Сумма теперь станет такой:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+\ldots $$

После двойки следующее число - тройка, поэтому подставляя $i=3$ будем иметь: $i^2=3^2$. И сумма примет вид:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+3^2+\ldots $$

Осталось подставить лишь два числа: 4 и 5. Если подставить $i=4$, то $i^2=4^2$, а если подставить $i=5$, то $i^2=5^2$. Значения $i$ достигли верхнего предела суммирования, поэтому слагаемое $5^2$ будет последним. Итак, окончательно сумма теперь такова:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+3^2+4^2+5^2. $$

Эту сумму можно и вычислить, банально сложив числа: $\sum\limits_{i=1}^{5}i^2=55$.

Для практики попробуйте записать и вычислить следующую сумму: $\sum\limits_{k=3}^{8}(5k+2)$. Индекс суммирования здесь - буква $k$, нижний предел суммирования равен 3, а верхний предел суммирования равен 8.

$$ \sum\limits_{k=3}^{8}(5k+2)=17+22+27+32+37+42=177. $$

Аналог формулы (1) существует и для столбцов. Формула для разложения определителя по j-му столбцу выглядит следующим образом:

\begin{equation} \Delta A=\sum\limits_{i=1}^{n}a_{ij}A_{ij}=a_{1j}A_{1j}+a_{2j}A_{2j}+\ldots+a_{nj}A_{nj} \end{equation}

Правила, выраженные формулами (1) и (2), можно сформулировать так: определитель равен сумме произведений элементов некоей строки или столбца на алгебраические дополнения этих элементов. Для наглядности рассмотрим определитель четвёртого порядка, записанный в общем виде:

$$\Delta=\left| \begin{array} {cccc} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ \end{array} \right|$$

Выберем произвольный столбец в этом определителе. Возьмём, к примеру, столбец под номером 4. Запишем формулу для разложения определителя по выбранному четвёртому столбцу:

Аналогично, выбирая, к примеру, третью строку, получим разложение по этой строке:

Пример №1

Вычислить определитель матрицы $A=\left(\begin{array} {ccc} 5 & -4 & 3 \\ 7 & 2 & -1 \\ 9 & 0 & 4 \end{array} \right)$, используя разложение по первой строке и второму столбцу.

Нам нужно вычислить определитель третьего порядка $\Delta A=\left| \begin{array} {ccc} 5 & -4 & 3 \\ 7 & 2 & -1 \\ 9 & 0 & 4 \end{array} \right|$. Чтобы разложить его по первой строке нужно использовать формулу . Запишем это разложение в общем виде:

$$ \Delta A= a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}. $$

Для нашей матрицы $a_{11}=5$, $a_{12}=-4$, $a_{13}=3$. Для вычисления алгебраических дополнений $A_{11}$, $A_{12}$, $A_{13}$ станем использовать формулу №1 из темы, посвящённой . Итак, искомые алгебраические дополнения таковы:

\begin{aligned} & A_{11}=(-1)^2\cdot \left| \begin{array} {cc} 2 & -1 \\ 0 & 4 \end{array} \right|=2\cdot 4-(-1)\cdot 0=8;\\ & A_{12}=(-1)^3\cdot \left| \begin{array} {cc} 7 & -1 \\ 9 & 4 \end{array} \right|=-(7\cdot 4-(-1)\cdot 9)=-37;\\ & A_{13}=(-1)^4\cdot \left| \begin{array} {cc} 7 & 2 \\ 9 & 0 \end{array} \right|=7\cdot 0-2\cdot 9=-18. \end{aligned}

Как мы нашли алгебраические дополнения? показать\скрыть

Подставляя все найденные значения в записанную выше формулу, получим:

$$ \Delta A= a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}=5\cdot{8}+(-4)\cdot(-37)+3\cdot(-18)=134. $$

Как видите, процесс нахождения определителя третьего порядка мы свели к вычислению значений трёх определителей второго порядка. Иными словами, мы понизили порядок исходного определителя.

Обычно в таких простых случаях не расписывают решение подробно, отдельно находя алгебраические дополнения, а уж затем подставляя их в формулу для вычисления определителя. Чаще всего просто продолжают запись общей формулы, - до тех пор, пока не будет получен ответ. Именно так мы станем раскладывать определитель по второму столбцу.

