Виды телескопов. Телескопы-рефлекторы, их достоинства и недостатки Из чего состоит рефлекторный телескоп

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

По своей оптической схеме делятся на:

  • Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.
  • Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало .
  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется сферическое зеркало , а линза , система линз или мениск служит для компенсации аберраций .

Характеристики

  • Разрешающая способность телескопа зависит от диаметра объектива. Предел разрешения накладывает явление дифракции - огибание световыми волнами краёв объектива, в результате чего вместо изображения точки получаются кольца. Для видимого диапазона он определяется по формуле
r = 140 D {\displaystyle r={\frac {140}{D}}} ,

где r {\displaystyle r} - угловое разрешение в угловых секундах, а D {\displaystyle D} - диаметр объектива в миллиметрах. Эта формула выведена из определения предела разрешения двух звёзд по Рэлею . Если использовать другие определения предела разрешения, то численный коэффициент может быть меньше вплоть до 114 по Дове (Dawes" Limit).

На практике, угловое разрешение телескопов ограничивается атмосферным дрожанием - приблизительно 1 угловой секундой, независимо от апертуры телескопа.

  • Угловое увеличение или кратность телескопа определяется отношением
Γ = F f {\displaystyle \Gamma ={\frac {F}{f}}} ,

где F {\displaystyle F} и f {\displaystyle f} - фокусные расстояния объектива и окуляра соответственно. В случае использования дополнительных оптических узлов между объективом и окуляром (оборачивающих систем, линз Барлоу , компрессоров и т. п.) увеличение должно быть умножено на кратность используемых узлов.

ω = Ω Γ {\displaystyle \omega ={\frac {\Omega }{\Gamma }}} ,

где Ω {\displaystyle \Omega } - угловое поле зрения окуляра (Apparent Field Of View - AFOV), а Γ {\displaystyle \Gamma } - увеличение телескопа (которое зависит от фокусного расстояния окуляра - см. выше).

A = D F = 1 ∀ = ∀ − 1 {\displaystyle A={\frac {D}{F}}={\frac {1}{\forall }}={\forall }^{-1}} . ∀ = F D = 1 A = A − 1 {\displaystyle {\forall }={\frac {F}{D}}={\frac {1}{A}}={A}^{-1}} .

A {\displaystyle A} и ∀ {\displaystyle {\forall }} являются важными характеристиками объектива телескопа. Это обратные друг другу величины. Чем больше относительное отверстие, тем меньше относительное фокусное расстояние и тем больше освещённость в фокальной плоскости объектива телескопа, что выгодно при фотоработах (позволяет уменьшить выдержку при сохранении экспозиции). Но при этом на кадре фотоприёмника получается меньший масштаб изображения.

  • Масштаб изображения на приёмнике:
u = 3440 F {\displaystyle u={\frac {3440}{F}}} ,

где u {\displaystyle u} - масштаб в угловых минутах на миллиметр ("/мм), а F {\displaystyle F} - фокусное расстояние объектива в миллиметрах. Если известны линейные размеры ПЗС-матрицы, её разрешение и размер её пикселов, то отсюда можно вычислить разрешение цифрового снимка в угловых минутах на пиксел.

Классические оптические схемы

Схема Галилея

Телескоп Галилея имел в качестве объектива одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками галилеевского телескопа являются очень малое поле зрения и сильная хроматическая аберрация . Такая система все ещё используется в театральных биноклях , и иногда в самодельных любительских телескопах.

Схема Кеплера

Схема Грегори

Эту конструкцию предложил в 1663 году Джеймс Грегори в книге Optica Promota . Главное зеркало в таком телескопе - вогнутое параболическое. Оно отражает свет на меньшее вторичное зеркало (вогнутое эллиптическое). От него свет направляется назад - в отверстие по центру главного зеркала, за которым стоит окуляр. Расстояние между зеркалами больше фокусного расстояния главного зеркала, поэтому изображение получается прямое (в отличие от перевёрнутого в телескопе Ньютона). Вторичное зеркало обеспечивает относительно большое увеличение благодаря удлинению фокусного расстояния .

Схема Кассегрена

Схема Ричи-Кретьена

Приемники излучения

CCD-матрицы

ПЗС-матрица (CCD, «Charge Coupled Device») состоит из светочувствительных фотодиодов , выполнена на основе кремния , использует технологию ПЗС - приборов с зарядовой связью. Долгое время ПЗС-матрицы единственным массовым видом фотосенсоров. Развитие технологий привело к тому, что к 2008 году КМОП-матрицы стали альтернативой ПЗС.

CMOS-матрицы

КМОП-матрица (CMOS, «Complementary Metal Oxide Semiconductor») выполнена на основе КМОП-технологии . Каждый пиксел снабжён усилителем считывания, а выборка сигнала с конкретного пиксела происходит, как в микросхемах памяти, произвольно.

Системы адаптивной оптики

  • Система лазерной гидирующей звезды. Лазерный луч направляется в небо, чтобы создать на любом участке неба искусственную звезду в натриевом слое атмосферы Земли на высоте около 90 километров. Свет от такой искусственной звезды используется для деформации специального зеркала, которое устраняет мерцание и улучшает качество изображения.

Механика

Монтировка

Монтировка - это поворотная опора, которая позволяет наводить телескоп на нужный объект, а при длительном наблюдении или фотографировании - компенсировать суточное вращение Земли . Состоит из двух взаимно перпендикулярных осей для наводки телескопа на объект наблюдения, может содержать приводы и системы отсчёта углов поворота. Устанавливается монтировка на какое-либо основание: колонну, треногу или фундамент. Основная задача монтировки - обеспечение выхода трубы телескопа в указанное место и плавность ведения объекта наблюдений.

Основные факторы, влияющие на качество решения задачи, следующие :

  • Сложность закона изменения атмосферной рефракции
  • Дифференциальная рефракция
  • Технологическая точность изготовления привода
  • Точность подшипников
  • Деформация монтировки

Экваториальная монтировка и её разновидности

  • Деформации монтировки различны в зависимости от положения телескопа.
  • При изменении положения телескопа изменяется и нагрузка на подшипники
  • Сложность при синхронизации с куполом монтировки

Альт-азимутальная монтировка

Крупнейшие оптические телескопы

Телескопы-рефракторы

Обсерватория Местонахождения Диаметр, см / дюйм Год
сооружения /
демонтажа
Примечания
Телескоп всемирной Парижской выставки 1900 года. Париж 125 / 49.21" 1900 / 1900 Самый крупный рефрактор в мире, из когда либо построенных. Свет от звёзд направлялся в объектив неподвижного телескопа с помощью сидеростата .
Йеркская обсерватория Уильямс Бэй, Висконсин 102 / 40" 1897 Крупнейший рефрактор в мире 1897-1900 гг. После демонтажа телескоп всемирной Парижской выставки 1900 года снова стал крупнейшим из эксплуатируемых рефракторов. Рефрактор Кларка .
Обсерватория Лика гора Гамильтон, Калифорния 91 / 36" 1888
Парижская обсерватория Медон , Франция 83 / 33" 1893 Двойной, визуальный объектив 83 см, фотографический - 62 см.
Потсдам , Германия 81 / 32" 1899 Двойной, визуальный 50 см, фотографический 80 см.
Обсерватория Ниццы Франция 76 / 30" 1880
Пулковская обсерватория Санкт-Петербург 76 / 30" 1885
Обсерватория Аллегейни Питтсбург , Пенсильвания 76 / 30" 1917 Рефрактор Thaw
Гринвичская обсерватория Гринвич , Великобритания 71 / 28" 1893
Гринвичская обсерватория Гринвич , Великобритания 71 / 28" 1897 Двойной, визуальный 71 см, фотографический 66
Обсерватория Архенхольда Берлин , Германия 70 / 27" 1896 Самый длинный современный рефрактор

Солнечные телескопы

Обсерватория Местонахождения Диаметр, м Год сооружения
Китт-Пик Тусон, Аризона 1,60 1962
Сакраменто-Пик Санспот, Нью-Мексико 1,50 1969
Крымская астрофизическая обсерватория Крым 1,00 1975
Шведский солнечный телескоп Пальма , Канары 1,00 2002
Китт-Пик , 2 штуки в общем корпусе с 1,6 метра Тусон, Аризона 0,9 1962
Тейде Тенерифе , Канары 0,9 2001
Саянская солнечная обсерватория , Россия Монды , Бурятия 0,8 1975
Китт-Пик Тусон, Аризона 0,7 1973
, Германия Тенерифе , Канары 0,7 1988
Митака Токио , Япония 0,66 1920

Камеры Шмидта

Обсерватория Местонахождения Диаметр коррекционной пластины - зеркала, м Год сооружения
Обсерватория Карла Шварцшильда Таутенбург , Германия 1,3-2,0 1960
Паломарская обсерватория гора Паломар, Калифорния 1,2-1,8 1948
Обсерватория Сайдинг-Спринг Кунабарабран , Австралия 1,2-1,8 1973
Токийская астрономическая обсерватория Токио , Япония 1,1-1,5 1975
Европейская южная обсерватория Ла-Силья, Чили 1,1-1,5 1971

Телескопы-рефлекторы

Название Местонахождения Диаметр зеркала, м Год сооружения
Гигантский южно-африканский телескоп , SALT Сатерленд , ЮАР 11 2005
Большой Канарский телескоп Пальма , Канарские острова 10,4 2002
Телескопы Кек Мауна-Кеа , Гавайи 9,82 × 2 1993, 1996
Телескоп Хобби-Эберли , HET Джефф-Дэвис , Техас 9,2 1997

Телескопы-рефлекторы, их достоинства и недостатки

Настало время разобраться в том, что же такое рефлектор и чем он принципиально отличается от рефрактора.

Само слово рефлектор произошло от английского «reflect» - отражать. Из этого ясно, что в качестве основного элемента схемы выступает зеркало. Отцом рефлектора стал Исаак Ньютон, который собрал первый такой телескоп в 1688 году. До этого существовала лишь одна схема – созданный Галилеем рефрактор, который сильно грешил хроматической аберрацией (будучи неахроматическим, неспособным собрать в фокус лучи с разной длиной волны, значительно изменяя картинку).

Оптическая схема


До сих пор схема Ньютона остается самой популярной для каждого, кто захочет купить зеркальный телескоп. Суть ее крайне проста: свет попадает на параболическое (иногда — сферическое) главное зеркало, которое, в свою очередь, направляет его на диагональное зеркало (плоское). И уже этот элемент выводит свет на окуляр.

Википедия утверждает, что существует еще 7 различных рефлекторных схем, но изучать их имеет смысл разве что из праздного любопытства. По большей части в промышленных телескопах используется именно схема Ньютона. Если кто-то говорит «рефлектор», то он имеет в виду именно «рефлектор Ньютона», все прочие схемы будут обозначаться по фамилии создателя. Это объясняется тем, что все они значительно менее удобны. Где-то требуется больше зеркал, где-то смотреть приходится под углом. Ньютон – это простая и нестареющая классика.

Достоинства рефлектора

Его создавали для того, чтобы избавиться от хроматических аберраций, которые давали линзовые телескопы. Было бы странно полагать, что они у него остались. Полное отсутствие этого дефекта – главное достоинство рефлекторов. К тому же, они обладают высокой светосилой (до 1:4 в серийных моделях), которая рефракторам не может и присниться. Именно зеркальная схема сделала телескопы с большим диаметром доступными простому обывателю. Из-за большого фокусного расстояния рефрактору с большим диаметром понадобилась бы очень длинная (около 7 метров) труба. К ней, естественно, нужна огромная монтировка. Стоимость такого устройства исчислялась бы, наверное, в миллионах. То, что мы можем купить телескоп с большим диаметром за гораздо меньшие деньги – заслуга исключительно рефлекторов.

Недостатки зеркального телескопа

Формально к ним относятся световые потери из-за наличия второго зеркала (в рефракторе свет идет сразу вам в глаз, а в рефлекторе ему нужно «попутешествовать» между зеркалами), воздушные потоки внутри открытой трубы и прочее. На практике же вам будет портить жизнь лишь одна вещь – необходимость настройки зеркал (юстировки) после любой перевозки. Юстировка отнимает малую часть драгоценного времени наблюдений. При наличии опыта она занимает не более 5 минут.Впрочем, юстировки не нужно бояться – она совсем не сложна, научиться сможет любой.

Вердикт

Начиная с диаметра 110мм, имеет смысл купить рефлектор. Рефрактор, который вы сможете купить за эти деньги, будет иметь значительно меньший диаметр (в районе 90мм). Рефлекторы просты и удобны в настройке, их рекомендуется брать всем, за исключением тех, кому необходимы наземные объекты.

Основные оптические системы зеркальных телескопов

11 октября 2005 года в эксплуатацию был запущен телескоп Southern African Large Telescope в ЮАР с главным зеркалом размером 11 x 9.8 метров, состоящим из 91 одинакового шестиугольника.

13 июля 2007 года первый свет увидел телескоп Gran Telescopio Canarias на Канарских островах с диаметром зеркала 10,4 м, который является самым большим оптическим телескопом в мире по состоянию на первую половину 2009 года .

В современных составных рефлекторах с середины 1990-х годов используются деформируемые зеркала (англ. ) и адаптивная оптика , что позволяет компенсировать атмосферные искажения. Это стало прорывом в телескопостроении и позволило значительно повысить качество работы наземных телескопов.

См. также

Примечания

Литература

  • Чикин А. А. «Отражательные телескопы» , Петроград, 1915
  • Навашин М. С. Телескоп астронома-любителя. - М .: Наука, 1979.
  • Сикорук Л. Л. Телескопы для любителей астрономии.
  • Максутов Д. Д. Астрономическая оптика. - М.-Л.: Наука, 1979.

Ссылки

  • Анимационные оптические схемы: Максутова-Касегрена, Максутова - Ньютона, Грегори-Максутова

Wikimedia Foundation . 2010 .

В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом . Оптические системы зеркальных телескопов разделяются по типам используемых объективов.

Система Ньютона

Система Кассегрена

Система Ричи - Кретьена

Система Ричи - Кретьена является усовершенствованием системы Кассегрена. Главное зеркало тут не параболическое, а гиперболическое. Поле зрения этой системы - около 4° .

Система Гершеля (Ломоносова)

Ещё в 1616 году Н. Цукки предложил заменить линзу вогнутым зеркалом, наклонённым к оптической оси телескопа. Подобный телескоп-рефлектор был сконструирован Уильямом Гершелем в 1772 году (на 10 лет раньше данную оптическую схему реализовал М. В. Ломоносов). В нём первичное зеркало имеет форму внеосевого параболоида и наклонено так, что фокус находится вне главной трубы телескопа, и наблюдатель не закрывает собой поступающий свет. Недостатком такой схемы является большая кома , но при малом относительном отверстии она почти незаметна.

Сэр Исаак Ньютон (1643-1727) - английский ученый

Зеркальный телескоп знаменитого английского ученого-исследователя Исаака Ньютона не принадлежит к числу бесценных сокровищ, которые могут вызвать всеобщее восхищение. Телескоп — научный прибор. Но сегодня это бесценная реликвия, потому что Ньютон смастерил его сам. С его помощью он обогатил науку и все человечество новыми знаниями о звездах, о движении света. Добытые им научные данные трудно переоценить.

Интерес к созданию научных приборов, с помощью которых можно было вести исследования, появился у Ньютона еще в школьные годы. Мальчишкой он любил наблюдать, как трудятся плотники, как они возводят дом, как мастерят крылья ветряной мельницы, как создают колеса для водяной мельницы. Он не просто смотрел, он запоминал, а дома зарисовывал, создавал подобие чертежей, по которым изготовлял действующие модели ветряной и водяной мельниц. Но он не просто копировал,- он вносил в каждую модель определенное новшество.

Его увлечение моделированием отмечали учителя в школе, на это обратили внимание родственники и знакомые семьи Ньютона. Однажды он смастерил часы, которые действовали под напором стекавшей из резервуара воды. Она попадала в воронку и затем вращала колеса. К удивлению взрослых, он изготовил миниатюрную мельницу для помола зерна. В роли же двигателя у него выступила мышка, которая вращала колесо. Добился он этого не дрессировкой, а естественным желанием мышки полакомиться, и подвесил над ней мешочек с зерном.

Ньютон не был изобретателем. Ни один из создаваемых им приборов он не придумал. Он брал готовые, но в каждый вносил усовершенствования. Телескоп ему нужен был, чтобы, наблюдая за звездами, определить свойства света, узнать его скорость, разгадать тайны мироздания.

Первые телескопы, или подзорные трубы, появились в Голландии в XVII веке, хотя увеличительное свойство вогнутых стеклянных линз было известно еще за 2500 лет до нашей эры. В 1610 году итальянский ученый Галилео Галилей при помощи сконструированного им прибора наблюдал за звездами и сделал Ошеломляющий вывод, что Вселенная бесконечна. До Галилея многие природные явления описывались умозрительно, редко на основе опытов. Но Галилей оказался первым, кто на основе наблюдений в телескоп сделал вывод о движении звезд, о бесконечности мироздания. Его сравнивали с Колумбом, открывателем неизвестных ранее земель. Его деятельность стала примером для подражания.

В Голландии, Германии, Англии ученые стали изготавливать свои подзорные трубы. Не избежал этого соблазна и Ньютон. Университетская наука в Кембридже требовала новых приборов, и 22-летний студент Ньютон приступил к созданию своего телескопа. Он собственноручно полировал линзы. Это была тяжелейшая работа. В своих «Лекциях по оптике» он описал суть созданного им прибора и его возможности. Только через несколько лет ему удалось, наконец, реализовать свои идеи в новом телескопе.

В 1б71 году весть о том, что в Кембридже никому не известный молодой изобретатель создал особый телескоп с отражающим сферическим зеркалом, с помощью которого можно приблизить небо и наблюдать за звездами, дошла до Лондона. Ньютона попросили прислать прибор в столицу. Его действие хотели продемонстрировать перед монархом. На престоле находился Карл II, в период правления которого Англия переживала экономический расцвет. Телескоп придирчиво осматривали самые видные ученые того времени, которые являлись членами созданного в 1662 году Королевского математического общества. И все признали большую полезность созданного в Кембридже телескопа. Король согласился с мнением ученых, и в том же году 29-летний Ньютон был принят в члены Королевского математического общества.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии