Периферическое сосудистое сопротивление. Что такое опсс в кардиологии Повышение опсс

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Сопротивления кровеносных сосудов увеличено тогда, когда уменьшен просвет сосуда. Уменьшение просвета сосуда происходит при:

  1. сокращении мышечного слоя кровеносных сосудов;
  2. отёке эндотелиальных клеток сосудов;
  3. при некоторых заболеваниях (атеросклероз, сахарный диабет, облитерирующий эндартериит);
  4. при возрастных изменениях в сосудах.

Оболочка кровеносного сосуда состоит из нескольких слоёв.

Изнутри кровеносный сосуд покрыт эндотелиальными клетками. Они непосредственно контактируют с кровью. При увеличении в крови ионов натрия (избыточное употребление с пищей поваренной соли, нарушение выведения натрия из крови почками), натрий проникает в эндотелиальные клетки, покрывающие кровеносные сосуды изнутри. Увеличение концентрации натрия в клетке приводит к увеличению количества воды в клетке. Эндотелиальные клетки увеличиваются в объёме (набухают, «отекают»). Это приводит к сужению просвета сосуда.

Средний слой оболочки сосудов – мышечный. Он состоит из гладкомышечных клеток, которые размещены в виде спирали, которая опутывает сосуд. Гладкомышечные клетки способны сокращаться. Их направление противоположно продольной оси сосуда (направлению движения крови по сосуду). При их сокращении сосуд сжимается, внутренний диаметр сосуда уменьшается. При их расслаблении сосуд расширяется, внутренний диаметр сосуда увеличивается.

Чем более выражен мышечный слой кровеносного сосуда, тем более выражена способность сосуда сокращаться и расширяться. Отсутствует возможность к сокращению и расслаблению в артериях эластичного типа (аорта, лёгочной ствол, лёгочная и общая сонная артерии), в капиллярах, в посткапилярных и собирательных венулах, в венах волокнистого типа (вены мозговых оболочек, сетчатки глаза, яремные и внутренняя грудная вены, вены верхней части туловища, шеи и лица, верхняя полая вена, вены костей, селезенки, плаценты). Наиболее выражена эта возможность в артериях мышечного типа (артерии мозга, позвоночные, плечевые, лучевые, подколенные артерии и другие), менее – в артериях мышечно-эластичного типа (подключичные, брыжеечные артерии, чревный ствол, подвздошные, бедренные артерии и другие), в венах верхних и нижних конечностей, частично – в артериолах в виде прекапилярных сфинктеров (гладкомышечные клетки размещены в виде кольца в местах перехода артериол в капилляры), слабо – в венах пищеварительного тракта, мышечных венулах, в артериоло-венулярных анастомозах (шунтах) и других.

В гладкомышечных клетках есть белковые соединения в виде нитей, которые называются филаментами. Филаменты состоящие из белка миозина, называются миозиновыми филаментами, из актина – актиновыми филаментами. В клетке миозиновые филаменты фиксированы к плотным тельцам, которые находятся на оболочке клетки и в цитоплазме. Актиновые филаменты находятся между ними. Актиновые и миозиновые филаменты взаимодействуют друг с другом. Взаимодействие между актиновыми филаментами и миозиновыми филаментами приводит гладкомышечную клетку в состояние сокращения (сжатия) или расслабления (расширения). Этот процесс регулируется двумя внутриклеточными ферментами киназой лёгких цепей миозина (ЛЦМ) и фосфатазой ЛЦМ. При активации киназы ЛЦМ происходит сокращение гладкомышечной клетки, при активации фосфатазы ЛЦМ – расслабление. Активация обеих ферментов зависит от количества ионов кальция внутри клетки. При увеличении количества ионов кальция в клетке активируется киназа ЛЦМ, при уменьшении количества ионов кальция внутри клетки – фосфатаза ЛЦМ.

Внутри клетки (в цитоплазме клетки) ионы кальция вступают в соединение с внутриклеточным белком кальмодулином. Это соединение активирует киназу ЛЦМ и инактивирует фосфатазу ЛЦМ. Киназа ЛЦМ фосфорилирует легкие цепи миозина (способствует присоединению фосфатной группы от аденозинтрифосфата (АТФ) к ЛЦМ. После этого миозин приобретает сродство к актину. Образуются поперечные актиномиозиновые молекулярные мостики. При этом актиновые и миозиновые филаменты смещаются по отношению друг к другу. Это смещение приводит к уменьшению длины гладкомышечной клетки. Это состояние называется сокращением гладкомышечной клетки.

При уменьшении количества ионов кальция внутри гладкомышечной клетки происходит активация фосфатазы ЛЦМ и инактивация киназы ЛЦМ. Фосфатаза ЛЦМ дефосфорилирует (отсоединяет фосфатные группы от ЛЦМ). Миозин теряет сродство к актину. Поперечные актиномиозиновые мостики разрушаются. Гладкомышечная клетка расслабляется (длина гладкомышечной клетки увеличивается).

Количество ионов кальция внутри клетки регулируется кальциевыми каналами на мембране (оболочке) клетки и на оболочке внутриклеточного ретикулума (внутриклеточного депо кальция). Кальциевые каналы могут изменять свою полярность. При одной полярности ионы кальция поступают в цитоплазму клетки, при противоположной – покидают цитоплазму клетки. Полярность кальциевых каналов зависит от количества цАМФ (циклического аденозинмонофосфата) внутри клетки. При увеличении количества цАМФ внутри клетки ионы кальция поступают в цитоплазму клетки. При уменьшении цАМФ в цитоплазме клетки, ионы кальция покидают цитоплазму клетки. цАМФ синтезируется из АТФ (аденозинтрифосфата) под влиянием мембранного фермента аденилатциклазы, который находится в неактивном состоянии на внутренней поверхности мембраны.

При соединении катехоламинов (адреналина, норадреналина) к α1- гладкомышечных клеток сосудов происходит активация аденилатциклазы, далее взаимосвязано – увеличивается количество цАМФ внутри клетки – изменяется полярность клеточной мембраны – ионы кальция поступают в цитоплазму клетки – количество ионов кальция внутри клетки увеличивается – увеличивается количество кальмодулина связанного с кальцием – активируется киназа ЛЦМ, инактивруется фосфатаза ЛЦМ – происходит фосфорилирование легких цепей миозина (присоединение фосфатных групп от АТФ к ЛЦМ) – миозин приобретает сродство к актину – образуются поперечные актиномиозиновые мостики. Гладкомышечная клетка сокращается (длина гладкомышечной клетки уменьшается) – суммарно в масштабах кровеносного сосуда – кровеносный сосуд сокращается, просвет сосуда (внутренний диаметр сосуда) сужается – суммарно в масштабах сосудистой системы – сопротивление сосудов увеличивается, повышается. Так повышение тонуса симпатической (ВНС) приводит к спазму сосудов, увеличению сосудистого сопротивления и к связанному с этим, .

Избыточному поступлению ионов кальция в цитоплазму клетки препятствует фермент кальций-зависимая фосфодиэстераза. Этот фермент активизируется при определённом (избыточном) количестве ионов кальция в клетке. Активированная кальций-зависимая фосфодиэстераза гидролизует (расщепляет) цАМФ, что приводит к уменьшению количества цАМФ в цитоплазме клетки и взаимосвязано изменяет полярность кальциевых каналов в противоположную сторону – поступление ионов кальция в клетку уменьшается или прекращается.

Работа кальциевых каналов регулируется многими веществами как внутреннего и внешнего происхождения, которые влияют на кальциевые каналы через соединение с определёнными белками (рецепторами) на поверхности гладкомышечной клетки. Так, при соединении медиатора парасимпатической ВНС ацетилхолина с холинорецептором гладкомышечной клетки происходит дезактивация аденилатциклазы, что взаимосвязано приводит к уменьшению количества цАМФ и, в конечном итоге – к расслаблению гладкомышечной клетки – суммарно в масштабах кровеносного сосуда – кровеносный сосуд расширяется, просвет сосуда (внутренний диаметр сосуда) увеличивается – суммарно в масштабах сосудистой системы – сопротивление сосудов уменьшается. Так повышение тонуса парасимпатической ВНС приводит к расширению сосудов, уменьшению сосудистого сопротивления, уменьшает влияние симпатической ВНС на кровеносные сосуды.

Примечание: Аксоны (отростки) ганглионарных нейронов (нервных клеток) ВНС имеют многочисленные разветвления в толще гладкомышечных клеток сосудов. На этих разветвлениях имеются многочисленные утолщения, которые выполняют функцию синапсов – участков через которые нейрон выделяет медиатор при возбуждении.

При соединении белка (АГ2) с гладкомышечной клетки сосуда происходит её сокращение. Если уровень АТ2 в крови продолжительное время увеличен (артериальная гипертензия), кровеносные сосуды продолжительное время находятся в спазмированном состоянии. Высокий уровень АТ2 в крови поддерживает длительное время гладкомышечные клетки кровеносных сосудов в состоянии сокращения (сжатия). В результате этого развивается гипертрофия (утолщение) гладкомышечных клеток и избыточное образование коллагеновых волокон, стенки сосудов утолщаются, внутренний диаметр сосудов уменьшается. Таким образом, гипертрофия мышечного слоя кровеносных сосудов, развившаяся под влиянием избыточного количества АТ2 в крови, становится ещё одним фактором поддерживающим повышенное сопротивление сосудов, а, значит, – повышенное артериальное давление.

Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением :

Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется изуравнения Пуазейля для гидродинамики:

где R - гидравлическое сопротивление, l - длина сосуда, v - вязкость крови, r - радиус сосудов.

Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк , используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:

где Р1-Р2 - разность давлений в начале и в конце участка сосудистой системы, Q - величина кровотока через этот участок, 1332- коэффициент перевода единиц сопротивления в систему CGS.

Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных. Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми. Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.

Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.

В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин с ¦ см, при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200-3000 дин с см-5.



Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте. На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.

65

Рассмотрим для конкретности пример ошибочного (ошибка, если делить на S) вычисления общего сосудистого сопротивления. В ходе обобщения клинических результатов используются данные больных разного роста, возраста и веса. Для крупного больного (например, стокилограммового) МОК 5 литров в минуту в покое может быть недостаточным. Для среднего – в пределах нормы, а для больного малого веса, скажем, 50 килограмм – из­быточным. Как учесть эти обстоятельства?

В течение последних двух десятков лет большинство врачей пришли к негласной договоренности: относить те показатели кровообращения, которые зависят от размеров человека, к поверхности его тела. Поверхность (S) вычисляется в зависимости от веса и роста по формуле (хорошо построенные номограммы дают более точные отношения):

S=0,007124 W 0,425 H 0,723 , W–вес; H–рост.

Если исследуется один больной, то использование индексов не актуально, но когда нужно сравнить показатели различных больных (группы), провести их статобработку, сравнение с нормами, то почти всегда необходимо пользоваться индексами.

Общее сосудистое сопротивление большого круга кровообращения (ОСС) используется широко и, к сожалению, стало источником необоснованных выводов и интерпретаций. Поэтому мы здесь остановимся на нём подробно.

Напомним формулу, по которой вычисляется абсолютная величина общего сосудистого сопротивления (ОСС, или ОПС, ОПСС, используются разные обозначения):

ОСС=79,96 (АД-ВД) МОК -1 дин*с*см - 5 ;

79,96 – коэффициент размерности, АД – среднее артериальное давление в мм рт. ст., ВД - венозное давление в мм рт. ст., МОК – минутный объем кровообращения в л/мин)

Пусть у крупного человека (полного взрослого европейца) МОК=4 литра в минуту, АД-ВД=70, тогда ОСС приблизительно (чтобы не утерять суть за десятыми долями) будет иметь величину

OСC=79,96 (АД-ВД) МОК -1 @ 80 70/4@1400 дин*с*см -5 ;

запомним - 1400 дин*с*см - 5 .

Пусть у небольшого человека (худого, низкого роста, но вполне жизнеспособного) МОК=2 литра в минуту, АД-ВД=70, отсюда ОСС будет приблизительно

79,96 (АД-ВД) МОК -1 @80 70/2@2800 дин*с*см -5 .

ОПС у небольшого человека больше, чем у крупного в 2 раза. У обоих гемодинамика в норме, а сравнивать показатели ОСС между собой и с нормой не имеет никагого смысла. Однако такие сравнения выполняются, и по ним делаются клинические заключения .

Чтобы можно было сравнивать, вводятся индексы, учитывающие поверхность (S) тела человека. Умножив общее сосудистое сопротивление (ОСС) на S, получим индекс (ОСС*S=ИОСС), который можно сравнивать:

ИОСС=79,96 (АД-ВД) МОК -1 S (дин*с*м 2 *см -5).

Из опыта измерений и вычислений известно, что для крупного человека S примерно 2 м 2 , для очень маленького - примем 1 м 2 . Их общие сосудистые сопротивления не будут равными, а индексы равны:

ИОСС=79,96 70 4 -1 2=79,96 70 2 -1 1=2800.

Если исследуется один и тот же больной без сравнения с другими и с нормативами, вполне допустимо использовать прямые абсолютные оценки функции и свойств ССС.

Если исследуются разные, особенно отличающиеся размерами больные и если необходима статистическая обработка, то нужно использовать индексы.

Индекс эластичности артериального сосудистого резервуара (ИЭА)

ИЭА = 1000 СИ/[(АДС - АДД)*ЧСС]

вычисляется в соответствии с законом Гука и моделью Франка. ИЭА тем больше, чем больше СИ, и тем меньше, чем больше произведение частоты сокращений (ЧСС) на разность артериального систолического (АДС) и диастолического (АДД) давлений. Можно вычислять эластичность артериального резервуара (или модуль упругости) используя скорость движения пульсовой волны. При этом будет оценен модуль упругости только той части артериального сосудистого резервуара, которая используется для измерения скорости пульсовой волны.

Индекс эластичности лёгочного артериального сосудистого резервуара (ИЭЛА)

ИЭЛА = 1000 СИ/[(ЛАДС - ЛАДД)*ЧСС]

вычисляется аналогично предыдущему описанию: ИЭЛА тем больше, чем больше СИ и тем меньше, чем больше произведение частоты сокращений на разность лёгочного артериального систолическкого (ЛАДС) и диастолического (ЛАДД) давлений. Эти оценки очень приближённы, надеемся, что с усовершенствованием методик и аппаратуры они будут улучшены.

Индекс эластичности венозного сосудистого резервуара (ИЭВ)

ИЭВ = (V/S-АД ИЭА-ЛАД ИЭЛА-ЛВД ИЭЛВ)/ВД

вычисляется с помощью математической модели. Собственно, математическая модель является главным инструментом достижения системности показателей. При имеющихся клинико - физиологических знаниях модель не может быть адекватной в обычном понимании. Непрерывная индивидуализация и возможности вычислительной техники позволяют резко увеличить конструктивность модели. Это делает модель полезной, несмотря на слабую адекватность по отношению к группе больных и к одному для различных условий лечения и жизни.

Индекс эластичности лёгочного венозного сосудистого резервуара (ИЭЛВ)

ИЭЛВ = (V/S-АД ИЭА-ЛАД ИЭЛА)/(ЛВД+В ВД)

вычисляется, как и ИЭВ, с помощью математической модели. Усредняет как собственно эластичность лёгочного сосудистого русла так и влияние на него альвеолярного русла и режима дыхания. В – коэффициент настройки.

Индекс общего периферического сосудистого сопротивления (ИОСС) был рассмотрен раньше. Повторим здесь вкратце для удобства читателя:

ИОСС=79,92 (АД-ВД)/СИ

Это отношение не отражает в явном виде ни радиуса сосудов, ни их ветвления и длины, ни вязкости крови, а также многого другого. Зато он отображает взаимозависимость СИ, ОПС, АД и ВД. Подчеркнём, что учитывая масштаб и виды усреднений (по времени, по длине и сечению сосуда и т.п.), который свойственен современному клиническому контролю, такая аналогия полезна. Более того, это почти что единственно возможная формализация, если, конечно, задача - не теоретические исследования, а клиническая практика.

Показатели ССС (системные наборы) для этапов операции АКШ. Индексы выделены жирным шрифтом

Показатели ССС Обозначе­ние Размерности Поступление в оперблок Окончание операции Среднее за период времени в реанимации до эстуба­ции
Сердечный индекс СИ л/(мин м 2) 3,07±0,14 2,50±0,07 2,64±0,06
Частота сердечных сокращений ЧСС уд/мин 80,7±3,1 90,1±2,2 87,7±1,5
Артериальное давление систолическое АДС мм рт.ст. 148,9±4,7 128,1±3,1 124,2±2,6
Артериальное давление диастолическое АДД мм рт.ст. 78,4±2,5 68,5±2,0 64,0±1,7
Артериальное давление среднее АД мм рт.ст. 103,4±3,1 88,8±2,1 83,4±1,9
Легочное артериальное давление систолическое ЛАДС мм рт.ст. 28,5±1,5 23,2±1,0 22,5±0,9
Легочное артериальное давление диастолическое ЛАДД мм рт.ст. 12,9±1,0 10,2±0,6 9,1±0,5
Легочное артериальное давление среднее ЛАД мм рт.ст. 19,0±1,1 15,5±0,6 14,6±0,6
Центральное венозное давление ЦВД мм рт.ст. 6,9±0,6 7,9±0,5 6,7±0,4
Легочное венозное давление ЛВД мм рт.ст. 10,0±1,7 7,3±0,8 6,5±0,5
Индекс левого желудочка сердца ИЛЖ см 3 /(с м 2 мм рт.ст.) 5,05±0,51 5,3±0,4 6,5±0,4
Индекс правого желудочка сердца ИПЖ см 3 /(с м 2 мм рт.ст.) 8,35±0,76 6,5±0,6 8,8±0,7
Индекс сосудистого сопротивления ИОСС дин с м 2 см -5 2670±117 2787±38 2464±87
Индекс легочного сосудистого сопротивления ИЛСС дин с м 2 см -5 172±13 187,5±14,0 206,8±16,6
Индекс эластичности вен ИЭВ см 3 м -2 мм рт.ст.-1 119±19 92,2±9,7 108,7±6,6
Индекс эластичности артерий ИЭА см 3 м -2 мм рт.ст. -1 0,6±0,1 0,5±0,0 0,5±0,0
Индекс эластичности легочных вен ИЭЛВ см 3 м -2 мм рт.ст. -1 16,3±2,2 15,8±2,5 16,3±1,0
Индекс эластичности легочных артерий ИЭЛА см 3 м -2 мм рт.ст. -1 3,3±0,4 3,3±0,7 3,0±0,3

text_fields

text_fields

arrow_upward

Основными параметрами, характеризующими системную гемоди­намику, являются: системное артериальное давление, общее перифе­рическое сопротивление сосудов, сердечный выброс, работа сердца, венозный возврат крови к сердцу, центральное венозное давление, объем циркулирующей крови

Системное артериальное давление

Внутрисосудистое давление крови является одним из основных параметров, по которому судят о функционировании сердечно-сосудистой системы. Артериальное давление есть интегральная величина, составляющими и определя­ющими которую являются объемная скорость кровотока (Q) и со­противление (R) сосудов. Поэтому системное артериальное давление (САД) является результирующей величиной сердечного выброса (СВ) и обшего периферического сопротивления сосудов (ОПСС):

САД = СВ x ОПСС

Равным образом давление в крупных ветвях аорты (собственно артериальное) определяется как

АД = Q x R

Применительно к артериальному давлению различают систоличес­кое, диастолическое, среднее и пульсовое давления. Систоличес­ кое - определяется в период систолы левого желудочка сердца, диа­ столическое - в период его диастолы, разница между величиной систолического и диастолического давлений характеризует пульсовое давление, а в упрощенном варианте среднее арифметическое между ними - среднее давление (рис.7.2).

Рис.7.2. Систолическое, диастолическое, среднее и пульсовое давления в сосудах.

Величина внутрисосудистого давления при прочих равных услови­ях определяется расстоянием точки измерения от сердца. Различают, поэтому, аортальное давление, артериальное давление, артериоляр- ное, капиллярное, венозное (в мелких и крупных венах) и централь­ное венозное (в правом предсердии) давление.

В биологических и медицинских исследованиях общепринятым яв­ляется измерение артериального давления в миллиметрах ртутного столба (мм рт.ст.), а венозного - в миллиметрах водного столба (мм вод.ст.).

Измерение давления в артериях производится с помощью прямых (кровавых) или косвенных (бескровных) методов. В первом случае, катетер или игла вводятся непосредственно в просвет сосуда, а регистрирующие установки могут быть различные (от ртутного ма­нометра до совершенных электроманометров, отличающихся боль­шой точностью измерения и разверсткой пульсовой кривой). Во втором случае, используются манжеточные способы сдавливания со­суда конечности (звуковой метод Короткова, пальпаторный - Рива-Роччи, осциллографический и др.).

У человека в покое наиболее усредненным из всех средних ве­личин считается систолическое давление - 120-125 мм рт.ст., диа-столическое - 70-75 мм рт.ст. Эти величины зависят от пола, возраста, конституции человека, условий его работы, географическо­го пояса проживания и т.д.

Являясь одним из важных интегральных показателей состояния системы кровообращения, уровень АД, однако, не позволяет судить о состоянии кровоснабжения органов и тканей или объемной ско­рости кровотока в сосудах. Выраженные перераспределительные сдвиги в системе кровообращения могут происходить при неизмен­ном уровне АД благодаря тому, что изменения ОПСС могут ком­пенсироваться противоположными сдвигами СВ, а сужение сосудов в одних регионах сопровождается их расширением в других. При этом одним из важнейших факторов, определяющих интенсивность кровоснабжения тканей, является величина просвета сосудов, коли­чественно определяемая через их сопротивление кровотоку.

Общее периферическое сопротивление сосудов ОПСС

text_fields

text_fields

arrow_upward

Под этим терми­ном понимают общее сопротивление всей сосудистой системы вы­брасываемому сердцем потоку крови. Это соотношение описывается уравнением:

ОПСС = САД / СВ

которое используется в физиологической и клинической практике для расчета величины этого параметра или его изменений. Как сле­дует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Прямых бескровных методов измерения общего периферического сопротивления пока не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:

R = 8lη / πr 4

где R - гидравлическое сопротивление, l - длина сосуда, η - вязкость крови, r - радиус сосудов.

Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обыч­но неизвестными, Франк, используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:

R = (P 1 – P 2)/Q x 1332

где P 1 P 2 - разность давлений в начале и в конце участка сосудистой системы, Q - величина кровотока через этот участок, 1332 - коэффициент перевода единиц сопротивления в систему CGS .

Уравнение Франка широко используется на практике для опреде­ления сопротивления сосудов, хотя оно во многих случаях не от­ражает истинных физиологических взаимоотношений между объем­ным кровотоком, АД и сопротивлением сосудов кровотоку у тепло­кровных. Другими словами, эти три параметра системы действи­тельно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время изменения этих параметров могут быть в разной мере взаимозависимыми. Так, в определенных условиях уровень САД может определяться преиму­щественно величиной ОПСС или СВ.

В обычных физиологических условиях ОПСС может составлять от 1200 до 1600 дин.с.см -5 ; при гипертонической болезни эта величина может возрастать в два раза против нормы и составлять от 2200 до 3000 дин.с.см -5 .

Величина ОПСС состоит из сумм (не арифметических) сопротив­лений регионарных отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис.7.3 показана более выраженная степень повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плече-головной артерии при прессорном рефлексе.

В соответствии со степенью повышения сопротивления сосудов этих бассейнов прирост кровото­ка (по отношению к его исходной величине) в плече-головной артерии будет относительно больше, чем в грудной аорте. На этом механизме построен так называемый эффект «централизации» кро­ вообращения, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) направление крови, прежде все­го, к головному мозгу и миокарду.

В практической медицине нередко делаются попытки отождест­влять уровень артериального давления (или его изменения) с вели деленным термином «тонус» сосудов).

Во-первых , это не следует из уравнения Франка, где показана роль в поддержании и изменении артериального давления и сердечного выброса (Q).
Во-вторых , спе­циальные исследования показали, что между изменениями АД и ОПСС не всегда имеет место прямая зависимость. Так, нарастание величин этих параметров при нейрогенных влияниях может идти параллельно, но затем ОПСС возвращается к исходному уровню, а артериальное давление оказывается еще повышенным (рис.7.4), что указывает на роль в его поддержании и сердечного выброса.

Рис. 7.4. Повышение суммарного сопротивления сосудов большого круга кровообращения и аортального давления при прессорном рефлексе.

Сверху вниз:
аортальное давление,
перфузионное давление в сосудах большого круга (мм рт.ст.),
отметка нанесения раздражения,
отметка времени (5 с).

Сердце можно представить себе как генератор по­тока и генератор давления. При низком периферическом сосудистом сопротивлении сердце работает как генератор потока. Это наиболее экономичный режим, с максимальным коэффициентом полезного действия.

Перестройка системы кровообращения при беремен­ности, в частности гиперволемическая гемодилюция, направлена на переход в режим работы генератора потока.

Основной механизм компенсации увеличившихся требований к системе кровообращения - постоянно снижающееся периферическое сосудистое сопротивле­ние. Общее периферическое сопротивление сосудов (ОПСС) вычисляется путем деления среднего артери­ального давления на сердечный выброс. При нормально протекающей беременности сердечный выброс уве­личивается, а артериальное давление остается преж­ним или даже имеет некоторую тенденцию к снижению. Следовательно, периферическое сосудистое со­противление должно уменьшаться, и к 14-24 неделям беременности оно снижается до 979-987 дин см-сек"5. Происходит это вследствие дополнительного открытия ранее не функционировавших капилляров и снижения тонуса других периферические сосудов.

Постоянно снижающееся сопротивление перифери­ческих сосудов с увеличением срока беременности требует четкой работы механизмов, поддерживающих нормальное кровообращение. Основной контрольный механизм острых изменений артериального давления - синоаортальный барорефлекс. У беременных чув­ствительность этого рефлекса к малейшим изменени­ям артериального давления значительно повышается. Напротив, при артериальной гипертензии, развиваю­щейся во время беременности, чувствительность синоаортального барорефлекса резко снижается, даже в сравнении с рефлексом у небеременных женщин. В результате этого нарушается регуляция соотношения сердечного выброса с емкостью периферического сосудистого русла. В таких условиях на фоне генера­лизованного артериолоспазма снижается производитель­ность сердца и развивается гипокинезия миокарда. Од­нако, бездумное назначение сосудорасширяющих средств, не учитывающее конкретной гемодинамичес­кой ситуации, может значительно снизить маточно-плацентарный кровоток из-за уменьшения постнагруз­ки и перфузионного давления.

Снижение периферического сосудистого сопротив­ления и увеличение сосудистой емкости необходимо учитывать и при проведении анестезии во время раз­личных неакушерских хирургических вмешательств у беременных. У них более высок риск развития гипотонии и, следовательно, должна особо тщатель­но соблюдаться технология превентивной инфузион­ной терапии перед выполнением различных методов регионарной анестезии. По этим же причинам объем кровопотери, который у небеременной женщины не вызывает значительных изменений гемодинамики, у беременной может вести к выраженной и стойкой гипотонии.

Сердечный выброс

Рост ОЦК вследствие гемодилюции сопровождает­ся изменением производительности сердца (рис. 1).

Рис.1. Изменения производительности сердца при беременности.

Интегральным показателем производительности сер­дечного насоса является минутный объем сердца (МОС), т.е. произведение ударного объема (УО) на частоту сердечных сокращений (ЧСС), характеризующее ко­личество крови, выбрасываемое в аорту или легоч­ную артерию за одну минуту. При отсутствии поро­ков, соединяющих большой и малый круги кровооб­ращения, их минутный объем одинаков.

Увеличение сердечного выброса при беременнос­ти происходит параллельно с увеличением объема крови. На 8-10 неделе беременности сердечный выброс возрастает на 30-40%, главным образом из-за роста ударного объема и в меньшей степени - из-за учащения сердечных сокращений.

В родах минутный объем сердца (МОС) резко воз­растает, достигая 12-15 л/мин. Однако, в этой ситуации МОС растет в большей степени за счет увеличения ЧСС, чем ударного объема (УО).

Наши прежние представления о том, что произво­дительность сердца связана только с систолой, за последнее время претерпели значительные измене­ния. Это важно для правильного понимания не толь­ко работы сердца при беременности, но и для ин­тенсивной терапии критических состояний, сопро­вождающихся гипоперфузией при синдроме «малого выброса».

Величина УО во многом определяется конечным диастолическим объемом желудочков (КДО). Макси­мальная диастолическая емкость желудочков может быть условно разделена на три фракции: фракцию УО, фракцию резервного объема и фракцию оста­точного объема. Сумма этих трех компонентов и есть содержащийся в желудочках КДО. Оставшийся пос­ле систолы объем крови в желудочках называется конечным систолическим объемом (КСО). КДО и ксо могут быть представлены как наименьшая и наибольшая точки кривой сердечного выброса, что позволяет быстро вычислить ударный объем (У0 = КДО - КСО) и фракцию изгнания (ФИ = (КДО - КСО)/КДО).

Очевидно, увеличить УО можно либо повышением КДО, либо уменьшением КСО. Заметим, что КСО подразделяется на остаточный объем крови (часть кро­ви, которая не может быть изгнана из желудочков даже при самом мощном сокращении) и базальный резервный объем (количество крови, которое может быть дополнительно изгнано при увеличении сократи­тельной способности миокарда). Базальный резервный объем и есть та часть сердечного выброса, на кото­рую мы можем рассчитывать, применяя средства с пол­ожительным инотропным действием при проведении интенсивной терапии. Величина КДО может реально подсказать целесообразность проведения у беремен­ной инфузионной терапии на основании не каких-то традиций или даже инструкций, а конкретных показа­телей гемодинамики именно у этой больной.

Все упомянутые показатели, измеренные методом эхокардиографии, служат надежными ориентирами в выборе различных средств поддержки кровообраще­ния при проведении интенсивной терапии и анесте­зии. Для нашей практики эхокардиография - повсе­дневность, и мы остановились на этих показателях потому, что они потребуются для последующих рассуждений. Надо стремиться к внедрению эхокардиог­рафии в повседневную клиническую практику родильных домов, чтобы иметь эти надежные ориентиры для коррекции гемодинамики, а не вычитывать из книг мнение авторитетов. Как утверждал Оливер В.Холмс, имеющий отношение и к анестезиологии, и к аку­шерству, «не надо доверять авторитету, если можно иметь факты, не гадать, если можно знать».

Во время беременности возникает очень незначи­тельное увеличение массы миокарда, которое трудно назвать гипертрофией миокарда левого желудочка.

Дилатацию левого желудочка без гипертрофии мио­карда можно рассматривать как дифференциально диагностический критерий между хронической арте­риальной гипертензией различной этиологии и артериальной гипертензией, обусловленной беременностью. В связи со значительным ростом нагрузки на сердечно-сосудистую систему к 29-32 неделям беременности увеличиваются размеры левого предсердия, и другие систолические и диастолические размеры сердца.

Увеличение объема плазмы по мере нарастания срока беременности сопровождается повышением преднагрузки и ростом КДО желудочков. Поскольку ударный объем представляет собой разницу между КДО и ко­нечно-систолическим объемом, то постепенное уве­личение КДО при беременности, согласно закону Франка-Старлинга, приводит к увеличению сердеч­ного выброса и соответственному росту полезной работы сердца. Однако есть предел такого роста: при КДО 122-124 мл, прирост УО прекращается, и кривая при­обретает форму плато. Если сопоставить кривую Франка-Старлинга и график изменения сердечного выброса в зависимости от срока беременности, то покажется, что эти кривые почти идентичны. Имен­но к сроку 26-28 недель беременности, когда отмечается максимальное увеличение ОЦК и КДО, прекращается рост МОС. Поэтому при достижении этих сроков любая гипертрансфузия (порой не оправданная ничем, кроме теоретических рассуждений), создает реальную опасность уменьшения полезной работы сердца благодаря избыточному росту преднагрузки.

При выборе объема инфузионной терапии надеж­нее ориентироваться на измеренный КДО, чем на различные методические рекомендации, упомянутые выше. Сопоставление конечно-диастолического объема с цифрами гематокрита поможет создать реальное представление о волемических нарушениях в каждом конкретном случае.

Работа сердца обеспечивает нормальную величину объемного кровотока во всех органах и тканях, в том числе маточно-плацентарный кровоток. Поэтому любое критическое состояние, связанное с относи­тельной или абсолютной гиповолемией у беременной женщины, ведет к синдрому «малого выброса» с гипо­перфузией тканей и резким уменьшением маточно­-плацентарного кровотока.

Кроме эхокардиографии, имеющей прямое отно­шение к повседневной клинической практике, для оценки сердечной деятельности применяют катете­ризацию легочной артерии катетерами Swan-Ganz. Катетеризация легочной артерии позволяет измерять давление заклинивания легочных капилляров (ДЗЛК), которое отражает конечно-диастолическое давление в левом желудочке и позволяет оценить гидростати­ческий компонент при развитии отека легких и дру­гие параметры кровообращения. У здоровых небере­менных женщин этот показатель составляет 6-12 мм рт.ст., и при беременности эти цифры не изменя­ются. Современное развитие клинической эхо­кардиографии, в том числе и чреспищеводной, едва ли делает катетеризацию сердца в повседневной кли­нической практике необходимой.

  • ДИССЕМИНИРОВАННОЕ ВНУТРИСОСУДИСТОЕ СВЕРТЫВАНИЕ (ДВС-СИНДРОМ)
  • ДИССЕМИНИРОВАННОЕ ВНУТРИСОСУДИСТОЕ СВЕРТЫВАНИЕ КРОВИ
  • Диссеминированное внутрисосудистое свертывание крови (ДВС)
  • Диссеминированное внутрисосудистое свертывание крови (ДВС-синдром)
  • Изменение личности при заболеваниях: эпилепсия, шизофрения, травматическое и сосудистое поражение головного мозга.
  • Начало терапии. Обучение и информирование клиента. Особенности работы с сопротивлением и переносом в начале терапии
  • Под влиянием физических нагрузок существенно изменяется сосудистое сопротивление. Увеличение мышечной активности при­водит к усилению кровотока через сокращающиеся мышцы, при-


    чем местный кровоток увеличивается в 12-15 раз по сравнению с нормой (А. Оиутоп е! а1., "№. 5т.атзЬу, 1962). Одним из важнейших факторов, способствующих усилению кровотока при мышечной работе, является резкое уменьшение сопротивления в сосудах, что приводит к значительному снижению общего периферического со­противления (см. табл. 15.1). Снижение сопротивления начинает­ся через 5-10 с после начала сокращения мышц и достигает макси­мума через 1 мин или позже (А. Оиу!оп, 1969). Это связано с рефлекторным расширением сосудов, недостатком кислорода в клетках стенок сосудов работающих мышц (гипоксия). Во время работы мышцы поглощают кислород быстрее, чем в спокойном со­стоянии.

    Величина периферического сопротивления различна на разных участках сосудистого русла. Это обусловлено прежде всего изме­нением диаметра сосудов при разветвлении и связанными с ним изменениями характера движения и свойств движущейся по ним крови (скорость кровотока, вязкость крови и др.). Основное сопро­тивление сосудистой системы сосредоточено в ее прекапиллярной части - в мелких артериях и артериолах: 70-80% общего падения давления крови при движении ее от левого желудочка до правого предсердия приходится на этот участок артериального русла. Эти. сосуды называются поэтому сосудами сопротивления или резистив-ными сосудами.

    Кровь, представляющая собой взвесь форменных элементов в коллоидно-солевом растворе, обладает определенной вязкостью. Выявлено, что относительная вязкость крови уменьшается с уве­личением скорости ее течения, что связывают с центральным рас­положением эритроцитов в потоке и их агрегацией при движении

    Замечено также, что чем менее эластична артериальная стенка (т. е. чем труднее она растягивается, например при атеросклеро­зе), тем большее сопротивление приходится преодолевать сердцу для проталкивания каждой новой порции крови в артериальную систему и тем выше поднимается давление в артериях при систоле.

    Дата добавления: 2015-05-19 | Просмотры: 949 | Нарушение авторских прав


    | | | 4 | | |

    Поддержите проект — поделитесь ссылкой, спасибо!
    Читайте также
    Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Использование страдательных конструкций Использование страдательных конструкций