Итак, приступим к разложению определителя по второму столбцу. Вспомогательных вычислений производить не будем, - просто продолжим формулу до получения ответа. Обратите внимание, что во втором столбце один элемент равен нулю, т.е. $a_{32}=0$. Это говорит о том, что слагаемое $a_{32}\cdot A_{32}=0\cdot A_{23}=0$. Используя формулу для разложения по второму столбцу, получим:

$$ \Delta A= a_{12}\cdot A_{12}+a_{22}\cdot A_{22}+a_{32}\cdot A_{32}=-4\cdot (-1)\cdot \left| \begin{array} {cc} 7 & -1 \\ 9 & 4 \end{array} \right|+2\cdot \left| \begin{array} {cc} 5 & 3 \\ 9 & 4 \end{array} \right|=4\cdot 37+2\cdot (-7)=134. $$

Ответ получен. Естественно, что результат разложения по второму столбцу совпал с результатом разложения по первой строке, ибо мы раскладывали один и тот же определитель. Заметьте, что при разложении по второму столбцу мы делали меньше вычислений, так как один элемент второго столбца был равен нулю. Именно исходя из таких соображений для разложения стараются выбирать тот столбец или строку, которые содержат побольше нулей.

Ответ : $\Delta A=134$.

Пример №2

Вычислить определитель матрицы $A=\left(\begin{array} {cccc} -1 & 3 & 2 & -3\\ 4 & -2 & 5 & 1\\ -5 & 0 & -4 & 0\\ 9 & 7 & 8 & -7 \end{array} \right)$, используя разложение по выбранной строке или столбцу.

Для разложения выгоднее всего выбирать ту строку или столбец, которые содержат более всего нулей. Естественно, что в данном случае имеет смысл раскладывать по третьей строке, так как она содержит два элемента, равных нулю. Используя формулу, запишем разложение определителя по третьей строке:

$$ \Delta A= a_{31}\cdot A_{31}+a_{32}\cdot A_{32}+a_{33}\cdot A_{33}+a_{34}\cdot A_{34}. $$

Так как $a_{31}=-5$, $a_{32}=0$, $a_{33}=-4$, $a_{34}=0$, то записанная выше формула станет такой:

$$ \Delta A= -5 \cdot A_{31}-4\cdot A_{33}. $$

Обратимся к алгебраическим дополнениям $A_{31}$ и $A_{33}$. Для их вычисления будем использовать формулу №2 из темы, посвящённой определителям второго и третьего порядков (в этом же разделе есть подробные примеры применения данной формулы).

\begin{aligned} & A_{31}=(-1)^4\cdot \left| \begin{array} {ccc} 3 & 2 & -3 \\ -2 & 5 & 1 \\ 7 & 8 & -7 \end{array} \right|=10;\\ & A_{33}=(-1)^6\cdot \left| \begin{array} {ccc} -1 & 3 & -3 \\ 4 & -2 & 1 \\ 9 & 7 & -7 \end{array} \right|=-34. \end{aligned}

Подставляя полученные данные в формулу для определителя, будем иметь:

$$ \Delta A= -5 \cdot A_{31}-4\cdot A_{33}=-5\cdot 10-4\cdot (-34)=86. $$

В принципе, всё решение можно записать в одну строку. Если пропустить все пояснения и промежуточные вычисления, то запись решения будет такова:

$$ \Delta A= a_{31}\cdot A_{31}+a_{32}\cdot A_{32}+a_{33}\cdot A_{33}+a_{34}\cdot A_{34}=\\= -5 \cdot (-1)^4\cdot \left| \begin{array} {ccc} 3 & 2 & -3 \\ -2 & 5 & 1 \\ 7 & 8 & -7 \end{array} \right|-4\cdot (-1)^6\cdot \left| \begin{array} {ccc} -1 & 3 & -3 \\ 4 & -2 & 1 \\ 9 & 7 & -7 \end{array} \right|=-5\cdot 10-4\cdot (-34)=86. $$

Ответ : $\Delta A=86$.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии