Geometrik ilerleme kuralları. Geometrik ilerleme. Bir geometrik ilerlemenin n'inci teriminin formülü ve ilk n teriminin toplamı. Monoton ve sabit dizi

Çocuklar için ateş düşürücüler bir çocuk doktoru tarafından reçete edilir. Ancak çocuğa derhal ilaç verilmesi gereken ateşli acil durumlar vardır. Daha sonra ebeveynler sorumluluğu üstlenir ve ateş düşürücü ilaçlar kullanır. Bebeklere ne verilmesine izin verilir? Daha büyük çocuklarda ateşi nasıl düşürebilirsiniz? Hangi ilaçlar en güvenlidir?

Matematik neinsanlar doğayı ve kendilerini kontrol ederler.

Sovyet matematikçi, akademisyen A.N. Kolmogorov

Geometrik ilerleme.

Matematiğe giriş sınavlarında aritmetik ilerlemelerle ilgili sorunların yanı sıra geometrik ilerleme kavramıyla ilgili sorunlar da yaygındır. Bu tür problemleri başarılı bir şekilde çözmek için geometrik ilerlemelerin özelliklerini bilmeniz ve bunları kullanma konusunda iyi becerilere sahip olmanız gerekir.

Bu makale geometrik ilerlemenin temel özelliklerinin sunumuna ayrılmıştır. Tipik problemlerin çözümüne ilişkin örnekler de burada verilmektedir., matematik giriş sınavlarının görevlerinden ödünç alınmıştır.

Öncelikle geometrik ilerlemenin temel özelliklerini not edelim ve en önemli formülleri ve ifadeleri hatırlayalım., bu kavramla ilişkilidir.

Tanım.İkinciden başlayarak her sayı bir önceki sayıya eşitse ve aynı sayıyla çarpılıyorsa sayı dizisine geometrik ilerleme denir. Sayıya geometrik ilerlemenin paydası denir.

Geometrik ilerleme içinformüller geçerlidir

, (1)

Nerede . Formül (1), geometrik ilerlemenin genel teriminin formülü olarak adlandırılır ve formül (2), geometrik ilerlemenin ana özelliğini temsil eder: ilerlemenin her terimi, komşu terimlerinin geometrik ortalaması ile çakışır ve .

Not, tam da bu özelliği nedeniyle söz konusu ilerlemeye “geometrik” denmektedir.

Yukarıdaki formüller (1) ve (2) aşağıdaki şekilde genelleştirilmiştir:

, (3)

Tutarı hesaplamak için Birinci geometrik ilerleme terimleriformül geçerlidir

Eğer belirtirsek, o zaman

Nerede . Çünkü formül (6), formül (5)'in bir genellemesidir.

Bu durumda ne zaman ve geometrik ilerlemesonsuz bir şekilde azalıyor. Tutarı hesaplamak içinSonsuz azalan geometrik ilerlemenin tüm terimleri için formül kullanılır

. (7)

Örneğin , formül (7)'yi kullanarak gösterebiliriz, Ne

Nerede . Bu eşitlikler, (birinci eşitlik) ve (ikinci eşitlik) koşulu altında formül (7)'den elde edilir.

Teorem. Eğer öyleyse

Kanıt. Eğer öyleyse

Teorem kanıtlandı.

“Geometrik ilerleme” konusundaki problem çözme örneklerini ele almaya devam edelim.

Örnek 1. Verilenler: , ve . Bulmak .

Çözüm. Formül (5)'i uygularsak, o zaman

Cevap: .

Örnek 2. Bırak olsun. Bulmak .

Çözüm. ve olduğundan, (5), (6) formüllerini kullanırız ve bir denklem sistemi elde ederiz

(9) sisteminin ikinci denklemi birinciye bölünürse, sonra veya . Bundan şu sonuç çıkıyor . İki durumu ele alalım.

1. Eğer, daha sonra sistemin (9) ilk denkleminden elimizdeki.

2. Eğer öyleyse .

Örnek 3., ve . Bulmak .

Çözüm. Formül (2)'den şunu takip eder: veya . O zamandan beri veya .

Koşullara göre. Bununla birlikte. O zamandan beri ve o zaman burada bir denklem sistemimiz var

Sistemin ikinci denklemi birinciye bölünürse, o zaman veya .

Çünkü denklemin tek ve uygun bir kökü vardır. Bu durumda sistemin ilk denkleminden çıkar.

Formül (7)'yi dikkate alarak elde ederiz.

Cevap: .

Örnek 4. Verilen: ve . Bulmak .

Çözüm. O zamandan beri.

O zamandan beri veya

Formül (2)'ye göre elimizde . Bu bağlamda eşitlikten (10) veya elde ederiz.

Ancak koşul gereği.

Örnek 5.Öyle olduğu biliniyor. Bulmak .

Çözüm. Teoreme göre iki eşitliğimiz var

O zamandan beri veya . Çünkü o zaman.

Cevap: .

Örnek 6. Verilen: ve . Bulmak .

Çözüm. Formül (5)'i dikkate alarak şunu elde ederiz:

O zamandan beri. O zamandan beri ve o zamandan beri.

Örnek 7. Bırak olsun. Bulmak .

Çözüm. Formül (1)'e göre yazabiliriz

Bu nedenle, elimizde veya var. Bu bilinmektedir ve bu nedenle ve .

Cevap: .

Örnek 8. Aşağıdaki durumlarda sonsuz azalan geometrik ilerlemenin paydasını bulun:

Ve .

Çözüm. Formül (7)'den şu şekildedir: Ve . Buradan ve problemin koşullarından bir denklem sistemi elde ederiz

Sistemin ilk denkleminin karesi alınırsa, ve sonra elde edilen denklemi ikinci denkleme bölün, sonra elde ederiz

Veya .

Cevap: .

Örnek 9., dizisinin geometrik bir ilerleme olduğu tüm değerleri bulun.

Çözüm., ve . Geometrik ilerlemenin ana özelliğini tanımlayan formül (2)'ye göre veya yazabiliriz.

Buradan ikinci dereceden denklemi elde ederiz, kimin kökleri Ve .

Kontrol edelim: eğer, sonra , ve; eğer , o zaman ve .

İlk durumda elimizde ve , ve ikincisinde – ve .

Cevap: , .

Örnek 10.Denklemi çözün

, (11)

Nerede ve .

Çözüm. Denklemin (11) sol tarafı, sonsuz azalan geometrik ilerlemenin toplamıdır; burada ve , aşağıdakilere tabidir: ve .

Formül (7)'den şu şekildedir:, Ne . Bu bağlamda denklem (11) şu şekli alır: veya . Uygun kök ikinci dereceden denklem

Cevap: .

Örnek 11. P pozitif sayılar dizisiaritmetik bir ilerleme oluşturur, A - geometrik ilerleme, ne alakası var . Bulmak .

Çözüm.Çünkü aritmetik dizi, O (aritmetik ilerlemenin ana özelliği). Çünkü, sonra veya . Bu şu anlama gelir: geometrik ilerlemenin şu şekle sahip olduğu. Formül (2)'ye göre, sonra bunu yazıyoruz.

O zamandan beri ve o zaman . Bu durumda ifade veya şeklini alır. Koşullara göre, yani Denklem'den.ele alınan soruna benzersiz bir çözüm elde ederiz, yani .

Cevap: .

Örnek 12. Toplamı Hesapla

. (12)

Çözüm. Eşitliğin her iki tarafını (12) 5 ile çarpın ve şunu elde edin:

Ortaya çıkan ifadeden (12)'yi çıkarırsak, O

veya .

Hesaplamak için değerleri formül (7)'ye koyarız ve elde ederiz. O zamandan beri.

Cevap: .

Burada verilen problem çözme örnekleri, giriş sınavlarına hazırlanırken adaylara faydalı olacaktır. Problem çözme yöntemlerinin daha derinlemesine incelenmesi için, geometrik ilerlemeyle ilgili, Önerilen literatür listesindeki öğreticileri kullanabilirsiniz.

1. Üniversitelere başvuran adaylar için matematik problemlerinin toplanması / Ed. Mİ. Scanavi. – M.: Mir ve Eğitim, 2013. – 608 s.

2. V.P.'yi iptal edin. Lise öğrencileri için matematik: okul müfredatının ek bölümleri. – M.: Lenand / URSS, 2014. – 216 s.

3. Medynsky M.M. Problemler ve alıştırmalar içeren eksiksiz bir temel matematik dersi. Kitap 2: Sayı Dizileri ve İlerlemeler. – M.: Editus, 2015. – 208 s.

Hala sorularınız mı var?

Bir öğretmenden yardım almak için kaydolun.

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.

SAYISAL DİZİLER VI

§ l48. Sonsuz azalan geometrik ilerlemenin toplamı

Şimdiye kadar toplamlardan bahsederken, bu toplamlardaki terim sayısının sonlu olduğunu (örneğin 2, 15, 1000 vb.) varsayıyorduk. Ancak bazı problemleri (özellikle yüksek matematik) çözerken sonsuz sayıda terimin toplamlarıyla uğraşmak gerekir.

S= A 1 + A 2 + ... + A N + ... . (1)

Bu miktarlar nedir? A-tarikatı sonsuz sayıda terimin toplamı A 1 , A 2 , ..., A N , ... S toplamının limiti olarak adlandırılır N Birinci P sayılar ne zaman P -> :

S=S N = (A 1 + A 2 + ... + A N ). (2)

Limit (2) elbette mevcut olabilir veya olmayabilir. Buna göre (1) toplamının var ya da yok olduğunu söylüyorlar.

Her özel durumda toplam (1)'in mevcut olup olmadığını nasıl öğrenebiliriz? Bu sorunun genel çözümü programımızın kapsamının çok ötesindedir. Ancak şimdi dikkate almamız gereken önemli bir özel durum var. Sonsuz azalan bir geometrik ilerlemenin terimlerinin toplanmasından bahsedeceğiz.

İzin vermek A 1 , A 1 Q , A 1 Q 2, ... sonsuz azalan bir geometrik ilerlemedir. Bu şu anlama gelir: | Q |< 1. Сумма первых P bu ilerlemenin şartları eşittir

Değişkenlerin limitlerine ilişkin temel teoremlerden (bkz. § 136) şunu elde ederiz:

Fakat 1 = 1, a qn = 0. Bu nedenle

Yani sonsuz azalan bir geometrik ilerlemenin toplamı, bu ilerlemenin ilk teriminin bir eksi bu ilerlemenin paydasına bölünmesine eşittir.

1) 1, 1/3, 1/9, 1/27, ... geometrik ilerlemesinin toplamı şuna eşittir:

ve geometrik ilerlemenin toplamı 12'dir; -6; 3; - 3/2 , ... eşit

2) Basit bir periyodik kesir olan 0,454545'i sıradan bir kesire dönüştürün.

Bu sorunu çözmek için bu kesri sonsuz bir toplam olarak hayal edin:

Bu eşitliğin sağ tarafı, ilk terimi 45/100, paydası 1/100 olan sonsuz azalan geometrik ilerlemenin toplamıdır. Bu yüzden

Açıklanan yöntemi kullanarak, basit periyodik kesirleri sıradan kesirlere dönüştürmek için genel bir kural elde edilebilir (bkz. Bölüm II, § 38):

Basit bir periyodik kesiri sıradan bir kesire dönüştürmek için aşağıdakileri yapmanız gerekir: payda ondalık kesrin periyodunu ve paydaya - dönemdeki basamak sayısı kadar alınan dokuzdan oluşan bir sayı ondalık kesir.

3) Karışık periyodik kesir 0,58333 ....'yi sıradan bir kesire dönüştürün.

Bu kesri sonsuz bir toplam olarak düşünelim:

Bu eşitliğin sağ tarafında 3/1000'den başlayarak tüm terimler, ilk terimi 3/1000, paydası 1/10 olan sonsuz azalan geometrik dizi oluşturur. Bu yüzden

Açıklanan yöntemi kullanarak, karışık periyodik kesirleri sıradan kesirlere dönüştürmek için genel bir kural elde edilebilir (bkz. Bölüm II, § 38). Burada bilinçli olarak sunmuyoruz. Bu hantal kuralı hatırlamanıza gerek yok. Herhangi bir karışık periyodik kesirin, sonsuz azalan geometrik ilerlemenin ve belirli bir sayının toplamı olarak temsil edilebileceğini bilmek çok daha faydalıdır. Ve formül

Sonsuza kadar azalan geometrik ilerlemenin toplamı için elbette şunu hatırlamanız gerekir.

Bir alıştırma olarak, aşağıda verilen 995-1000 numaralı problemlere ek olarak, bir kez daha 301 § 38 numaralı probleme dönmenizi öneriyoruz.

Egzersizler

995. Sonsuza kadar azalan geometrik ilerlemenin toplamına ne denir?

996. Sonsuz azalan geometrik ilerlemelerin toplamlarını bulun:

997. Hangi değerlerde X ilerleme

sonsuza kadar mı azalıyor? Böyle bir ilerlemenin toplamını bulun.

998. Kenarları olan bir eşkenar üçgende A kenarlarının orta noktaları birleştirilerek yeni bir üçgen yazılır; bu üçgenin içine aynı şekilde yeni bir üçgen yazılır ve bu böyle sonsuza kadar devam eder.

a) tüm bu üçgenlerin çevrelerinin toplamı;

b) alanlarının toplamı.

999. Kenarlı kare A kenarlarının orta noktaları birleştirilerek yeni bir kare yazılır; Bu karenin içine de aynı şekilde bir kare yazılır ve bu böyle sonsuza kadar devam eder. Bu karelerin çevrelerinin toplamını ve alanlarının toplamını bulun.

1000. Toplamı 25/4 ve terimlerinin kareleri toplamı 625/24 olacak şekilde sonsuz azalan bir geometrik dizi oluşturun.

Belirli bir seriyi ele alalım.

7 28 112 448 1792...

Herhangi bir unsurunun değerinin bir öncekinden tam olarak dört kat daha fazla olduğu kesinlikle açıktır. Bu, bu serinin bir ilerleme olduğu anlamına gelir.

Geometrik ilerleme, sonsuz bir sayı dizisidir; temel özelliği, bir sonraki sayının, belirli bir sayı ile çarpılarak bir önceki sayının elde edilmesidir. Bu, aşağıdaki formülle ifade edilir.

a z +1 =a z ·q, burada z, seçilen öğenin numarasıdır.

Buna göre z ∈ N.

Okulda geometrik ilerlemenin çalışıldığı dönem 9. sınıftır. Örnekler kavramı anlamanıza yardımcı olacaktır:

0.25 0.125 0.0625...

Bu formüle dayanarak ilerlemenin paydası şu şekilde bulunabilir:

Ne q ne de b z sıfır olamaz. Ayrıca ilerlemenin öğelerinin her biri sıfıra eşit olmamalıdır.

Buna göre bir serideki bir sonraki sayıyı bulmak için sonuncuyu q ile çarpmanız gerekir.

Bu ilerlemeyi ayarlamak için ilk elemanını ve paydasını belirtmeniz gerekir. Bundan sonra sonraki terimlerden herhangi birini ve bunların toplamını bulmak mümkündür.

Çeşitler

Q ve a 1'e bağlı olarak bu ilerleme birkaç türe ayrılır:

  • Hem a 1 hem de q birden büyükse, bu durumda böyle bir dizi, sonraki her öğeyle artan geometrik bir ilerlemedir. Bunun bir örneği aşağıda sunulmuştur.

Örnek: a 1 =3, q=2 - her iki parametre de birden büyüktür.

O halde sayı dizisi şu şekilde yazılabilir:

3 6 12 24 48 ...

  • Eğer |q| birden küçüktür, yani onunla çarpmak bölmeye eşdeğerdir, o zaman benzer koşullara sahip bir ilerleme, azalan bir geometrik ilerlemedir. Bunun bir örneği aşağıda sunulmuştur.

Örnek: a 1 =6, q=1/3 - a 1 birden büyüktür, q küçüktür.

O halde sayı dizisi şu şekilde yazılabilir:

6 2 2/3 ... - herhangi bir eleman onu takip eden elemandan 3 kat daha büyüktür.

  • Alternatif işaret. eğer q<0, то знаки у чисел последовательности постоянно чередуются вне зависимости от a 1 , а элементы ни возрастают, ни убывают.

Örnek: a 1 = -3, q = -2 - her iki parametre de sıfırdan küçüktür.

O zaman sayı dizisi şu şekilde yazılabilir:

3, 6, -12, 24,...

Formüller

Geometrik ilerlemelerin uygun kullanımı için birçok formül vardır:

  • Z terimi formülü. Önceki sayıları hesaplamadan belirli bir sayının altındaki bir öğeyi hesaplamanıza olanak tanır.

Örnek:Q = 3, A 1 = 4. İlerlemenin dördüncü öğesini saymak gerekir.

Çözüm:A 4 = 4 · 3 4-1 = 4 · 3 3 = 4 · 27 = 108.

  • Miktarı eşit olan ilk elementlerin toplamı z. Bir dizinin tüm öğelerinin toplamını şu ana kadar hesaplamanıza olanak tanır:bir zdahil.

Şu andan itibaren (1-Q) paydada ise (1 - q)≠ 0, dolayısıyla q, 1'e eşit değildir.

Not: Eğer q=1 ise ilerleme sonsuz sayıda tekrarlanan sayılar dizisi olacaktır.

Geometrik ilerlemenin toplamı, örnekler:A 1 = 2, Q= -2. S5'i hesaplayın.

Çözüm:S 5 = 22 - formülü kullanarak hesaplama.

  • Eğer |Q| < 1 и если z стремится к бесконечности.

Örnek:A 1 = 2 , Q= 0,5. Tutarı bulun.

Çözüm:Sz = 2 · = 4

Sz = 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375 4

Bazı özellikler:

  • Karakteristik özellik. Aşağıdaki durum ise herhangi biri için çalışırz, o zaman verilen sayı serisi geometrik bir ilerlemedir:

bir z 2 = bir z -1 · Az+1

  • Ayrıca geometrik dizideki herhangi bir sayının karesi, belirli bir serideki herhangi iki sayının, eğer bu elemana eşit uzaklıktaysa, kareleri toplanarak bulunur.

bir z 2 = bir z - T 2 + bir z + T 2 , NeredeT- bu sayılar arasındaki mesafe.

  • Elementlerq bakımından farklıbir kere.
  • Bir ilerlemenin elemanlarının logaritmaları da bir ilerleme oluşturur, ancak aritmetik bir ilerlemedir, yani her biri bir öncekinden belirli bir sayı kadar büyüktür.

Bazı klasik problemlere örnekler

Geometrik ilerlemenin ne olduğunu daha iyi anlamak için 9. sınıfa yönelik çözüm örnekleri yardımcı olabilir.

  • Koşullar:A 1 = 3, A 3 = 48. BulQ.

Çözüm: Sonraki her öğe bir öncekinden daha büyüktür.Q bir kere.Bazı unsurları payda kullanarak diğerleri cinsinden ifade etmek gerekir.

Buradan,A 3 = Q 2 · A 1

DeğiştirirkenQ= 4

  • Koşullar:A 2 = 6, A 3 = 12. S 6'yı hesaplayın.

Çözüm:Bunu yapmak için ilk eleman olan q'yu bulun ve onu formülde değiştirin.

A 3 = Q· A 2 , buradan,Q= 2

a 2 = q · bir 1 ,Bu yüzden bir 1 = 3

S6 = 189

  • · A 1 = 10, Q= -2. İlerlemenin dördüncü öğesini bulun.

Çözüm: Bunu yapmak için dördüncü elemanı birinci ve payda aracılığıyla ifade etmek yeterlidir.

a 4 = q 3· 1 = -80

Uygulama örneği:

  • Bir banka müşterisi 10.000 ruble tutarında bir depozito yatırdı; şartlara göre müşteri her yıl bunun %6'sını anapara tutarına ekleyecektir. 4 yıl sonra hesapta ne kadar para olacak?

Çözüm: Başlangıç ​​tutarı 10 bin ruble. Bu, yatırımdan bir yıl sonra hesabın 10.000 + 10.000 tutarında bir tutara sahip olacağı anlamına gelir. · 0,06 = 10000 1,06

Buna göre bir yıl sonra hesapta kalacak tutar şu şekilde ifade edilecektir:

(10000 · 1,06) · 0,06 + 10000 · 1,06 = 1,06 · 1,06 · 10000

Yani her yıl miktar 1,06 kat artıyor. Yani 4 yıl sonra hesaptaki fon miktarını bulmak için birinci unsurun 10 bin ve paydanın 1,06 olmasıyla verilen ilerlemenin dördüncü unsurunu bulmak yeterli oluyor.

S = 1,06 1,06 1,06 1,06 10000 = 12625

Toplam hesaplama problemlerine örnekler:

Geometrik ilerleme çeşitli problemlerde kullanılır. Toplamı bulmaya yönelik bir örnek şu şekilde verilebilir:

A 1 = 4, Q= 2, hesaplaS5.

Çözüm: Hesaplama için gerekli tüm veriler biliniyor, bunları formülde kullanmanız yeterli.

S 5 = 124

  • A 2 = 6, A 3 = 18. İlk altı elemanın toplamını hesaplayın.

Çözüm:

Geom'da. ilerleme, her bir sonraki öğe bir öncekinden q kat daha büyüktür, yani toplamı hesaplamak için öğeyi bilmeniz gerekirA 1 ve paydaQ.

A 2 · Q = A 3

Q = 3

Benzer şekilde, bulmanız gerekirA 1 , bilerekA 2 VeQ.

A 1 · Q = A 2

bir 1 =2

S 6 = 728.

O halde oturup bazı sayıları yazmaya başlayalım. Örneğin:

Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir (bizim durumumuzda vardır). Ne kadar sayı yazarsak yazalım her zaman hangisinin önce, hangisinin ikinci olduğunu ve sonuncuya kadar böyle devam ettiğini söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir:

Numara dizisi her birine benzersiz bir numara atanabilen bir sayı kümesidir.

Örneğin dizimiz için:

Atanan numara, dizideki yalnızca bir numaraya özeldir. Yani dizide üç saniyelik sayı yok. İkinci sayı (inci sayı gibi) her zaman aynıdır.

Sayıyı taşıyan sayıya dizinin n'inci üyesi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Bizim durumumuzda:

En yaygın ilerleme türleri aritmetik ve geometriktir. Bu başlıkta ikinci tip hakkında konuşacağız - geometrik ilerleme.

Geometrik ilerlemeye neden ihtiyaç duyulur ve tarihi?

Antik çağda bile, İtalyan matematikçi keşiş Pisalı Leonardo (daha çok Fibonacci olarak bilinir) ticaretin pratik ihtiyaçlarıyla ilgileniyordu. Keşiş, bir ürünü tartmak için kullanılabilecek en küçük ağırlık sayısını belirleme göreviyle karşı karşıyaydı. Fibonacci, çalışmalarında böyle bir ağırlık sisteminin optimal olduğunu kanıtlıyor: Bu, insanların muhtemelen zaten duymuş olduğunuz ve en azından genel bir anlayışa sahip olduğunuz geometrik ilerlemeyle uğraşmak zorunda kaldıkları ilk durumlardan biridir. Konuyu tam olarak anladıktan sonra böyle bir sistemin neden optimal olduğunu düşünün.

Şu anda, yaşam pratiğinde geometrik ilerleme, bir bankaya para yatırırken, önceki dönemde hesapta biriken tutara faiz tahakkuk ettirildiğinde kendini göstermektedir. Başka bir deyişle, bir tasarruf bankasındaki vadeli mevduata para yatırırsanız, bir yıl sonra mevduat orijinal miktarı kadar artacaktır, yani. yeni miktar katkı payının çarpımına eşit olacaktır. Bir sonraki yıl bu miktar artacak, yani. o sırada elde edilen miktar tekrar çarpılacaktır vb. Benzer bir durum sözde hesaplama problemlerinde de anlatılmaktadır. bileşik faiz– yüzde, önceki faiz dikkate alınarak her defasında hesapta bulunan tutardan alınır. Bu görevlerden biraz sonra bahsedeceğiz.

Geometrik ilerlemenin uygulandığı daha birçok basit durum vardır. Örneğin, gribin yayılması: bir kişi başka bir kişiye bulaştırdı, o da başka bir kişiye bulaştırdı ve dolayısıyla enfeksiyonun ikinci dalgası bir kişiye dönüştü ve o da bir başkasına bulaştırdı... ve böyle devam etti. .

Bu arada, aynı MMM olan finansal piramit, geometrik ilerlemenin özelliklerine dayanan basit ve kuru bir hesaplamadır. İlginç? Hadi çözelim.

Geometrik ilerleme.

Diyelim ki bir sayı dizimiz var:

Bunun kolay olduğunu ve böyle bir dizinin adının üyelerinin farkıyla olduğunu hemen cevaplayacaksınız. Buna ne dersin:

Önceki sayıyı sonraki sayıdan çıkarırsanız, her seferinde yeni bir fark elde ettiğinizde (vb.) göreceksiniz, ancak dizi kesinlikle mevcuttur ve fark edilmesi kolaydır - sonraki her sayı bir öncekinden kat daha büyüktür!

Bu tür sayı dizisine denir geometrik ilerleme ve belirlenir.

Geometrik ilerleme (), ilk terimi sıfırdan farklı olan ve ikinciden başlayarak her terim bir öncekine eşit olan ve aynı sayıyla çarpılan sayısal bir dizidir. Bu sayıya geometrik ilerlemenin paydası denir.

İlk terimin ( ) eşit olmadığı ve rastgele olmadığı kısıtlamaları. Diyelim ki hiçbiri yok ve ilk terim hala eşit ve q eşittir, hmm.. öyle olsun, o zaman ortaya çıkıyor:

Bunun artık bir ilerleme olmadığını kabul edin.

Anladığınız gibi sıfır a'dan başka bir sayı varsa aynı sonuçları elde edeceğiz. Bu durumlarda, sayı serisinin tamamı ya sıfır ya da bir sayı olacağından ve geri kalan her şey sıfır olacağından hiçbir ilerleme olmayacaktır.

Şimdi geometrik ilerlemenin paydası yani o hakkında daha detaylı konuşalım.

Tekrarlayalım: - bu sayı birbirini takip eden her terim kaç kez değişir? geometrik ilerleme.

Sizce ne olabilir? Bu doğru, olumlu ve olumsuz, ancak sıfır değil (bunun hakkında biraz daha yukarıda konuştuk).

Bizimkinin olumlu olduğunu varsayalım. Bizim durumumuzda a. İkinci terimin değeri nedir ve? Buna kolayca cevap verebilirsiniz:

Bu doğru. Buna göre, ilerlemenin sonraki tüm terimleri aynı işarete sahipse - bunlar olumlu.

Ya olumsuzsa? Örneğin, a. İkinci terimin değeri nedir ve?

Bu tamamen farklı bir hikaye

Bu ilerlemenin şartlarını saymaya çalışın. Ne kadar aldın? Sahibim. Dolayısıyla, geometrik ilerlemenin terimlerinin işaretleri değişiyorsa. Yani, üyeleri için değişen işaretlerin olduğu bir ilerleme görürseniz, paydası negatiftir. Bu bilgi, bu konudaki sorunları çözerken kendinizi test etmenize yardımcı olabilir.

Şimdi biraz pratik yapalım: Hangi sayı dizilerinin geometrik ilerleme, hangilerinin aritmetik ilerleme olduğunu belirlemeye çalışın:

Anladım? Cevaplarımızı karşılaştıralım:

  • Geometrik ilerleme – 3, 6.
  • Aritmetik ilerleme – 2, 4.
  • Bu ne aritmetik ne de geometrik bir ilerlemedir - 1, 5, 7.

Son ilerlememize dönelim ve tıpkı aritmetikteki gibi üyesini bulmaya çalışalım. Tahmin edebileceğiniz gibi onu bulmanın iki yolu var.

Her terimi art arda ile çarpıyoruz.

Yani açıklanan geometrik ilerlemenin inci terimi eşittir.

Zaten tahmin ettiğiniz gibi, artık geometrik ilerlemenin herhangi bir üyesini bulmanıza yardımcı olacak bir formülü kendiniz türeteceksiniz. Yoksa zaten kendiniz için geliştirdiniz mi, adım adım üyeyi nasıl bulacağınızı anlatıyorsunuz? Eğer öyleyse, gerekçenizin doğruluğunu kontrol edin.

Bunu bu ilerlemenin inci terimini bulma örneğiyle açıklayalım:

Başka bir deyişle:

Verilen geometrik ilerlemenin teriminin değerini kendiniz bulun.

Olmuş? Cevaplarımızı karşılaştıralım:

Geometrik ilerlemenin önceki her terimiyle sıralı olarak çarptığımızda, önceki yöntemdekiyle tamamen aynı sayıyı elde ettiğinizi lütfen unutmayın.
Bu formülü "kişisellikten arındırmaya" çalışalım - genel forma koyalım ve şunu elde edelim:

Türetilen formül hem pozitif hem de negatif tüm değerler için geçerlidir. Aşağıdaki koşullarla geometrik ilerlemenin terimlerini hesaplayarak bunu kendiniz kontrol edin: , a.

Saydın mı? Sonuçları karşılaştıralım:

Bir terimle aynı şekilde bir ilerleme terimi bulmanın mümkün olacağını kabul edin, ancak yanlış hesaplama olasılığı vardır. Ve eğer geometrik ilerlemenin inci terimini zaten bulduysak, formülün "kesilmiş" kısmını kullanmaktan daha basit ne olabilir?

Sonsuz azalan geometrik ilerleme.

Daha yakın zamanlarda sıfırdan büyük ya da küçük olabileceğinden bahsettik, ancak geometrik ilerlemenin çağrıldığı özel değerler var. sonsuz azalan.

Sizce bu isim neden verildi?
Öncelikle terimlerden oluşan bazı geometrik dizileri yazalım.
O halde şöyle diyelim:

Sonraki her terimin bir öncekinden bir kat daha az olduğunu görüyoruz, ancak herhangi bir sayı olacak mı? Hemen “hayır” cevabını vereceksiniz. Bu yüzden sonsuza kadar azalıyor; azalıyor, azalıyor ama asla sıfır olmuyor.

Bunun görsel olarak nasıl göründüğünü net bir şekilde anlamak için ilerlememizin bir grafiğini çizmeye çalışalım. Dolayısıyla bizim durumumuz için formül aşağıdaki formu alır:

Grafiklerde bağımlılığı çizmeye alışkınız, bu nedenle:

İfadenin özü değişmedi: ilk girdide geometrik ilerlemenin bir üyesinin değerinin sıra numarasına bağımlılığını gösterdik ve ikinci girdide basitçe geometrik ilerlemenin bir üyesinin değerini şu şekilde aldık: ve sıra sayısını olarak değil, olarak belirledi. Geriye kalan tek şey bir grafik oluşturmaktır.
Bakalım ne almışsın. İşte bulduğum grafik:

Görüyor musun? Fonksiyon azalır, sıfıra yaklaşır ama asla onu geçmez, yani sonsuz azalandır. Grafik üzerinde noktalarımızı ve aynı zamanda koordinat ve ne anlama geldiğini işaretleyelim:

İlk terimi de eşitse, geometrik ilerlemenin grafiğini şematik olarak göstermeye çalışın. Analiz edin, önceki grafiğimizle arasındaki fark nedir?

Becerebildin mi? İşte bulduğum grafik:

Artık geometrik ilerleme konusunun temellerini tam olarak anladığınıza göre: ne olduğunu biliyorsunuz, terimini nasıl bulacağınızı biliyorsunuz ve aynı zamanda sonsuz azalan geometrik ilerlemenin ne olduğunu da biliyorsunuz, haydi ana özelliğine geçelim.

Geometrik ilerlemenin özelliği.

Aritmetik ilerlemenin terimlerinin özelliğini hatırlıyor musunuz? Evet evet, bu ilerlemenin terimlerinin önceki ve sonraki değerleri varken belirli bir ilerleme sayısının değeri nasıl bulunur? Hatırlıyor musun? Bu:

Şimdi geometrik ilerlemenin terimleri için tamamen aynı soruyla karşı karşıyayız. Böyle bir formül elde etmek için çizmeye ve akıl yürütmeye başlayalım. Göreceksiniz, çok kolay, eğer unutursanız kendiniz de çıkarabilirsiniz.

İçinde bildiğimiz başka bir basit geometrik ilerlemeyi ele alalım ve. Nasıl bulunur? Aritmetik ilerlemeyle bu kolay ve basittir, peki ya burada? Aslında geometrik olarak da karmaşık bir şey yok - bize verilen her değeri formüle göre yazmanız yeterli.

Şimdi bu konuda ne yapmamız gerektiğini sorabilirsiniz. Evet, çok basit. Öncelikle bu formülleri bir resim üzerinde gösterelim ve değere ulaşmak için onlarla çeşitli manipülasyonlar yapmaya çalışalım.

Bize verilen rakamlardan soyutlayalım, sadece formül üzerinden ifadelerine odaklanalım. Turuncu renkle vurgulanan değeri, yanındaki terimleri bilerek bulmamız gerekiyor. Sonuç olarak alabileceğimiz çeşitli eylemler gerçekleştirmeye çalışalım.

Ek.
İki ifade eklemeye çalışalım ve şunu elde edelim:

Gördüğünüz gibi bu ifadeyi hiçbir şekilde ifade edemiyoruz, bu nedenle başka bir seçenek olan çıkarma işlemini deneyeceğiz.

Çıkarma.

Gördüğünüz gibi bundan da ifade edemiyoruz, dolayısıyla bu ifadeleri birbiriyle çarpmaya çalışacağız.

Çarpma işlemi.

Şimdi bize verilen geometrik ilerlemenin terimlerini bulunması gerekenlerle karşılaştırarak elimizde ne olduğuna dikkatlice bakın:

Bilin bakalım neden bahsediyorum? Doğru şekilde bulmak için, istenen sayıya bitişik geometrik ilerleme sayılarının karekökünü birbiriyle çarpmamız gerekir:

Hadi bakalım. Geometrik ilerlemenin özelliğini kendiniz çıkardınız. Bu formülü genel biçimde yazmaya çalışın. Olmuş?

Durumu unuttunuz mu? Bunun neden önemli olduğunu düşünün, örneğin bunu kendiniz hesaplamaya çalışın. Bu durumda ne olacak? Bu doğru, tamamen saçmalık çünkü formül şöyle görünüyor:

Bu nedenle bu sınırlamayı unutmayın.

Şimdi neye eşit olduğunu hesaplayalım

Doğru cevap - ! Hesaplama sırasında ikinci olası değeri unutmadıysanız, o zaman harikasınız ve hemen eğitime geçebilirsiniz ve unutursanız, aşağıda tartışılanları okuyun ve neden her iki kökün de yazılması gerektiğine dikkat edin. cevap.

Her iki geometrik ilerlememizi de (biri değerle, diğeri değerle) çizelim ve her ikisinin de var olma hakkına sahip olup olmadığını kontrol edelim:

Böyle bir geometrik ilerlemenin var olup olmadığını kontrol etmek için verilen tüm terimlerin aynı olup olmadığına bakmak gerekir. Birinci ve ikinci durumlar için q'yu hesaplayın.

Neden iki cevap yazmamız gerektiğini anladınız mı? Çünkü aradığınız terimin işareti olumlu ya da olumsuz olmasına bağlıdır! Ve ne olduğunu bilmediğimiz için her iki cevabı da artı ve eksi ile yazmamız gerekiyor.

Artık ana noktalarda uzmanlaştığınıza ve geometrik ilerleme özelliğinin formülünü türettiğinize göre, bulma, bilme ve

Cevaplarınızı doğru olanlarla karşılaştırın:

Ne düşünüyorsunuz, ya bize istenen sayıya bitişik geometrik ilerleme terimlerinin değerleri değil de ondan eşit uzaklıkta verilmiş olsaydı. Örneğin, bulmamız ve vermemiz gerekiyor ve. Bu durumda elde ettiğimiz formülü kullanabilir miyiz? Formülü orijinal olarak türettiğinizde yaptığınız gibi, her bir değerin nelerden oluştuğunu açıklayarak bu olasılığı aynı şekilde doğrulamaya veya çürütmeye çalışın.
Ne aldın?

Şimdi tekrar dikkatlice bakın.
ve buna bağlı olarak:

Buradan formülün işe yaradığı sonucuna varabiliriz. sadece komşularla değil geometrik ilerlemenin istenen terimleriyle, aynı zamanda eşit uzaklıktaüyelerin aradıklarından.

Böylece ilk formülümüz şu şekli alır:

Yani, ilk durumda öyle dediysek, şimdi bundan daha küçük olan herhangi bir doğal sayıya eşit olabileceğini söylüyoruz. Önemli olan, verilen her iki sayı için de aynı olmasıdır.

Belirli örneklerle pratik yapın, ancak son derece dikkatli olun!

  1. , . Bulmak.
  2. , . Bulmak.
  3. , . Bulmak.

Karar verilmiş? Umarım son derece dikkatli davranmışsınızdır ve küçük bir yakalamayı fark etmişsinizdir.

Sonuçları karşılaştıralım.

İlk iki durumda yukarıdaki formülü sakince uygularız ve aşağıdaki değerleri elde ederiz:

Üçüncü durumda ise bize verilen numaraların seri numaralarını dikkatlice incelediğimizde aradığımız numaraya eşit uzaklıkta olmadıklarını anlarız: bir önceki numaradır ancak bir konumda kaldırılmıştır yani formülü uygulamak mümkün değil.

Nasıl çözeceksin? Aslında göründüğü kadar zor değil! Bize verilen her sayının ve aradığımız sayının nelerden oluştuğunu yazalım.

Yani elimizde ve var. Bakalım onlarla neler yapabiliriz? Bölmeyi öneriyorum. Şunu elde ederiz:

Verilerimizi formülde yerine koyarız:

Bulabileceğimiz bir sonraki adım - bunun için ortaya çıkan sayının küp kökünü almamız gerekiyor.

Şimdi elimizdekilere tekrar bakalım. Elimizde var ama bulmamız gerekiyor ve bu da şuna eşit:

Hesaplama için gerekli tüm verileri bulduk. Formülde yerine koyun:

Cevabımız: .

Başka bir benzer sorunu kendiniz çözmeyi deneyin:
Verilen: ,
Bulmak:

Ne kadar aldın? Sahibim - .

Gördüğünüz gibi aslında ihtiyacınız var sadece bir formülü hatırla- . Geri kalanını istediğiniz zaman hiçbir zorlukla karşılaşmadan kendiniz çekebilirsiniz. Bunu yapmak için, bir parça kağıda en basit geometrik ilerlemeyi yazmanız ve yukarıda açıklanan formüle göre her bir sayısının neye eşit olduğunu yazmanız yeterlidir.

Geometrik ilerlemenin terimlerinin toplamı.

Şimdi belirli bir aralıktaki geometrik ilerlemenin terimlerinin toplamını hızlı bir şekilde hesaplamamızı sağlayan formüllere bakalım:

Sonlu bir geometrik ilerlemenin terimlerinin toplamına ilişkin formülü elde etmek için yukarıdaki denklemin tüm kısımlarını çarparız. Şunu elde ederiz:

Dikkatlice bakın: Son iki formülün ortak noktası nedir? Bu doğru, örneğin ortak üyeler vb., ilk ve son üye hariç. 2. denklemden 1.yi çıkarmaya çalışalım. Ne aldın?

Şimdi geometrik ilerlemenin terimini formül aracılığıyla ifade edin ve elde edilen ifadeyi son formülümüzde yerine koyun:

İfadeyi gruplandırın. Almalısınız:

Geriye sadece şunu ifade etmek kalıyor:

Buna göre bu durumda.

Farzedelim? O zaman hangi formül işe yarıyor? Geometrik bir ilerleme hayal edin. Neye benziyor? Bir dizi aynı sayı doğrudur, dolayısıyla formül şöyle görünecektir:

Hem aritmetik hem de geometrik ilerlemeyle ilgili birçok efsane vardır. Bunlardan biri de satrancın yaratıcısı Set efsanesidir.

Birçok kişi satranç oyununun Hindistan'da icat edildiğini biliyor. Hindu kralı onunla tanıştığında onun zekasından ve sahip olabileceği pozisyonların çeşitliliğinden çok memnun kaldı. Bunun tebaasından biri tarafından icat edildiğini öğrenen kral, onu bizzat ödüllendirmeye karar verdi. Mucidi yanına çağırdı ve ona istediği her şeyi istemesini emretti, en yetenekli arzuyu bile yerine getireceğine söz verdi.

Seta düşünmek için zaman istedi ve ertesi gün Seta kralın huzuruna çıktığında, bu isteğinin benzeri görülmemiş alçakgönüllülüğüyle kralı şaşırttı. Satranç tahtasının ilk karesine bir buğday tanesi, ikinci karesine bir buğday tanesi, üçüncü karesine bir buğday tanesi, dördüncü karesine bir buğday tanesi vb. verilmesini istedi.

Kral sinirlendi ve hizmetkarın isteğinin kralın cömertliğine yakışmadığını söyleyerek Seth'i uzaklaştırdı, ancak hizmetkarın tahtanın tüm kareleri için tahıllarını alacağına söz verdi.

Ve şimdi soru şu: Geometrik ilerlemenin terimlerinin toplamı formülünü kullanarak Seth'in kaç tane tane alması gerektiğini hesaplayın?

Mantık yürütmeye başlayalım. Şarta göre Seth satranç tahtasının ilk karesi için, ikinci karesi için, üçüncüsü için, dördüncüsü için vb. bir buğday tanesi istediğine göre problemin geometrik ilerlemeyle ilgili olduğunu görüyoruz. Bu durumda neye eşittir?
Sağ.

Satranç tahtasının toplam kareleri. Sırasıyla, . Tüm verilere sahibiz, geriye kalan tek şey bunları formüle takıp hesaplamak.

Belirli bir sayının en azından yaklaşık olarak "ölçeği"ni hayal etmek için derecenin özelliklerini kullanarak dönüşüm yaparız:

Tabii ki, isterseniz bir hesap makinesi alıp hangi sayıya ulaşacağınızı hesaplayabilirsiniz, yoksa benim sözüme güvenmek zorunda kalacaksınız: ifadenin son değeri şu olacaktır.
Yani:

kentilyon katrilyon trilyon milyar milyon bin.

Phew) Bu sayının büyüklüğünü hayal etmek istiyorsanız, tahıl miktarının tamamını barındırmak için ne kadar büyük bir ahırın gerekli olacağını tahmin edin.
Ahır m yüksekliğinde ve m genişliğinde ise uzunluğunun km kadar uzaması gerekir. Dünya'dan Güneş'e olan uzaklığın iki katı.

Kral matematikte güçlü olsaydı, bilim adamını tahılları saymaya davet edebilirdi, çünkü bir milyon taneyi saymak için en az bir gün yorulmak bilmeden saymaya ihtiyacı olurdu ve kentilyonları saymanın gerekli olduğu göz önüne alındığında, taneleri saymak hayatı boyunca sayılması gerekirdi.

Şimdi geometrik ilerlemenin terimlerinin toplamını içeren basit bir problemi çözelim.
5A sınıfı öğrencisi Vasya gribe yakalandı ancak okula gitmeye devam ediyor. Vasya her gün iki kişiye bulaştırıyor, o da iki kişiye daha bulaştırıyor ve bu böyle devam ediyor. Sınıfta sadece insanlar var. Kaç gün sonra tüm sınıf gripten hasta olacak?

Yani geometrik ilerlemenin ilk terimi Vasya'dır, yani kişidir. Geometrik ilerlemenin üçüncü terimi, geldiği ilk gün enfekte ettiği iki kişidir. İlerleme dönemlerinin toplamı 5A öğrenci sayısına eşittir. Buna göre şöyle bir ilerlemeden bahsediyoruz:

Verilerimizi geometrik ilerlemenin terimlerinin toplamı formülünde yerine koyalım:

Birkaç gün içinde tüm sınıf hastalanacak. Formüllere ve sayılara inanmıyor musunuz? Öğrencilerin “enfeksiyonunu” kendiniz tasvir etmeye çalışın. Olmuş? Bakın benim için nasıl görünüyor:

Her biri bir kişiye bulaşırsa ve sınıfta yalnızca bir kişi varsa, öğrencilerin gripten kaç gün sonra hastalanacağını kendiniz hesaplayın.

Hangi değeri aldın? Bir gün sonra herkesin hastalanmaya başladığı ortaya çıktı.

Gördüğünüz gibi, böyle bir görev ve onun çizimi, her birinin yeni insanları "getirdiği" bir piramite benziyor. Ancak er ya da geç öyle bir an gelir ki ikincisi kimseyi çekemez. Bizim durumumuzda sınıfın izole olduğunu hayal edersek, gelen kişi zinciri () kapatır. Bu nedenle, bir kişi, diğer iki katılımcıyı getirirseniz paranın verildiği bir mali piramide dahil olsaydı, o zaman kişi (veya genel olarak) kimseyi getirmeyecek, dolayısıyla bu mali dolandırıcılığa yatırdığı her şeyi kaybedecekti.

Yukarıda söylenen her şey azalan veya artan bir geometrik ilerlemeye atıfta bulunur, ancak hatırladığınız gibi, özel bir türümüz var - sonsuz azalan bir geometrik ilerleme. Üyelerinin toplamı nasıl hesaplanır? Peki neden bu tür bir ilerlemenin belirli özellikleri var? Hadi birlikte çözelim.

Öncelikle örneğimizden sonsuz azalan geometrik ilerlemenin çizimine tekrar bakalım:

Şimdi biraz daha önce türetilen geometrik ilerlemenin toplamı formülüne bakalım:
veya

Ne için çabalıyoruz? Doğru, grafik sıfıra doğru yöneldiğini gösteriyor. Yani at, neredeyse elde edeceğimiz ifadeyi hesaplarken sırasıyla neredeyse eşit olacaktır. Bu bakımdan sonsuz azalan bir geometrik ilerlemenin toplamını hesaplarken bu parantez eşit olacağından ihmal edilebileceğine inanıyoruz.

- formül sonsuz azalan geometrik ilerlemenin terimlerinin toplamıdır.

ÖNEMLİ! Sonsuz derecede azalan bir geometrik ilerlemenin terimlerinin toplamı için formülü yalnızca koşulun toplamı bulmamız gerektiğini açıkça belirtmesi durumunda kullanırız. sonsuzÜye sayısı.

Belirli bir n sayısı belirtilirse, o zaman veya olsa bile n terimin toplamı için formülü kullanırız.

Şimdi pratik yapalım.

  1. Ve ile geometrik ilerlemenin ilk terimlerinin toplamını bulun.
  2. Ve ile sonsuz azalan geometrik ilerlemenin terimlerinin toplamını bulun.

Umarım çok dikkatli davranmışsınızdır. Cevaplarımızı karşılaştıralım:

Artık geometrik ilerleme hakkında her şeyi biliyorsunuz ve teoriden pratiğe geçme zamanı geldi. Sınavda en sık karşılaşılan geometrik ilerleme problemleri bileşik faiz hesaplama problemleridir. Bunlar konuşacaklarımız.

Bileşik faizin hesaplanmasında karşılaşılan sorunlar.

Muhtemelen bileşik faiz formülünü duymuşsunuzdur. Ne anlama geldiğini anlıyor musun? Değilse, hadi çözelim, çünkü sürecin kendisini anladığınızda, geometrik ilerlemenin bununla ne ilgisi olduğunu hemen anlayacaksınız.

Hepimiz bankaya gideriz ve mevduatlar için farklı koşulların olduğunu biliriz: Buna vade, ek hizmetler ve hesaplamanın iki farklı yolu olan faiz dahildir: basit ve karmaşık.

İLE basit ilgi her şey az çok açıktır: faiz, mevduat vadesinin sonunda bir kez tahakkuk ettirilir. Yani yılda 100 ruble yatırdığımızı söylersek, bunlar ancak yıl sonunda kredilendirilecektir. Buna göre depozito sonunda ruble alacağız.

Bileşik faiz- bu, bunun gerçekleştiği bir seçenektir faiz kapitalizasyonu, yani bunların depozito tutarına eklenmesi ve daha sonra gelirin başlangıçtan değil, birikmiş depozito tutarından hesaplanması. Büyük harf kullanımı sürekli olarak gerçekleşmez, ancak belirli bir sıklıkta gerçekleşir. Kural olarak, bu tür süreler eşittir ve çoğu zaman bankalar bir ay, üç aylık dönem veya yılı kullanır.

Her yıl aynı rubleyi yatırdığımızı, ancak depozitonun aylık kapitalizasyonunu yaptığımızı varsayalım. Biz ne yapıyoruz?

Buradaki her şeyi anlıyor musun? Değilse, adım adım çözelim.

Bankaya ruble getirdik. Ay sonuna kadar hesabımızda ruble artı faizinden oluşan bir miktar olmalı, yani:

Kabul etmek?

Bunu parantezlerin dışına çıkarabiliriz ve şunu elde ederiz:

Katılıyorum, bu formül zaten başlangıçta yazdıklarımıza daha çok benziyor. Geriye kalan tek şey yüzdeleri hesaplamak

Sorun bildiriminde bize yıllık oranlar anlatılıyor. Bildiğiniz gibi çarpma yapmıyoruz - yüzdeleri ondalık kesirlere dönüştürüyoruz, yani:

Sağ? Şimdi sorabilirsiniz, bu sayı nereden geldi? Çok basit!
Tekrar ediyorum: sorun bildirimi şunu söylüyor YILLIK tahakkuk eden faiz AYLIK. Bildiğiniz gibi, buna göre bir yıl içinde banka bizden aylık yıllık faizin bir kısmını tahsil edecek:

Anladın mı? Şimdi faizin günlük olarak hesaplandığını söyleseydim formülün bu kısmının nasıl görüneceğini yazmaya çalışın.
Becerebildin mi? Sonuçları karşılaştıralım:

Tebrikler! Görevimize dönelim: Birikmiş mevduat tutarına faiz tahakkuk ettiğini dikkate alarak ikinci ayda hesabımıza ne kadar yatırılacağını yazın.
İşte elde ettiklerim:

Veya başka bir deyişle:

Sanırım zaten bir model fark ettiniz ve tüm bunlarda geometrik bir ilerleme gördünüz. Üyesinin neye eşit olacağını, yani ay sonunda ne kadar para alacağımızı yazın.
Yaptı? Hadi kontrol edelim!

Gördüğünüz gibi, bir yıl boyunca bir bankaya basit faiz oranıyla para koyarsanız ruble, bileşik faiz oranıyla ise ruble alırsınız. Faydası küçüktür, ancak bu yalnızca üçüncü yılda gerçekleşir, ancak daha uzun bir süre için kapitalizasyon çok daha karlıdır:

Bileşik faizi içeren başka bir problem türüne bakalım. Anladığınız şeyden sonra, bu sizin için temel olacaktır. Yani görev:

Zvezda şirketi 2000 yılında dolar cinsinden sermayeyle sektöre yatırım yapmaya başladı. 2001 yılından bu yana her yıl bir önceki yılın sermayesine eşit kâr elde etmektedir. Kârlar dolaşımdan çekilmeseydi Zvezda şirketi 2003 yılı sonunda ne kadar kâr elde edecek?

2000 yılında Zvezda şirketinin başkenti.
- 2001 yılında Zvezda şirketinin sermayesi.
- 2002 yılında Zvezda şirketinin sermayesi.
- 2003 yılında Zvezda şirketinin sermayesi.

Veya kısaca şunu yazabiliriz:

Bizim durumumuz için:

2000, 2001, 2002 ve 2003.

Sırasıyla:
ruble
Yüzdenin YILLIK olarak verildiği ve YILLIK olarak hesaplandığı için bu problemde ne ile ne de ile bölme işlemimizin olmadığını lütfen unutmayın. Yani bileşik faizle ilgili bir problemi okurken, yüzde kaç verildiğine ve hangi dönemde hesaplandığına dikkat edin ve ancak ondan sonra hesaplamalara geçin.
Artık geometrik ilerleme hakkında her şeyi biliyorsunuz.

Eğitim.

  1. Eğer biliniyorsa geometrik ilerlemenin terimini bulun ve
  2. Eğer biliniyorsa, geometrik ilerlemenin ilk terimlerinin toplamını bulun ve
  3. MDM Capital şirketi 2003 yılında dolar cinsinden sermayeyle sektöre yatırım yapmaya başladı. 2004 yılından bu yana her yıl bir önceki yılın sermayesine eşit kâr elde etmektedir. MSK Cash Flows şirketi 2005 yılında sektöre 10.000$ tutarında yatırım yapmaya başlamış, 2006 yılında ise 200.000$ kar elde etmeye başlamıştır. Karlar dolaşımdan çekilmemişse, 2007 yılı sonunda bir şirketin sermayesi diğerinden kaç dolar daha fazladır?

Yanıtlar:

  1. Problem ifadesi ilerlemenin sonsuz olduğunu söylemediğinden ve belirli sayıda terimin toplamının bulunması gerektiğinden hesaplama aşağıdaki formüle göre yapılır:

  2. MDM Sermaye Şirketi:

    2003, 2004, 2005, 2006, 2007.
    - %100 yani 2 kat artar.
    Sırasıyla:
    ruble
    MSK Nakit Akışları şirketi:

    2005, 2006, 2007.
    - kat kat artar.
    Sırasıyla:
    ruble
    ruble

Özetleyelim.

1) Geometrik ilerleme ( ), ilk terimi sıfırdan farklı olan ve ikinciden başlayarak her terim bir öncekinin aynı sayıyla çarpımına eşit olan bir sayısal dizidir. Bu sayıya geometrik ilerlemenin paydası denir.

2) Geometrik ilerlemenin terimlerinin denklemi .

3) ve dışında her değeri alabilir.

  • eğer, o zaman ilerlemenin sonraki tüm terimleri aynı işarete sahipse - onlar olumlu;
  • eğer öyleyse, ilerlemenin sonraki tüm koşulları alternatif işaretler;
  • ne zaman – ilerlemeye sonsuz azalan denir.

4) , at – geometrik ilerlemenin özelliği (bitişik terimler)

veya
, (eşit mesafeli terimler)

Bulduğunda şunu unutma iki cevap olmalı.

Örneğin,

5) Geometrik ilerlemenin terimlerinin toplamı aşağıdaki formülle hesaplanır:
veya


veya

ÖNEMLİ! Sonsuz derecede azalan bir geometrik ilerlemenin terimlerinin toplamına ilişkin formülü yalnızca koşulun sonsuz sayıda terimin toplamını bulmamız gerektiğini açıkça belirtmesi durumunda kullanırız.

6) Bileşik faiz sorunları, fonların dolaşımdan çekilmemesi koşuluyla geometrik ilerlemenin 3. dönemi formülü kullanılarak da hesaplanır:

GEOMETRİK İLERLEME. ANA ŞEYLER HAKKINDA KISACA

Geometrik ilerleme( ), ilk terimi sıfırdan farklı olan ve ikinciden başlayarak her terim bir öncekinin aynı sayıyla çarpımına eşit olan bir sayısal dizidir. Bu numara denir geometrik ilerlemenin paydası.

Geometrik ilerlemenin paydası ve dışında herhangi bir değer alabilir.

  • Eğer ilerlemenin sonraki tüm terimleri aynı işarete sahipse - bunlar pozitiftir;
  • eğer öyleyse, ilerlemenin sonraki tüm üyeleri alternatif işaretler;
  • ne zaman – ilerlemeye sonsuz azalan denir.

Geometrik ilerleme terimlerinin denklemi - .

Geometrik ilerlemenin terimlerinin toplamı formülle hesaplanır:
veya

İlerleme sonsuza kadar azalıyorsa, o zaman:

YouClever öğrencisi olun,

Matematikte Birleşik Devlet Sınavına veya Birleşik Devlet Sınavına hazırlanın,

Ayrıca YouClever ders kitabına kısıtlama olmaksızın erişin...

Geometrik ilerleme, ilk terimi sıfır olmayan ve sonraki her terim bir önceki terimin aynı sıfır olmayan sayıyla çarpımına eşit olan sayısal bir dizidir.

Geometrik ilerleme gösterilir b1,b2,b3, …, bn, … .

Geometrik hatanın herhangi bir teriminin bir önceki terimine oranı aynı sayıya eşittir, yani b2/b1 = b3/b2 = b4/b3 = ... = bn/b(n-1) = b( n+1)/bn = … . Bu doğrudan aritmetik ilerlemenin tanımından kaynaklanır. Bu sayıya geometrik ilerlemenin paydası denir. Genellikle geometrik ilerlemenin paydası q harfiyle gösterilir.

Monoton ve sabit dizi

Bir geometrik ilerlemeyi belirtmenin yollarından biri, onun ilk terimini b1 ve geometrik hatanın q paydasını belirtmektir. Örneğin b1=4, q=-2. Bu iki koşul 4, -8, 16, -32,… geometrik ilerlemesini tanımlar.

Eğer q>0 ise (q, 1'e eşit değildir), o zaman ilerleme şu şekildedir: monoton dizi.Örneğin 2, 4,8,16,32, ... dizisi monoton olarak artan bir dizidir (b1=2, q=2).

Geometrik hatanın paydası q=1 ise geometrik ilerlemenin tüm terimleri birbirine eşit olacaktır. Bu gibi durumlarda ilerlemenin olduğunu söylüyorlar sabit sıra.

Geometrik ilerlemenin n'inci terimi için formül

Bir sayı dizisinin (bn) geometrik dizi olabilmesi için ikinciden başlayarak her bir üyesinin komşu üyelerin geometrik ortalaması olması gerekir. Yani aşağıdaki denklemin yerine getirilmesi gerekir
(b(n+1))^2 = bn * b(n+2), herhangi bir n>0 için; burada n, N doğal sayılar kümesine aittir.

Geometrik ilerlemenin n'inci teriminin formülü:

bn=b1*q^(n-1),

burada n, N doğal sayılar kümesine aittir.

Geometrik ilerlemenin ilk n teriminin toplamı için formül

Geometrik ilerlemenin ilk n teriminin toplamına ilişkin formül şu şekildedir:

Sn = (bn*q - b1)/(q-1), burada q, 1'e eşit değildir.

Basit bir örneğe bakalım:

Geometrik ilerlemede b1=6, q=3, n=8 Sn'yi bulun.

S8'i bulmak için geometrik ilerlemenin ilk n teriminin toplamı formülünü kullanırız.

S8= (6*(3^8 -1))/(3-1) = 19.680.



Projeyi destekleyin - bağlantıyı paylaşın, teşekkürler!
Ayrıca okuyun
Dışişleri Bakanı Sergey Lavrov'un eşi Dışişleri Bakanı Sergey Lavrov'un eşi Ders-konuşma Kuantum Fiziğinin Doğuşu Ders-konuşma Kuantum Fiziğinin Doğuşu Kayıtsızlığın gücü: Stoacılık felsefesi yaşamanıza ve çalışmanıza nasıl yardımcı olur Felsefede Stoacılar kimlerdir? Kayıtsızlığın gücü: Stoacılık felsefesi yaşamanıza ve çalışmanıza nasıl yardımcı olur Felsefede Stoacılar kimlerdir?