У каких насекомых простые глаза. Всей поверхностью тела. Видят ли мухи в темноте

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

И у мух, и у пчел по пять глаз. Три простых глаза расположены в верхней части головы (можно сказать, на темени), а два сложных, или фасеточных - по бокам головы. Сложные глаза мух, пчел (а также бабочек, стрекоз и некоторых других насекомых) - предмет восторженного изучения ученых. Дело в том, что эти органы зрения устроены очень интересно. Они состоят из тысяч отдельных шестиугольников, или, говоря научным языком, фасеток. Каждая из фасеток — это миниатюрный глазок, который дает изображение отдельной части предмета. В сложных глазах комнатной мухи примерно 4000 фасеток, у рабочей пчелы - 5000, у трутня - 8000, у бабочки - до 17 000, у стрекозы - до 30 000. Получается, что глаза насекомых посылают в их мозг несколько тысяч изображений отдельных частей предмета, которые хотя и сливаются в изображение предмета в целом, но все же этот предмет выглядит как бы сложенным из мозаики.

Зачем нужны фасеточные глаза? Считается, что с их помощью насекомые ориентируются в полете. В то время как простые глаза предназначены для рассматривания предметов, находящихся вблизи. Так, если пчеле удалить или заклеить сложные глаза, то она ведет себя как слепая. Если же заклеиваются простые глаза, то кажется, что у насекомого замедленная реакция.

1,2 - Фасеточные (сложные) глаза пчелы или мухи
3
- три простых глаза пчелы или мухи

Пять глаз позволяют насекомым охватывать 360 градусов , то есть видеть все, что происходит спереди, с обоих боков и сзади. Может быть, поэтому к мухе так сложно подобраться незамеченным. А если учесть, что сложные глаза гораздо лучше видят движущийся предмет, чем неподвижный, то остается только удивляться, как у человека иногда все же получается прихлопнуть муху газетой!

Особенность насекомых с фасеточными глазами улавливать даже малейшее движение отображена в следующем примере: если пчелы и мухи усядутся вместе с людьми смотреть кинофильм, то им будет казаться, что двуногие зрители подолгу рассматривают один кадр, прежде чем перейти к рассматриванию следующего. Чтобы насекомые могли смотреть кино (а не отдельные кадры, наподобие фото), то пленку проектора нужно крутить в 10 раз быстрее.

Стоит ли завидовать глазам насекомых? Наверное, нет. К примеру, глаза мухи видят многое, но не способны к пристальному разглядыванию. Вот почему они обнаруживают пищу (каплю варенья, например), ползая по столу и буквально на нее натыкаясь. А пчелы из-за особенностей своего зрения не различают красный цвет - для них он черный, серый или синий.

Мозг мухи вряд ли больше, чем отверстие в швейной иголке. Но муха, обладая таким мозгом, умудряется обработать более ста статических изображений (кадров) в секунду. Как известно, у человека предел - примерно 25 кадров в секунду. А муха нашла более простой и эффективный способ обработки изображений. И это не могло не заинтересовать исследователей в области робототехники.

Обнаружено, что мухи обрабатывают 100 кадров в секунду. И это позволяет им во время полета обнаружить препятствие в течение нескольких миллисекунд (миллисекунда – это одна тысячная секунды). В частности, исследователи сфокусировали своё внимание на оптических потоках, которые они назвали "оптические полевые потоки ". Похоже на то, что это оптическое поле обрабатывается только первым слоем нейронов. Они обрабатывают “грубый” исходный сигнал от каждого мушиного “пикселя” . И пересылают обработанную информацию на следующий слой нейронов. И, как утверждают исследователи, этих вторичных нейронов всего лишь 60 штук в каждом полушарии мушиного мозга. Тем не менее, мушиному мозгу удаётся уменьшить или раздробить поле зрения на множество протекающих последовательно “векторов движения”, которые дают мухе вектор направления движения и “мгновенную” скорость. И что интересно, то, что муха это всё видит!

Мы, люди (и не все), знаем что такое вектор и мгновенная скорость. А муха об этих вещах, естественно, не имеет никакого понятия. И таким способностям мозга мухи обрабатывать огромное количество информации можно только позавидовать. А почему мы видим всего лишь примерно 50 кадров в секунду, а муха 100? Трудно сказать, но есть разумные предположения на этот счёт. Как взлетает муха? Почти “мгновенно”, с огромным ускорением. Мы такую перегрузку врадли бы выдержали. Но можно создать роботизированный мозг, который по скорости обработки информационных потоков не уступит мозгу мухи.

Чтобы попытаться понять, как крошечный мушиный мозг может обрабатывать такое огромный поток информации, исследователи в Мюнхене создали “симулятор полета” для мухи. Муха могла летать, но удерживалось на привязи. Электроды регистрировали реакцию клеток мозга мухи. А исследователи пытались понять, что же происходит в мозге мухи во время полёта.

Первые результаты очевидны. Мухи обрабатывают изображения от их неподвижных глаз совсем не так, как это делает человек. При перемещении мухи в пространстве, в ее мозге формируются “оптические полевые потоки” (optical flux fields), которые и дают мухе направление движения.

Как бы это видел человек? Например, при движении вперёд, окружающие объекты мгновенно бы разбегались по сторонам. А объекты в поле зрения казались бы большими, чем они есть на самом деле. И казалось бы, что ближайшие и удалённые объекты перемещаются по-разному.

Скорость и направление, с которыми объекты мелькают перед мушиными глазами, генерируют типичные шаблоны векторов движения – полевые потоки. Которые на втором этапе обработки изображения достигают так называемой "lobula plate" – центра зрения более высокого уровня. В каждом полушарии мозга мухи есть всего лишь 60 нервных клеток, ответственных за зрение. Каждая из этих нервных клеток реагирует только на сигнал с определенной интенсивностью.

Но для анализа оптических потоков важна информация, поступающая от двух глаз одновременно. Эту связь обеспечивают особые нейроны, называемые “VS cells”. Они и позволяют мухе точно оценить своё местоположение в пространстве и скорость полёта. Похоже на то, что “VS cells” ответственны за распознавание и реакцию на вращающий момент, действующий на муху во время её манёвров в полёте.

Исследователи в области робототехники работают над тем, чтобы разработать роботов, которые могут наблюдать окружающую среду при помощи цифровых камер, изучать то, что они видят и адекватно реагировать на изменение текущей ситуации. И эффективно и безопасно общаться и взаимодействовать с людьми.

Например, уже ведутся разработки маленького летающего робота, положение и скорость полёта которого будет контролироваться при помощи компьютерной системы, имитирующей зрение мухи.

Как видят насекомые ?

Муха резко уворачивается от летящего на нее предмета, бабочка выбирает определенный цветок, а гусеница ползет к самому высокому дереву. У насекомых, как у людей тоже есть органы зрения, но видят и воспринимают они мир по-особому. Своим исключительным зрением, недоступным для человека. Некоторые насекомые могут определять только светлое и темное, а кто-то хорошо разбирается в оттенках. Итак, как же насекомые видят мир?

Способы видеть мир у насекомых

Их возможность видеть делится на три способа.

Всей поверхностью тела

Интересная особенность, при которой не обязательно иметь глаза. Но ее большой минус в том, что насекомое может отличать только свет от темноты. Никаких предметов или цветов оно не видит. Как же это работает? Свет проходит через кутикулу, внешний слой кожи, и проникает к голове насекомого. Там происходит реакция в клетках мозга, и насекомое понимает, что на него падает свет. Такое устройство доступно не для всех, но очень помогает тем насекомым, которые живут под землей, например, дождевым червям или слепым пещерным жукам. Эта разновидность зрения есть у тараканов, тли и гусениц.

Материалы по теме:

Для чего нужна пыльца?

Простыми глазами


Насекомым, у которых простые глазки повезло больше. Они могут не только определять темноту от света, но и различать отдельные объекты и даже их форму. Такие глазки чаще всего встречаются у личинок насекомых. Например, личинки комаров вместо глаз имеют пигментные пятна, которые улавливают свет. Зато у гусениц по пять – шесть глазков с каждой стороны головы. Благодаря этому она хорошо разбирается в формах. Но вертикальные объекты она видит намного лучше, чем горизонтальные. Например, если ей предстоит выбрать дерево, то она скорее поползет к тому, что выше, а не к тому, что шире.

Сложными, или фасеточными, глазами


Такие глаза чаще всего встречаются у взрослых насекомых. Определить их можно сразу – обычно они находятся по бокам головы. Фасеточные глаза намного сложнее и разнообразнее всех остальных. Они могут распознавать формы объектов и определять цвета. Одни насекомые хорошо видят днем, а другие – ночью. Интересная особенность этих глаз и в том, что они не видят всю картину в целом, а только кусочки. И уже в мозгу насекомое собирает пазл из полученных изображений, чтобы увидеть полную картину. Как муха успевает в полете соединить все кусочки фрагмента? Удивительно, но именно в полете она видит лучше, чем в покое. И для места посадки любое насекомое скорее выберет то, что двигается или колышется.

Способность видеть окружающую действительность во всём разнообразии цветов и оттенков - это уникальная возможность, которую природа даровала человеку. У насекомых, как и у людей, тоже есть орган зрения, но они воспринимают мир красок иначе. Современные учёные, воспользовавшись специальными приборами, сумели немного приблизиться к разгадке тайны и понять, как видят насекомые предметы, цвета и различные очертания.

Способы восприятия

У разных насекомых органы зрения неодинаковы. Если одни представители класса беспозвоночных могут лишь отличить свет от темноты или наблюдать за миром в чёрно-белых тонах, тогда другие способны распознавать цвета или вовсе видеть всё в ультрафиолетовом спектре.

Способность видеть у насекомых несколько отличается от зрения других живых существ. Некоторые виды имеют несколько пар глаз, которые могут находиться не только на голове, но и на других частях тела. Насекомые не различают мелких деталей и видят всего лишь на расстоянии 1-2 метров. Они могут хорошо ориентироваться на закате благодаря своему умению определять плоскость поляризации света. Мигание световых волн они различают в десятки раз лучше людей. Насекомые воспринимают окружающий мир тремя путями:

  1. С помощью всей поверхности тела . Это довольно интересная способность многих насекомых, при которой не нужно иметь глаза. Большой минус состоит в том, что живые существа не различают предметы, а способны лишь распознать свет от темноты. Он проникает к голове, сначала проходя через кутикулу и внешний слой кожи. В клетках мозга начинается реакция, и насекомое ощущает, что на него попадает свет. Такая способность помогает насекомым, живущим под землёй. Подобная разновидность зрения существует у тараканов, отдельных видов гусениц и тли.
  2. Простыми глазами . Насекомым, имеющим подобные зрительные органы, повезло гораздо больше, ведь они способны не только отличить день от ночи, но и различать некоторые объекты, а также их форму. Как правило, простые глаза располагаются на передней части головы насекомого и состоят из роговицы, которая принимает свет из зрительных нервов. Зрительные органы этого типа чаще всего бывают у личинок насекомых. У личинки комара вместо глаз есть пигментные пятна, улавливающие свет. Зато гусеницы имеют по 5-6 органов зрения с каждой стороны головы. С их помощью они неплохо разбираются в формах. Вертикальные предметы они видят лучше, чем горизонтальные, поэтому из двух деревьев, скорее всего, выберут то, что выше, а не шире.
  3. . Они зачастую встречаются у взрослых насекомых и обычно расположены по бокам их головы. Такие глаза помогают распознавать любые формы объектов и даже различать цвета. Они имеют сложную структуру и состоят из совокупности линз, именуемых фасетками. Интересная особенность состоит в том, что беспозвоночные млекопитающие не видят окружающий мир целиком, а только кусочки изображений, которые уже в мозге собираются в единый пазл. К примеру, муха в процессе полёта успевает соединить все фрагменты в полную картину, поскольку именно в движении она видит гораздо лучше, чем в состоянии покоя.

Чёткость изображения у различных представителей класса беспозвоночных неодинаковая и зависит от роли, которую играет в их жизни зрительное восприятие. Одни могут рассмотреть только очертания объектов, другие представляют предметы вытянутыми в длину, а третьи видят чёткие и пропорциональные изображения.

Цветовое зрение насекомых

Давно известно, что некоторые виды насекомых хорошо различают цвета, а диапазон воспринимаемых ими оттенков отличается от человеческого. Цветовое зрение играет немалую роль в жизни этих членистоногих животных. Они распознают сигналы цветущего растения (запах, окраску венчиков) и находят цветы с необходимым нектаром или пыльцой. Насекомые, отыскав подходящий цветок, запоминают его детали, что помогает потом им найти нужное растение и сэкономить время в период сбора пыльцы.

У многих насекомых сложные фасеточные глаза, состоящие из многочисленных отдельных глазков - омматидий. Насекомые видят мир так, будто он собран из мозаики. Большинство насекомых являются «близорукими». Отдельные из них, как, например, муха диопсиду, видят на расстоянии 135 метров. Бабочка - а она имеет самое острое зрение среди наших насекомых - не видит дальше двух метров, а пчела ничего не видит уже на расстоянии одного метра. Насекомые, глаза которых состоят из большого количества омматидий, способны замечать малейшее движение вокруг себя. Если объект изменяет свое положение в пространстве, то его отражение в составных глазах также меняет место расположения, перемещаясь на некоторое количество омматидий, и насекомое это замечает. Сложные глаза играют огромную роль в жизни хищных насекомых. Благодаря такому строению органов зрения насекомое может сфокусировать глаза на нужном объекте или наблюдать за ним только частью сложного глаза. Интересно, что ночные бабочки ориентируются с помощью зрения и всегда летят к источнику света. Азимут их глаз по отношению к лунному свету всегда меньше 90°.

Цветовое зрение

Для того, чтобы видеть определенный цвет, глаз насекомого должен воспринимать электромагнитные волны определенной длины. Насекомые хорошо воспринимают как ультракороткие, так и ультрадолгие световые волны и цвета спектра, видимого человеческим глазом. Известно, что человек видит цвета от красного до фиолетового, однако его глаз не способен воспринимать ультрафиолетовое излучение - волны, которые длиннее красных и короче фиолетовых. Насекомые видят ультрафиолетовый свет, но не различают цвета красного спектра (только бабочки видят красный цвет). Например, цветок мака воспринимается насекомыми как бесцветный, зато на других цветах глаза насекомые видят такие ультрафиолетовые узоры, которые человеку даже трудно представить. Насекомые ориентируются по этими узорам в поисках нектара. На крыльях бабочек также есть ультрафиолетовые рисунки, которые невидимы для человека. Пчелы различают такие цвета: голубовато-зеленый, фиолетовый, желтый, синий, пчелиный пурпурный и ультрафиолетовый. Насекомые также способны ориентироваться при помощи поляризованного света. При прохождении сквозь атмосферу Земли луч света преломляется, и в результате того, что возникает поляризация света, на разных участках неба длина волн разная. Благодаря этому, даже когда солнца не видно из-за туч, насекомое точно определяет направление.

Интересные факты

У личинок некоторых жуков развиты простые глазки, благодаря которым они хорошо видят и спасаются от хищников. У взрослых жуков развиваются сложные глаза, однако зрение у них не лучше, чем у личинок. Сложные фасеточные глаза есть не только у насекомых, но и в некоторых ракообразных, таких как крабы и омары. Вместо хрусталиков в омматидиях в них расположены миниатюрные зеркальца. Впервые люди смогли посмотреть на мир глазами насекомого в 1918 г. благодаря немецкому ученому Екснеру. Число мелких глазков у насекомых (в зависимости от вида) варьирует от 25 до 25 000. Глаза насекомых, например, жуков, которые плавают на поверхности воды, разделенные на две части: верхняя часть служит для того, чтобы видеть в воздухе, а нижняя - под водой. Фасеточные глаза насекомых видят не так хорошо, как глаза птиц и млекопитающих, поскольку они не способны передавать мелкие детали (у насекомых может быть от 25 до 25 000 фасеток). Зато они хорошо воспринимают объекты, которые двигаются, и регистрируют даже те цвета, которые недоступны для человеческого глаза.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии