Центральное зрение. Острота зрения и ее возрастная динамика. Предметное зрение Общая характеристика зрения

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

6-09-2010, 10:19

Описание

Зрительные функции человека представляют собой восприятие светочувствительными клетками сетчатки глаза внешнего мира посредством улавливания отраженного или излучаемого объектами света в диапазоне волн от 380 до 760 нанометров (нм).

Как же осуществляется акт зрения?

Лучи света проходят через роговую оболочку, влагу передней камеры, хрусталик, стекловидное тело и достигают сетчатки. Роговая оболочка и хрусталик не просто пропускают свет, но и преломляют его лучи, действуя как двояковыпуклое стекло. Это позволяет собирать их в сходящийся пучок и направлять на сетчатую оболочку так, что на ней получается действительное, но инвертированное (перевернутое) изображение предметов (рис. 1).


Рис. 1. Схема изображения предмета в глазу

В колбочках и палочках световая энергия преобразуется в нервные импульсы, последние проводятся по зрительным нервам, путям, трактам в зрительные центры головного мозга, где происходит превращение энергии нервного импульса в зрительное восприятие (рис. 2).


Рис. 4. Световоспринимающие клетки: а - палочки; б - колбочки

В результате возникают ощущения формы, величины и цвета предметов, степени их удаленности от глаза и т. п. Эта способность органа зрения выработалась в процессе длительного эволюционного развития человека. Таким образом, в функциональном отношении глаз состоит из светопроводящего и световоспринимающего отделов.

В зависимости от освещенности рассматриваемых предметов следует различать дневное , сумеречное и ночное зрение .

Дневное зрение , осуществляемое колбочками при большой интенсивности освещения, характеризуется высокой остротой и хорошим восприятием цвета.

Сумеречное зрение обеспечивают палочки при слабой степени освещенности. Оно характеризуется низкой остротой и отсутствием восприятия цветов.

Ночное зрение также осуществляется палочками при очень низкой (так называемой пороговой и надпорого-вой) освещенности и сводится лишь к ощущению света.

Двойственная природа зрительных функций позволяет нам различать центральное и периферическое зрение.

Центральное зрение

Центральное зрение - это способность человека различать не только форму и цвет рассматриваемых предметов, но и их мелкие детали, что обеспечивается центральной ямкой желтого пятна сетчатки.

Центральное зрение характеризуется его остротой, то есть способностью человеческого глаза воспринимать раздельно точки, расположенные друг от друга на минимальном расстоянии. Для большинства людей пороговый угол зрения соответствует одной минуте. На этом принципе построены все таблицы для исследования остроты зрения для дали, в том числе и принятые в нашей стране таблицы Головина-Сивцева и Орловой, которые состоят соответственно из 12 и 10 рядов букв или знаков. Так, детали самых крупных букв видны с расстояния в 50, а самых мелких - с 2,5 метра.

Нормальная острота зрения

Нормальная острота зрения у большинства людей соответствует единице. Это значит, что при такой остроте зрения мы можем с расстояния в 5 метров свободно различать буквенные или другие изображения 10-го ряда таблицы. Если человек не видит самой крупной первой строки, ему показывают знаки одной из специальных таблиц.

При очень низкой остроте зрения проверяют светоощущение . Если человек не воспринимает свет, он слеп. Довольно часто встречается и превышение общепринятой нормы зрения. Как показали исследования отделения адаптации зрения Научно-исследовательского института медицинских проблем Севера Сибирского отделения Академии медицинских наук СССР, проводимые под руководством доктора медицинских наук В. Ф. Базарного, в условиях Крайнего Севера у детей в возрасте 5-6 лет острота зрения вдаль превышает общепринятую условную норму, достигает в ряде случаев двух единиц.

На состояние центрального зрения оказывают влияние ряд факторов: интенсивность света, соотношение яркости и фона рассматриваемого объекта, время экспозиции, степень соразмерности между фокусным расстоянием преломляющей системы и длиной оси глаза, ширина зрачка и т. п., а также общее функциональное состояние центральной нервной системы, наличие различных заболеваний.

Острота зрения каждого глаза исследуется отдельно. Начинают с мелких знаков, постепенно переходят к более крупным. Существуют и объективные методы определения остроты зрения.

Цветоощущение или цветовое зрение

Одной из важных функций глаза является цветоощущение - способность различать цвета. Человек в состоянии воспринимать около 180 цветовых тонов, а с учетом яркости и насыщенности - более 13 тысяч. Это происходит благодаря смешению в разных сочетаниях красного, зеленого и синего цветов.

Человек с правильным ощущением всех трех цветов считается нормальным трихроматом. Если функционируют два или один компонент, наблюдается цветоаномалия. Отсутствие восприятия красного цвета называется протаномалией, зеленого - дейтераномалией и синего - тританомалией.

Известны врожденные и приобретенные расстройства цветового зрения. Врожденные расстройства называются дальтонизмом по имени английского ученого Дальтона, который сам не воспринимал красный цвет и впервые описал это состояние.

При врожденных нарушениях цветового зрения может быть полная цветовая слепота, и тогда все предметы человеку кажутся серыми. Причиной такого дефекта является недоразвитие или отсутствие в сетчатке колбочек.

Довольно распространена частичная цветовая слепота , особенно на красный и зеленый цвета, которая, как правило, передается по наследству.

Слепота на зеленый цвет встречается вдвое чаще, чем на красный; на синий - сравнительно редко. Частичная цветовая слепота наблюдается примерно у каждого двенадцатого из ста мужчин и одной, из двухсот женщин. Как правило, это явление не сопровождается нарушением других зрительных функций и выявляется только при специальном исследовании.

Врожденная цветовая слепота неизлечима. Нередко люди с аномальным цветоощущением могут и не знать о своем состоянии, так как привыкают различать окраску предметов не по цвету, а по яркости.

Приобретенные расстройства цветоощущения наблюдаются при заболеваниях сетчатки и зрительного нерва, а также при расстройствах центральной нервной системы. Они могут быть как в одном, так и в обоих глазах и сопровождаться расстройствами других зрительных функций. В отличие от врожденных, приобретенные расстройства могут изменяться в процессе заболевания и его лечения.

Расстройства цветоощущения выявляются с помощью специальных полихроматических таблиц и приборов.

Периферическое зрение

Возможность зрительной работы определяется не только состоянием остроты зрения вдаль и на близком расстоянии от глаз. Большую роль в жизни человека играет периферическое зрение . Оно обеспечивается периферическими отделами сетчатки и определяется величиной и конфигурацией поля зрения - пространства, которое воспринимается глазом при неподвижном взоре. На периферическое зрение оказывает влияние освещенность, величина и цвет рассматриваемого предмета или объекта, степень контрастности между фоном и объектом, а также общее функциональное состояние нервной системы.

Поле зрения каждого глаза имеет определенные границы. В норме средние его границы на белый цвет 90-50° в том числе: кнаружи и книзу-кнаружи - по 90°, кверху-кнаружи - 70°; книзу и кнутри - по 60°, кверху и кверху-кнутри - по 55°, книзу-кнутри - 50°.

Для точного определения границ поля зрения их проецируют на сферическую поверхность. На этом способе основано исследование на специальном аппарате - периметре. Исследуется каждый глаз в отдельности не менее чем в 6 меридианах. Градус дуги, на котором испытываемый впервые увидел объект, отмечается на специальной схеме.

Крайняя периферия сетчатки, как правило, не воспринимает цвета. Так, ощущение синего цвета возникает лишь в 70-40° от центра, красного - 50 -25°, зеленого-в 30-20°.

Формы изменений периферического зрения весьма многогранны, а причины разнообразны. В первую очередь это опухоли, кровоизлияния и воспалительные заболевания головного мозга, болезни сетчатки и зрительного нерва, глаукома и др. Нередки и так называемые физиологические скйтомы (слепые пятна).

Примером является слепое пятно - место проекции в пространстве диска зрительного нерва, поверхность которого лишена светочувствительных клеток. Увеличение размеров слепого пятна имеет диагностическое значение, являясь ранним признаком глаукомы и некоторых заболеваний зрительного нерва.

Светоощущение

Светоощущение - это способность глаза воспринимать свет различной яркости, другими словами, отличать свет от темноты. Осуществляется палочковым аппаратом сетчатки и обеспечивает сумеречное и ночное зрение.

Чувствительность глаза человека к свету очень велика. Она бывает абсолютная и различительная. Первая характеризуется порогом восприятия света, вторая позволяет человеку отличать предметы от окружающего фона на основе неодинаковой яркости.

Абсолютная световая чувствительность зависит от степени освещенности. Поэтому изменение этой чувствительности при неодинаковой освещенности называется адаптацией. Существует две разновидности адаптации - световая и темновая. Приспособление глаза к различной яркости освещения наступает довольно быстро, через 3- 5 минут. Наоборот, привыкание к темноте достигается лишь через 45-50 минут. Расстройство сумеречного зрения называется гемералопией, или «куриной слепотой».

Различают гемералопию симптоматическую и функциональную. Первая связана с поражением светочувствительного слоя сетчатой оболочки и является одним из симптомов заболеваний сетчатки и зрительного нерва (глаукома, пигментная абиодистрофия сетчатки и др.). Функциональная гемералопия развивается вследствие дефицита витамина А и хорошо поддается лечению.

Каким бы совершенным не было зрение одним глазом , оно дает представление о рассматриваемых объектах лишь в одной плоскости. Только при зрении одновременно двумя глазами возможно восприятие глубины и правильное представление о взаимном расположении рассматриваемых каждым глазом предметов. Эта способность к слиянию отдельных изображений; получаемых в каждом глазу, в единое целое обеспечивает так называемое бинокулярное зрение.

Бинокулярное зрение у человека

Бинокулярное зрение у человека обнаруживается уже на четвертом месяце жизни, формируется к двум годам, но его развитие и совершенствование заканчивается только в 8-10-летнем возрасте. Внешним проявлением его является стереоскопическое (объемное) зрение, без которого затруднено выполнение водительских, летных и ряда других работ, а также занятия многими видами спорта. Исследование бинокулярного зрения проводится на специальных приборах.

Чтобы иметь более полное представление о наших зрительных функциях, следует знать и о таких важных свойствах глаз, как аккомодация и конвергенция.

Аккомодация

Аккомодация - это способность человека ясно видеть предметы, находящиеся на различных расстояниях от глаза. Реализуется она благодаря эластичности хрусталика и сократительной способности цилиарной мышцы. Аккомодация имеет свои пределы. Так, нормальным, соразмерным глазом человек не может ясно видеть мелкие детали рассматриваемых объектов ближе 6-7 см от глаза. При близорукости даже полное расслабление цилиарной мышцы не позволяет ясно видеть предметы, расположенные вдали.

Объем аккомодации (пространство между ближайшей и дальнейшей точками ясного зрения) будет самым большим при нормальной оптической установке глаза, наименьшим - при близорукости высокой степени; объем аккомодации будет уменьшен и при дальнозоркости высокой степени. Аккомодация ослабляется и с возрастом, и вследствие различных заболеваний.

Как уже указывалось, наилучшее видение обеспечивается центральной ямкой желтого пятна. Прямая линия, условно соединяющая рассматриваемый предмет с центральной ямкой, называется зрительной линией, или зрительной осью. Если удается направить обе зрительные линии на рассматриваемый предмет, глаза приобретают способность конвергировать, т. е. изменять положение глазных яблок путем сведения их внутрь. Это свойство носит название конвергенции. В норме чем ближе рассматриваемый предмет, тем больше конвергенция.

Существует прямая зависимость между аккомодацией и конвергенцией : чем больше напряжение аккомодации, тем больше конвергенция, и наоборот.

Если острота зрения одного глаза значительно выше, чем другого, в головной мозг поступает изображение рассматриваемого объекта только от лучше видящего глаза, второй же глаз может обеспечить только периферическое зрение. В связи с этим хуже видящий глаз периодически выключается из зрительного акта, что приводит к амблиопии - снижению остроты зрения.

Таким образом, зрительные функции тесно связаны друг с другом и составляют единое целое, именуемое актом зрения.

Теперь, когда вы достаточно познакомились с устройством и функциями органа зрения, необходимо рассказать и об основных заболеваниях глаз, их профилактике, т. е. предупреждении болезней.

Статья из книги .

Глаза – один из самых важных органов в организме человека. Благодаря им, мы имеем возможность видеть предметы вдалеке и вблизи, можем ориентироваться в пространстве. Если вы хотите вести активную полноценную жизнь, нужно всегда следить за , и при обнаружении даже незначительных отклонений от нормы обращаться к профессиональному офтальмологу. Медики различают периферическое и центральное зрение. Каждый тип имеет свои особенности, о которых должен знать каждый человек.

Центральное зрение – это важнейший элемент зрительной функции. Обеспечивается оно центральной частью и центральной ямкой. Благодаря этому типу зрения мы можем безошибочно определить форму предмета, рассмотреть его мелкие детали. Медики еще называют эту функцию – форменное зрение.

Острота зрения напрямую зависит от центрального зрения. Если возникнет даже незначительная патология, вы сразу же это заметите. Чем дальше предмет находится от центрального обзора, тем хуже мы его видим. Это связано с ослаблением передачи импульсов нейроэлементами. Сигнал от центральной ямки распределяется по нервным волокнам, и проходит через все отделы зрительного органа.

Способы определения остроты зрения

Острота зрения - это способность человеческого глаза различать две отдельные точки (расстояние между ними минимальное) на определенном удалении. Для точного определения этой функции медики используют несколько основных методик, а именно:


Медики могут использовать один или сразу несколько методов исследования, чтобы исключить развитие опасных патологий и максимально точно определить остроту зрения пациента.

Что такое периферическое зрение?

Поле зрения - основная характеристика периферического зрения

Центральное и периферическое зрение – это основные составляющие зрительной функции. Если с первым показателем все более-менее понятно, то со вторым еще придется разобраться. Итак, периферическое зрение обеспечивает человеку возможность ориентироваться в пространстве, различать предметы в полутьме.

Чтобы лучше понять этот термин, проведите простой эксперимент. Поверните голову вбок и зафиксируйте взгляд на каком-либо предмете. Его вы будете видеть предельно четко, благодаря функции центрального зрения. Однако, вы также сможете заметить, что кроме этого предмета в ваше поле зрения попали и другие вещи (дверь, окно и пр.). Они просматриваются не совсем четко, но все же хорошо различимы. Это и есть периферическое зрение.

Глаза человека могут без единого движения охватить 180 градусов по горизонтальному меридиану.

Периферическое зрение не менее важно, чем центральное. Нарушение такой функции способно сделать человека инвалидом. Больной не сможет нормально ориентироваться в пространстве, не сможет охватывать взглядом большие предметы.

При осмотре глаза врач невролог или нейрохирург может непосредственно наблюдать сосудистую и нервную ткань обследуемого человека. Это единственный орган, который благодаря своей анатомии позволяет врачу увидеть нерв и сосуды, не выполняя при и этом никаких предварительных разрезов или проколов здоровых тканей у пациента.

Глаз — это орган зрения. Глазное яблоко предназначено для фокусировки света на высокочувствительной нейрональной мембране — сетчатке. Войдя в глазное яблоко, свет сначала проходит сквозь роговицу, внутриглазную жидкость, хрусталик и стекловидное тело, затем пересекает прозрачные слои сетчатки и достигает фоторецепторов в наружном ядерном слое.

Количество входящего в хрусталик света, необходимого для получения изображения на сетчатке, контролируется диафрагмой. Роль такой диафрагмы выполняет радужная оболочка глаза. Отверстие радужной оболочки — зрачок — может сужаться или расширяться с помощью специальных мышц радужки. Попавший на сетчатку свет улавливается фоторецепторными клетками глазного дна. Эти нервные клетки сетчатки называются палочками и колбочками. Палочки и колбочки сетчатки содержат зрительный пигмент. Это зрительный пигмент позволяет им уловить световой поток, состоящий из фотонов. Происходит физиологическая реакция нервного возбуждения и торможения на сложных синаптических уровнях клеток сетчатки. Это позволяет оценить свойства попадающего в глаз света с позиций пространственной, световой, спектральной и временной функций.

Палочки и колбочки, расположенные в сетчатке глаза, отличаются по своим функциям. Палочки улавливают свет низкой интенсивности (скотопическое зрение) и не участвуют в определении цвета. Колбочки реагируют на свет большей интенсивности (фотопическое зрение). Колбочки так же обладают хорошей разрешающей способностью и участвуют в цветовом зрении. Колбочки в изобилии расположены в центре сетчатки в области жёлтого пятна, состоящего из центральной ямки и мельчайшей округлой ямочки. Ямка располагается на расстоянии 3 мм в сторону виска от края диска зрительного нерва. В данной точке отмечают большую остроту зрения (в норме 20/20). Острота зрения резко снижается в парамакулярной зоне, где число колбочек становится уже значительно меньше. В сетчатке глаза человека количество палочек превосходит количество колбочек (100 млн палочек, 60 млн колбочек). Палочки отсутствуют в ямочке, концентрация их достигает пика на расстоянии 20° от ямки, постепенно уменьшаясь к периферии.

Распределение ганглиозных клеток имеет такой же характер, как и у колбочек. В области ямочки одна ганглиозная клетка через биполярный нейрон образует связь с одной колбочкой (соотношение 1:1), что максимально усиливает разрешающую способность. Первичная обработка зрительной информации происходит в сетчатке, затем она передаётся в виде электрических импульсов из ганглиозных клеток по их нервным волокнам в зрительном нерве в латеральное коленчатое тело головного мозга. После синаптического переключения волокна проходят по коленчато-затылочному пути к зрительному центру в коре затылочной доли головного мозга.

Виды зрения

Зрение человека подразделяется на , и .

Форменное зрение и острота зрения

В клинической практике форменное зрение оценивается с помощью определения остроты зрения, пробы на функционирование жёлтого пятна, и это должно быть частью любого полного медицинского обследования вне зависимости от того, имеются или нет соответствующие жалобы. Таблицу Снеллена (1862 год) располагают на расстоянии 6 м от больного. Таблицу Сивцева, использовавшуюся для определения остроты зрения в СССР, располагают на расстоянии 5 м от больного.

Таблица Снеллена состоит из букв различного размера. Расстояние, на котором каждый размер уменьшается на угол 5°, указывается сбоку на таблице. Больной со скорректированными нарушениями рефракции во время исследования должен надеть очки. Нормальное зрение составляет 20/20. Если больной может прочитать буквы только до строчки 20/30, остроту зрения определяют как 20/30. Если больной не в состоянии различить самую большую букву Е на верхней строчке, его необходимо пересадить к таблице, изменив таким образом расстояние. Острота зрения может быть определена как 10/400, если больной сможет различить эту букву на расстоянии 3 метра от таблицы.

Если больной не может прочитать строку 20/30, необходимо исследовать стенопеическое зрение. Через стенопеическое отверстие, пропускающее узкий пучок световых лучей, больной со вторичным снижением зрения при нарушении рефракции должен прочитать строки до 20/20. Если при этом острота зрения не усилится, следует искать другую причину её снижения, например помутнение глазных сред, пятна или поражение зрительного нерва.

Остроту зрения, корригируемую очками или контактными линзами только до 20/200 или менее с обеих сторон, а также концентрическое сужение полей зрения до 10° в США официально считают слепотой, такой больной должен быть зарегистрирован в Обществе слепых по месту жительства.

Цветовое зрение

Часто нарушения зрения у человека характеризуются приобретёнными дефектами восприятия цвета. Например, в некоторых случаях поражения жёлтого пятна (вследствие интоксикации или дегенеративных причин) или зрительного нерва (рассеянный склероз, токсины, наркотики, недостаточность питания, табачно-алкогольной амблиопии) больные не различают красный и зелёный цвета, хотя белый цвет воспринимают нормально.

Для исследования цветового зрения наиболее часто используют полихроматические таблицы Ишихара. Полихроматические таблицы Ишихара позволяющие выявить дефекты зрения на красный и зелёный цвета, и фигуры Гарди-Ренда-Ритлера (ГРР), позволяющие выявить нарушение восприятия красного и зелёного, а также голубого и жёлтого цветов. Для работы по некоторым специальностям человеку требуется полностью сохранённое цветовое зрение. Так же возможна наследственная слепота на красный, зелёный и другие цвета (дальтонизм).

Светоощущение и исследования полей зрения (периметрия)

Светоощущение человека оценивается с помощью исследования полей зрения. Процедура исследования полей зрения называется периметрия. Изменения полей зрения указывают на поражение участка зрительного тракта от сетчатки (по зрительному нерву) к зрительной коре. Наиболее удобен для исследования полей зрения метод кинетической периметрии (полушарный периметр Гольдмана). Он заключается в передвижении объекта в полях зрения и установлении точек одинаковой чувствительности в двух полях. Больной при периметрии подаёт сигнал, когда видит объект, указывает, когда тот исчезает и когда затем вновь появляется. Таким образом может быть составлена схема полей зрения пациента с точным указанием дефектов от периферии к точке центральной фиксации. Можно также сравнить периферические поля зрения у больного и у врача.

Зрение - самый мощный источник информации о внешнем мире. 85-90% информации поступает в мозг через зрительный анализатор, и частичное или глубокое нарушение его функций вызывает ряд от­клонений в физическом и психическом развитии ребенка.

Зрительный анализатор обеспечивает выполнение сложнейших зрительных функций. Принято различать пять основных зрительных функций: 1) центральное зрение; 2) периферическое зрение; 3) бино­кулярное зрение; 4) светоощущение; 5) цветоощущение.

Как отмечают В.И. Белецкая, А.Н. Гнеушева (1982), Г.Г. Де-мирчоглян (1996) и др., центральное зрение требует яркого света и предназначено для восприятия цветов и объектов малых размеров. Особенностью центрального зрения является восприятие формы предметов. Поэтому эта функция иначе называется форменным зре­нием. Состояние центрального зрения определяется остротой зрения. В медицинской терминологии острота зрения обозначается Visus. Еди­ница измерения оптической среды глаза - диоптрия (D). Острота зрения правого глаза - Vis OD, левого - Vis OS. Зрение, при мотором глаз различает две точки под углом зрения в одну минуту, принято считать нормальным, равным единице (1,0). Форменное зрение раз­вивается постепенно: оно обнаруживается на 2-3-м месяце жизни ребенка; перемещение взора за движущимся предметом формируется в возрасте 3-5 месяцев; на 4-6-м месяце ребенок узнает ухаживаю­щих за ним родственников; после 6 месяцев ребенок различает иг­рушки - Vis 0,02-0,04, от года до двух лет Vis 0,3-0,6. Узнавание формы предмета у ребенка появляется раньше (в 5 месяцев), чем узнавание цвета.

Бинокулярное зрение - способность пространственного восприя­тия объема и рельефа предметов, видение двумя глазами. Его разви­тие начинается на 3-4-м месяце жизни ребенка, а формирование заканчивается к 7-13 годам. Совершенствуется оно в процессе накоп­ления жизненного опыта. Нормальное бинокулярное восприятие воз­можно при взаимодействии зрительно-нервного и мышечного аппа­ратов глаза. У слабовидящих детей бинокулярное восприятие чаще всего нарушено. Одним из признаков нарушения бинокулярного зре­ния является косоглазие - отклонение одного глаза от правильного симметричного положения, что осложняет осуществление зрительно-пространственного синтеза, вызывает замедленность темпов выполне­ния движений, нарушение координации и т.д. Нарушение бинокуляр­ного зрения приводит к неустойчивости фиксации взора. Дети часто бывают не в состоянии воспринимать предметы и действия во взаи­мосвязи, испытывая сложности в слежении за движущимися предме­тами (мячом, воланом и др.), определении степени их удаленности. В связи с этим таким детям надо давать больше времени для рассмат­ривания предметов и динамического восприятия, а также словесного описания тех предметов и действий, которые учащимся предстоит наблюдать самостоятельно. Важным средством развития бинокуляр­ного зрения являются различные виды бытового труда и игровой деятельности: игра в мяч, кегли и др., моделирование и конструиро­вание из бумаги (оригами), картона, занятия с мозаикой, плетение и т.п. Развитие зрительно-пространственного синтеза способствует улуч­шению ориентировки в пространстве во время игровой деятельности, занятий физкультурой и спортом.

Периферическое зрение действует в сумерках, оно предназначено для восприятия окружающего фона и крупных объектов, служит для ориентировки в пространстве. Этот вид зрения обладает высокой чувствительностью к движущимся предметам. Состояние перифери­ческого зрения характеризуется полем зрения. Поле зрения - это пространство, которое воспринимается одним глазом при его непод­вижном положении. Изменение поля зрения (скотома) может быть ранним признаком некоторых глазных заболеваний и поражения го­ловного мозга. Различаются они по месту их расположения. Сравни­тельно небольшое сужение границ поля зрения обычно детьми не замечается. При более выраженных изменениях границ поля зрения дети испытывают трудности во время ориентации и зрительно-про­странственного анализа. Наличие в поле зрения скотом ведет к воз­никновению темных пятен, теней, кругов и других видов нарушений поля зрения, осложняя восприятие предметов, действий, окружаю­щей действительности.

У слабовидящих детей отмечаются различные состояния полей зрения, обусловленные характером и степенью зрительной патологии. Дети с сужением поля зрения до 10° уже могут быть признаны инвалидами по зрению и направляются для обучения в школы III-IV вида. Учителю физкультуры важно иметь сведения о состоянии как центрального, так и периферического зрения у каждого ученика. На уроках физкультуры, ЛФК, ритмики, в процессе пространственной ориентировки используется периферическое зрение, а при чтении, рассмотрении рисунков, наглядных пособий на уроках химии, биоло­гии и др. - центральное. Эти сведения следует учитывать в процессе пространственной ориентировки, в передвижениях, в играх, при вы­полнении метания в цель. ТА Зельдович (1964), В.В. Васильева (1966) и др. отмечают, что в условиях специального обучения, под воздей­ствием подвижных и спортивных игр у занимающихся улучшается поле обзора, пространственное зрение, улучшается зрительный и ося­зательный контроль выполнения движений.

Благодаря цветовому зрению человек способен воспринимать и различать все многообразие цветов в окружающем мире. Появление реакции на различение цвета у маленьких детей происходит в опре­деленном порядке. Быстрее всего ребенок начинает узнавать красный, желтый, зеленый цвета, а позднее - фиолетовый и синий. Глаз чело­века способен различать разнообразные цвета и оттенки при смеши­вании трех основных цветов спектра: красного, зеленого и синего (или фиолетового).

Выпадение или нарушение одного из компонентов называется дихромазией. Впервые это явление описал английский ученый-химик Дальтон, который сам страдал этим расстройством. Поэтому наруше­ния цветового зрения в некоторых случаях называют дальтонизмом. При нарушении восприимчивости красного цвета красные и оранже­вые оттенки детям кажутся темно-серыми или даже черными. Жел­тый и красный сигнал светофора для них - один цвет.

Тона цветного спектра отличаются друг от друга по трем призна­кам: цветовому тону, яркости (светлоте) и насыщенности. Развитие контрастности в обучении детей с нарушениями зрения имеет важное значение. Усиление яркости, насыщенности и контрастности обеспе­чит более четкое восприятие изображаемых предметов и явлений.

У слабовидящих детей расстройства цветоразличения зависят от клинических форм слабовидения, их происхождения, локализации и течения. У незрячих вместо зрения управление движениями рук осуществляется мышечным чувством. В.П. Ермаков, Г.А. Якунин (2000), ссылаясь на работы В.М. Бехтерева, Е.С. Либман (1974) и др., отмечают как у нормальновидящих, так и у незрячих, слабовидящих наличие кожно-оптической чувствительности («кожного зрения») - способности кожных покровов реагировать на световое и цветовое воздействие. Различение цветовых оттенков, по мнению авторов, про­исходит благодаря разным качествам цветоощущения. Цветовые тона делятся на: 1) «гладкие» и «скользкие» - голубой и желтый цвета;

2) «притягивающие», или «вязкие», - красный, зеленый, синий;

3) «шероховатые», или «тормозящие» движения рук, - оранжевый и фиолетовый. Самым «гладким» воспринимается белый цвет, а «тор­мозящим» - черный.

Учителям необходимо иметь сведения о цветоразличительных возможностях учащихся. Это важно при демонстрации и использова­нии цветного спортивного инвентаря (мячи, обручи, скакалки, лыжи и пр.), наглядных пособий, рассматривании репродукций и т.д. При изготовлении наглядных пособий для детей с нарушением зрения используются преимущественно красный, желтый, оранжевый и зеле­ный цвета.

Светоощущение - способность сетчатки воспринимать свет и различать его яркость. Различают световую и темновую адаптацию. Нормально видящие глаза обладают способностью приспосабливать­ся к разным условиям освещения.

Световая адаптация - приспособление органа зрения к высоко­му уровню освещения. Световая чувствительность появляется у ре­бенка сразу же после рождения. Дети, у которых нарушена световая адаптация, в сумерках видят лучше, чем на свету. У некоторых детей с нарушением зрения отмечается светобоязнь. В этом случае дети пользуются темными очками. Такому ребенку следует предложить место для занятий физкультурой в теневой части зала, спортивной площадки или стать спиной к солнцу (источнику света).

Расстройство темновой адаптации приводит к потере ориента­ции в условиях пониженного освещения. Освещенность спортивного зала (помещения) в школах III-IV вида должна быть намного выше (не менее 600 люкс), чем для учащихся с нормальным зрением.

Центральное или форменное зрение осуществляется наиболее высокодифференцированной областью сетчатки — центральной ямкой желтого пятна, где сосредоточены только колбочки. Центральное зрение измеряется остротой зрения. Исследование остроты зрения очень важно для суждения о состоянии зрительного аппарата человека, о динамике патологического процесса.

Под остротой зрения понимается способность глаза различать раздельно две точки в пространстве, находящиеся на определенном расстоянии от глаза.

При исследовании остроты зрения определяется минимальный угол, под которым могут быть раздельно восприняты два световых раздражения сетчатой оболочки глаза. На основании многочисленных исследований и измерений установлено, что нормальный глаз человека может раздельно воспринять два раздражения под углом зрения в одну минуту.

Эта величина угла зрения принята за интернациональную единицу остроты зрения. Такому углу на сетчатке соответствует линейная величина в 0,004 мм, приблизительно равная поперечнику одной колбочки в центральной ямке желтого пятна. Для раздельного восприятия двух точек глазом, оптически правильно устроенным, необходимо чтобы на сетчатке между изображениями этих точек существовал промежуток не менее чем в одну колбочку, которая не раздражается совсем и находится в покое. Если же изображения точек упадут на смежные колбочки, то эти изображения сольются и раздельного восприятия не получится.

Острота зрения одного глаза, могущего воспринимать раздельно точки, дающие на сетчатке изображения под углом в одну минуту, считается нормальной остротой зрения, равной единице (1,0). Есть люди, у которых острота зрения выше этой величины и равна 1,5-2,0 единицам и больше.

При остроте зрения выше единицы минимальный угол зрения меньше одной минуты. Самая высокая острота зрения обеспечивается центральной ямкой сетчатки. Уже на расстоянии от нее на 10 градусов острота зрения в 5 раз меньше.

Для исследования остроты зрения предложены различные таблицы с расположенными на них буквами или знаками различной величины. Впервые специальные таблицы предложил в 1862 году Снеллен. На принципе Снеллена строились все последующие таблицы. В настоящее время для определения остроты зрения пользуются таблицами Сивцева и Головина.

Таблицы состоят из 12 рядов букв. Каждая из букв в целом видна с определенного расстояния под углом в 50, а каждый штрих буквы под углом зрения в 10. Первый ряд таблицы виден при нормальной остроте зрения равной 1,0 с расстояния 50 м, буквы десятого ряда с расстояния 5 м.

Исследование остроты зрения проводится с расстояния 5 м и для каждого глаза отдельно. Справа в таблице стоит цифра, указывающая остроту зрения при проверке с расстояния 5 м, а слева цифра, указывающая расстояние, с которого этот ряд должен видеть исследуемый при нормальной остроте зрения.

Острота зрения может быть вычислена по формуле Снеллена:

где V (Visus) — острота зрения, d — расстояние, с которого видит больной, D — расстояние, с которого должен видеть глаз с нормальной остротой зрения знаки данного ряда на таблице.

Если исследуемый читает буквы 10 ряда с расстояния 5 м, то Visus = 5/5 = 1,0. Если же он читает только первую строчку таблицы, то Visus = 5/50 = 0,1 и т.д. Если острота зрения ниже 0,1, т.е. больной не видит первую строчку таблицы, то можно больного подводить к таблице пока он не увидит первую строчку и затем остроту зрения определить с помощью формулы Снеллена.

На практике пользуются показам раздвинутых пальцев врача, учитывая что толщина пальца приблизительно равна ширине штриха первого ряда таблицы, т.е. не больного подводят к таблице, а врач подходит к больному, показывая раздвинутые пальцы или оптотипы Поляка. И также, как в первом случае, остроту зрения рассчитывают по формуле. Если больной считает пальцы с расстояния 1 м, то его острота зрения равна 1:50 = 0,02, если с расстояния двух метров, то 2:50 = 0,04 и т.д. Если больной считает пальцы на расстоянии меньше 50 см, то острота зрения равна счету пальцев на расстоянии 40, 30, 20, 10 см, счету пальцев у лица. Если отсутствует даже такое минимальное форменное зрение, а сохраняется способность отличать свет от тьмы, зрение обозначается как бесконечно малое зрение — светоощущение 1/бесконечность.

При светоощущении с правильной проекцией света Visus = 1/бесконечность proectia lucis certa. Если глаз исследуемого неправильно определяет проекцию света хотя бы с одной стороны, то острота зрения расценивается как светоощущение с неправильной светопроекцией и обозначается Visus = 1/бесконечность рг. 1. incerta. При отсутствии даже светоощущения, зрение равно нулю и обозначается так: Visus = 0.

Правильность проекции света определяется при помощи источника света и зеркала офтальмоскопа. Больной садится, как при исследовании глаза методом проходящего света, и в глаз, который проверяют, направляется с разных сторон пучок света, который отражается от зеркала офтальмоскопа. Если функции сетчатки и зрительного нерва сохранились на всем протяжении, то больной говорит точно, с какой стороны на глаз направлен свет (сверху, снизу, справа, слева).

Определение наличия светоощущения и состояния проекции света очень важно для решения вопроса о целесообразности некоторых видов оперативного лечения. Если, например, при помутнении роговицы и хрусталика зрение равно правильному светоощущению, это указывает, что сохранены функции зрительного аппарата и можно рассчитывать на успех операции.

Зрение, равное нулю, свидетельствует об абсолютной слепоте. Более точно состояние сетчатки и зрительного нерва можно определить с помощью электрофизиологических методов исследования.

Для определения остроты зрения у детей служат детские таблицы, принцип построения которых такой же, как и для взрослых. Показ картинок или знаков начинают с верхних строчек. При проверки остроты зрения детям школьного возраста, также как и взрослым, буквы в таблице Сивцева и Головина показывают, начиная с самых нижних строк.

При оценке остроты зрения у детей надо помнить о возрастной динамике центрального зрения. В 3 года острота зрения равна 0,6-0,9, к 5 годам — у большинства 0,8-1,0.

На первой неделе жизни о наличии зрения у ребенка можно судить по зрачковой реакции на свет. Надо знать, что зрачок у новорожденных узкий и вяло реагирует на свет, поэтому проверять его реакцию надо путем сильного засвета глаза и лучше в затемненной комнате. На 2-й 3-й неделе — по кратковременной фиксации взглядом источника света или яркого предмета. В возрасте 4-5 недель движения глаз становятся координированными и развивается устойчивая центральная фиксация взора. Если зрение хорошее, то ребенок в этом возрасте способен долго удерживать взгляд на источнике света или ярких предметах. Кроме того, в этом возрасте появляется рефлекс смыкания век в ответ на быстрое приближение к его лицу какого-либо предмета. Количественно определить остроту зрения и в более позднем возрасте почти невозможно.

В первые годы жизни об остроте зрения судят по тому, с какого расстояния он узнает окружающих людей, игрушки. В возрасте 3, а у умственно хорошо развитых детей и 2 лет, часто можно определить остроту зрения по детским таблицам. Таблицы чрезвычайно разнообразны по своему содержанию.

В России довольно широкое распространение получили таблицы П.Г. Алейниковой, Е.М. Орловой с картинками и таблицы с оптотипами кольцами Ландольта и Пфлюгера. При исследовании зрения у детей от врача требуется большое терпение, повторное или многократное исследование.

Цветоощущение, методы исследования и диагностика его расстройств

Человеческий глаз различает не только форму, но и цвет предмета. Цветоощущение, также как и острота зрения, является функцией колбочкового аппарата сетчатки и связанных с ним нервных центров. Человеческий глаз воспринимает цвета с длиной волны от 380 до 800 нм.

Богатство цветов сводится к 7 цветам спектра, на которые разлагается, как показал еще Ньютон, солнечный свет, пропущенный через призму. Лучи длиной более 800 нм являются инфракрасными и не входят в состав видимого человеком спектра. Лучи менее 380 нм являются ультрафиолетовыми и не вызывают у человека оптического эффекта.

Все цвета разделяются на ахроматические (белые, черные и всевозможные серые) и хроматические (все цвета спектра, кроме белого, черного и серого). Человеческий глаз может различать до 300 оттенков ахроматического цвета и десятками тысяч хроматических цветов в различных сочетаниях. Хроматические цвета отличаются друг от друга по трем основным признакам: по цветовому тону, яркости (светлоте) и насыщенности.

Цветовой тон — качество цвета, которое мы обозначаем словами красный, желтый, зеленый и т.д., и характеризуется он длиной волны. Ахроматические цвета цветового тона не имеют.

Яркость или светлота цвета — это близость его к белому цвету. Чем ближе цвет к белому, тем он светлее.

Насыщенность — это густота тона, процентное соотношение основного тона и примесей к нему. Чем больше в цвете основного тона, тем он насыщенней.

Цветовые ощущения вызываются не только монохроматическим лучом с определенной длиной волны, но и совокупностью лучей с различной длиной волн, подчиненной законам оптического смещения цветов. Каждому основному цвету соответствует дополнительный, от смешения с которым получается белый цвет.

Пары дополнительных цветов находятся в диаметрально противоположных точках спектра: красный и зеленый, оранжевый и голубой, синий и желтый. Смешение цветов в спектре, расположенных близко друг от друга, дает ощущение нового хроматического цвета. Например, от смешения красного с желтым получается оранжевый, синего с зеленым — голубой. Все разнообразие ощущения цветов может быть получено путем смешения только трех основных цветов: красного, зеленого и синего. Т.к. существует три основных цвета, то в сетчатке глаза должны существовать специальные элементы для восприятия этих цветов.

Трехкомпонентную теорию цветоощущения предложил в 1757 году М.В. Ломоносов и в 1807 году английский ученый Томас Юнг. Они высказали предположение, что в сетчатке имеются троякого рода элементы, каждый из которых специфичен только для одного цвета и не воспринимает другого. Но в жизни оказывается, что потеря одного цвета связана с изменением всего цветного миросозерцания.

Если нет ощущения красного цвета, то и зеленый и фиолетовый цвета становятся несколько измененными. Через 50 лет Гельмгольц, выступивший со своей теорией трехкомпонентности, указал, что каждый из элементов, будучи специфичен для одного основного цвета, раздражается и другими цветами, но в меньшей степени. Например, красный цвет раздражает сильнее всего красные элементы, но в небольшой степени зеленые и фиолетовые. Зеленые лучи — сильно зеленые, слабо — красные и фиолетовые. Фиолетовый цвет действует очень сильно на элементы фиолетовые, слабее — на зеленые и красные. Если все три рода элементов раздражены в строго определенных отношениях, то получается ощущение белого цвета, а отсутствие возбуждения дает ощущение черного цвета.

Возбуждение только двух или всех трех элементов двумя или тремя раздражителями в различных степенях и соотношениях ведет к ощущению всей гаммы имеющихся в природе цветов. Люди с одинаковым развитием всех трех элементов имеют, согласно этой теории, нормальное цветоощущение и называются нормальными трихроматами. Если элементы не одинаково развиты, то наблюдается нарушение восприятия цветов.

Расстройство цветового зрения бывает врожденным и приобретенным, полным или неполным. Врожденная цветовая слепота встречается чаще у мужчин (8%) и значительно реже — у женщин (0,5%).

Полное выпадение функции одного из компонентов называется дихромазией. Дихроматы могут быть протанопами, при выпадении красного компонента, дейтеранопами — зеленого, тританопами — фиолетового. Врожденная слепота на красный и зеленый цвета встречается часто, а на фиолетовый — редко. Протанопией страдал знаменитый физик Дальтон, который в 1798 году впервые точно описал цветослепоту на красный цвет.

У некоторых лиц наблюдается ослабление цветовой чувствительности к одному из цветов. Это цветоаномалы. Ослабление восприятия красного цвета называется протаномалией, зеленого — дейтераномалией и фиолетового — тританомалией.

По степени выраженности цветоаномалии различают аномалии типа А, В, С. К цветоаномалиям А относятся более далекие от нормы формы, к С — более тяготеющие к норме. Промежуточное положение занимают цветоаномалы В.

Крайне редко встречается ахромазия — полная цветовая слепота. Никакие цветовые тона в этих случаях не различают, все воспринимается в сером цвете, как на черно-белой фотографии. При ахромазии обычно бывают и другие изменения глаз: светобоязнь, нистагм, центральное зрение не бывает выше 0,1 из-за аплазии центральной ямки, никтолапия (улучшение зрения при пониженном освещении).

Полная цветовая слепота большей частью проявляется как семейное страдание с рецессивным типом наследования (цветовая астенопия). Цветовую астенопию у отдельных людей следует рассматривать как явление физиологическое, свидетельствующее о недостаточной устойчивости хроматического зрения.

На характер цветового зрения оказывают влияние слуховые, обонятельные, вкусовые и многие другие раздражения. Под влиянием этих непрямых раздражителей цветовое восприятие может в одних случаях угнетаться, в других — усиливаться. Для диагностики расстройств цветового зрения у нас в стране пользуются специальными полихроматическими таблицами профессора Е.Б. Рабкина .

Таблицы построены на принципе уравнивания яркости и насыщенности. Кружочки основного и дополнительного цветов имеют одинаковую яркость и насыщенность и расположены так, что некоторые из них образуются на фоне остальных цифру или фигуру. В таблицах есть также скрытые цифры или фигуры, распознаваемые цветослепыми.

Исследование проводится при хорошем дневном или люминесцентном освещении таблиц, т.к. иначе изменяются цветовые оттенки. Исследуемый помещается спиной к окну, на расстоянии 0,5-1 м от таблицы. Время экспозиции каждой таблицы 5-10 с. Показания испытуемого записывают и по полученным данным устанавливают степень аномалии или цветослепоты. Исследуется раздельно каждый глаз, т.к. очень редко возможна односторонняя дихромазия. В детской практике ребенку младшего возраста предлагают кисточкой или указкой провести по цифре или фигуре, которую он различает. Кроме таблиц, для диагностики расстройств и более точного определения качества цветового зрения пользуются специальными спектральными аппаратами — аномалоскопами. Исследование цветоощущения имеет большое практическое значение.

Существует ряд профессий, для которых нормальное цветоощущение является необходимым. Это транспортная служба, изобразительное искусство, химическая, текстильная, полиграфическая промышленности. Цветоразличительная функция имеет большое значение в различных областях медицины: для врачей инфекционистов, дерматологов, офтальмологов, стоматологов; в познании окружающего мира и т.д.

Возможны приобретенные нарушения цветового зрения, которые по сравнению с врожденными более разнообразны и не укладываются в какие-либо схемы. Раньше и чаще нарушается красно-зеленое восприятие и позже — желто-синее. Иногда наоборот. Приобретенным нарушениям цветоощущения сопутствуют и другие нарушения: снижение остроты зрения, поля зрения, появление скотом и т.д. Приобретенная цветовая слепота может быть при патологических изменениях в области желтого пятна, папилломакулярном пучке, при поражении более высоких отделов зрительных путей и т.д. Приобретенные расстройства весьма изменчивы в динамике. Для диагностики приобретенных расстройств цветового зрения Е.Б. Рабкин предложил специальные таблицы.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии