Теломеры – индикатор старения или «счетчики» жизни. Теломеры и онкология

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Общие сведения

В результате деятельности теломеразы длина теломерных участков хромосом клетки увеличивается или сохраняется на постоянном уровне, компенсируя таким образом концевую недорепликацию и позволяя клетке делиться неограниченно долго. В ходе исследования этого фермента (состоящего, как описано ниже, из РНК-компонента и белкового компонента) выяснилось, что РНК-компонент экспрессируется на постоянном уровне практически во всех клетках, и для индуцирования теломеразной активности необходима экспрессия белкового компонента, названного поэтому каталитическим компонентом теломеразы. Искусственно индуцированная экспрессия гена каталитического компонента теломеразы (путем введения гена при помощи методов генной инженерии) делает клеточную культуру иммортальной (бессмертной), то есть способной делиться неограниченно долго, отменяя тем самым для культуры предел Хейфлика . Теломераза экспрессируется в стволовых , половых и некоторых других типах клеток организма, которым необходимо постоянно делиться для функционирования определённых тканей (например, клетки эпителия кишечника). Обычные соматические клетки организма лишены теломеразной активности. Клетки 85 % раковых опухолей обладают теломеразной активностью, поэтому считается, что активация теломеразы является одним из событий на пути клетки к злокачественному перерождению.

Структура

Строение человеческой теломеразы было выяснено Скоттом Коэном и его исследовательской группой в австралийском Исследовательском институте детской медицины. Теломераза состоит из теломеразной обратной транскриптазы (TERT), теломеразной РНК (hTR или TERC), и дискерина (по две молекулы каждого из этих веществ) . Две субъединицы фермента кодируются двумя различными генами. Кодирующий регион для TERT имеет длину 3396 пар, TERT таким образом содержит 1131 аминокислоту. Этот белок сворачивается и захватывает TERC (имеющую длину 451 нуклеотид), которая не транслируется, оставаясь РНК. TERT имеет форму рукавицы, что позволяет ему закрепляться на хромосоме и добавлять в нее одноцепочечные теломерные участки.

Назначение

Используя TERC, TERT добавляет повторяющуюся последовательность из шести нуклеотидов 5"-TTAGGG к 3"-нити хромосом. Указанная последовательность используется у позвоночных; у других классов организмов последовательности отличаются. Эти повторяющиеся последовательности TTAGGG вместе со своими парными белками, и называются теломерами.

Шаблонный участок TERC содержит последовательность 3"-AAUCCC-5". Теломераза связывает первые несколько нуклеотидов шаблона с последней теломерной последовательностью на хромосоме, добавляет новый повторяющийся участок (5"-TTAGGG-3"), отделяется, связывает новый 3"-конец теломеры с шаблоном и повторяет весь процесс заново.

Объяснение необходимости удлинения теломер приведено в основной статье о теломерах .

Клинические представления

Старение

Теломеразу считают ключом к клеточному бессмертию, «источником юности». Этот фермент позволяет клеткам быстро размножаться без старения. Стволовые клетки эмбрионов, например, экспрессируют теломеразу, которая позволяет им непрерывно делиться, формируя ткани и органы. У взрослых организмов теломераза экспрессируется в клетках, которые должны часто делиться, однако большинство соматических клеток ее не производят.

Один из наиболее очевидных признаков старости - сниженная активность клеток кожи. Предполагается, что лечение теломеразой сможет помочь избавиться по крайней мере от этих проблем.

Выяснилось что β-катенин, избежавший деградации благодаря Wnt сигнала , активирует синтез ферментативной субъединицы теломеразы (TERT) в стволовых и раковых клетках. В этом ему помогает один из транскрипционных факторов плюрипотенции - Klf4, направляющий его на промотор гена Tert . Компании Revive Skincare и TaSciences.com выпускают косметические продукты на основе теломераз. По заявлениям Revive, производство одного грамма теломеразы обходится компании в 4 миллиона долларов США. Активной теломеразы в косметических препаратах нет и быть не может, поскольку содержащаяся в составе теломеразы РНК очень быстро разрезается рибонуклеазой А, которая очень распространена в природе. Кроме того и сам фермент не очень стабилен. Активную теломеразу в лабораториях выделяют в стерильных условиях и хранят в замороженном виде (желательно в низкотемпературном холодильнике).

Возникновение многих признаков раннего старения приписывают сокращению теломер . Это, например, прогерия , Атаксия-телангиэктазия, синдром Блума, анемия Фанкони , синдром Наймегена и другие телангиэктазивные нарушения. Гены, мутация которых приводит к этим заболеваниям, задействованы в восстановлении ДНК. Их участие в управлении длиной теломер активно исследуется. Поскольку на настоящий момент неизвестно, насколько разрушение теломер влияет на процесс старения, основные исследования направлены на процессы сохранения целостности ДНК и в особенности ее теломерных участков. Майкл Фоссел в одном из интервью предположил, что лечение теломеразой может использоваться не только для борьбы с раком , но даже для борьбы со старением человеческого организма и таким образом для увеличения продолжительности жизни. Он считает, что уже в ближайшем десятилетии будут проведены первые испытания теломеразных методов увеличения продолжительности жизни человека. Это весьма обнадеживает, так как примерно в это же время произойдет массовый уход на пенсию людей поколения беби-бума в США и западной Европе.

Рак

Когда клетки в культуре приближаются к пределу Хейфлика , старение может быть замедлено деактивацией генов, которые кодируют белки, подавляющие образование опухолей. Это, в частности, белок, называемый p53 , и белок ретинобластомы (pRb). Измененные таким образом клетки рано или поздно достигают состояния, называемого «кризисом», когда большая часть клеточной культуры умирает. Иногда, однако, клетка не перестает делиться при достижении кризиса. Обычно в это время теломеры полностью разрушены и состояние хромосомы ухудшается с каждым делением.

Оголенные концы хромосом распознаются как разрывы обеих цепей ДНК. Повреждения такого рода обычно устраняются путем соединения разорванных концов. Однако в данном случае соединенными могут оказаться концы разных хромосом, так как они более не защищены теломерами. Это временно позволяет решить проблему отсутствия теломер, однако во время анафазы клеточного деления сцепленные хромосомы разрываются на части случайным образом, что приводит к большому количеству мутаций и хромосомных аномалий.

По мере продолжения этого процесса геном клетки повреждается все больше. Наконец, наступает момент, когда либо объем поврежденного генетического материала становится достаточным для гибели клетки (путем запрограммированной клеточной смерти - апоптоза), либо происходит дополнительная мутация, активирующая теломеразу.

После активации теломеразы некоторые виды клеток становятся бессмертными: их хромосомы не становятся менее стабильными вне зависимости от числа клеточных делений, и процесс клеточной смерти не запускается. Многие раковые клетки считаются бессмертными, поскольку активность генов теломеразы в них позволяет им делиться практически бесконечно, что и является причиной образования опухолей.

Хороший пример бессмертия раковых клеток - это клетки HeLa , изначально полученные из опухоли шейки матки Генриетты Лекс (Henrietta Lacks, отсюда название культуры HeLa) в 1951 г. Эта культура по сей день используется в лабораторных исследованиях. Клетки Hela в самом деле бессмертны: по оценкам ежедневно производится несколько тонн этих клеток, причем все они являются потомками нескольких клеток, извлеченных из опухоли Г. Лекс.

Несмотря на то, что описанный метод моделирования рака в культуре клеток эффективен и используется уже много лет, он весьма неточен. Какое именно воздействие в рамках этого метода вызывает рождение клеток, образующих опухоли, изначально было неясно. Однако впоследствии удалось ответить на этот вопрос. В модельных клетках вызывались различные мутации, которые встречаются в разных видах человеческих раковых клеток. Это позволило выявить несколько сочетаний мутаций, которые являются достаточными для образования опухолевых клеток из различных их видов.

Собственно сочетания мутаций различается в зависимости от вида клеток. Однако большинство из них содержат следующие изменения:

  • активацию теломеразы;
  • нарушение цикла белка p53 ;
  • активацию прото-онкогенов Ras , Myc или других;
  • нарушение формирования фосфатазы белка PP2A.

Эти изменения приводят к отключению механизма гибели клетки в результате разрушения хромосом или апоптоза . Кроме того клетка начинает непрерывно делиться.

Эта модель рака, созданная в клеточной культуре, проливает свет на роль теломеразы в формирование опухолей у человека. Активация теломеразы наблюдается в 90 % всех опухолей. Это позволяет заключить, что предоставляемое ею бессмертие является ключевым фактором в развитии рака.

Опухоли, в клетках которых TERT не активировался, в основном использовали другой механизм сохранения теломер, называемый ALT (альтернативное удлинение теломер, alternative lengthening of telomeres). Детали этого механизма неизвестны.

Как показано в работе Элизабет Блекбёрн и др., теломераза также участвует в регуляции активности 70 генов, которые участвуют либо подозреваются в участии в образовании и развитии раковых опухолей. Кроме того, она активирует гликолиз, что позволяет раковым клеткам использовать сахара для поддержания заданной скорости роста и деления (эти скорости сравнимы со скоростями роста клеток в зародыше).

Э. Блэкбёрн и ещё двое исследователей получили премию Ласкера в 2006 г. за открытие теломеразы и последующие ее исследования. За те же достижения Э. Блэкбёрн также получила премию Грубера по генетике в 2006 г.

Роль теломеразы в других болезнях человека

Считается, что мутации белка TERT вызывают у пациентов предрасположенность к апластической анемии - нарушению кроветворения в костном мозге .

Врожденный дискератоз (ВД) - болезнь костного мозга , которая может быть вызвана мутацией в TERC-субъединице теломеразы. Эта мутация является причиной болезни лишь в 5 % случаев, однако в этих случаях болезнь наследуется как доминантное аутосомное расстройство. Мутации в гене дискерина (DKC1) обуславливают примерно 35 % всех случаев ВД; эти мутации - рецессивные Х-связанные.

Пациенты с ВД страдают от серьёзного нарушения функционирования костного мозга, которое проявляется в аномальной пигментации кожи, лейкоплакии (белые бляшки на слизистой ротовой полости), дистрофии ногтей, а также другими симптомами. У носителей мутаций TERC или DKC1 также выявлены более короткие теломеры, а также некорректная активность теломеразы in vitro , по сравнению с особями того же возраста, свободными от мутаций.

Обнаружена целая семья , у членов которой аутосомальный доминантный ВД проявился одновременно с гетерозиготной мутацией TERT. У этих людей скорость сокращения теломер была выше нормальной. Кроме того, фенотип ВД ухудшался с каждым поколением.

Теломераза как мишень для лекарственных препаратов

С раковыми опухолями очень тяжело бороться, так как иммунная система организма их не опознает как чужеродные. Кроме того, раковые клетки бессмертны и будут продолжать делиться при любых условиях. Поскольку в большинстве видов опухолей бессмертие клеток достигается за счет присутствия в них теломеразы, именно она могла бы быть целью для препаратов против рака. Если какой-либо препарат сможет отключить теломеразу в раковых клетках, процесс сокращения теломер возобновится, по мере деления клеток теломеры разрушатся, возникнут мутации и клетки погибнут.

Экспериментальные препараты, воздействующие на активную теломеразу, тестируются на мышах, и некоторые уже перешли к клиническим испытаниям. Geron Corporation в настоящее время испытывает на людях препараты, использующих ингибирование теломеразы двумя различными способами. Один - это вакцина (GRNVAC1), а другой - липидный препарат (GRN163L). В действительности во многих типах раковых клеток, выращенных в культуре, подавление теломеразы ведет к быстрой гибели популяции клеток. Между тем существуют определенные препятствия к развитию такого рода лекарств, например, существование альтернативного механизма удлинения теломер . Есть свидетельства, что альтернативные методы поддержания длины теломер и хранения ДНК применены в стволовых раковых клетках. Geron Corp., однако, заявляет, что им удалось уничтожить и стволовые раковые клетки при помощи их ингибитора теломеразы GRN163L. Этот ингибитор присоединяется непосредственно к РНК-шаблону теломеразы. Даже единичная мутация шаблона могла бы полностью лишить теломеразу ее способности удлинять теломеры и таким образом лишить клетку возможности бесконечно делиться. В этом случае не может начаться гликолиз, а также не может начаться экспрессия 70 раковых генов Блэкбёрн (Blackburn et al).

Поскольку Блэкбёрн показала, что большинство негативных эффектов теломеразы исчезают при повреждении РНК-шаблона, этот шаблон является довольно эффективной мишенью. Однако если даже некоторые из раковых клеток используют альтернативный метод удлинения теломер, они не погибнут, если РНК-шаблон теломеразы будет заблокирован. По мнению Блэкбёрн, неправильно считать, что только теломераза отвечает за удлинение теломер. Предотвращение в раковых клетках гликолиза, а также предотвращение экспрессии 70 «плохих» генов, вероятно, может убить раковые клетки, не использующие теломеразу.

Примечания

10. Guenther Witzany (2007). Telomeres in Evolution and Development from Biosemiotic Perspective. Nature Precedings: doi:10.1038/npre.2007.932.1

См. также

Внешние ссылки

  • Three-dimensional model of telomerase at Memorial University of Newfoundland

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Теломераза" в других словарях:

    Сущ., кол во синонимов: 1 фермент (253) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    теломераза - Фермент, который производит репарацию теломер Тематики биотехнологии EN telomerase … Справочник технического переводчика

    Теломераза - * тэламераза * telomerase ДНК полимераза, фермент группы трансфераз, катализирующий достройку (удлинение) теломерной коровой последовательности (см.; TTAGGG или TTGGGG) к 31концу однонитчатого хромосомного теломера (см.). Т. ответственна за… … Генетика. Энциклопедический словарь

    Telomerase теломераза. Фермент группы трансфераз, контролирующий размер, количество и нуклеотидный состав теломер хромосом; впервые Т. была выделена у инфузории Tetrahymena thermophila, у которой в макронуклеусе… … Молекулярная биология и генетика. Толковый словарь.

    теломераза - теломер аза, ы … Русский орфографический словарь

Главным кандидат на звание эликсира бессмертия July 26th, 2016

Когда мне было лет 10 все вокруг практически уверенно говорили, что пройдет буквально 50 лет и люди будут жить не менее 200 лет. Наука и медицина несомненно должна была шагать семимильными шагами и мы точно должны были увидеть прорыв. Но сейчас понятно, что на это надо наверное еще лет 200. Однако, смотрите про что я узнал...

Оказывается существуют теломеры - это концевые участки линейной молекулы ДНК, которые состоят из повторяющейся последовательности нуклеотидов. У человека и других позвоночных повторяющееся звено имеет формулу TTAGGG (буквы обозначают нуклеиновые основания). В отличие от других участков ДНК теломеры не кодируют белковые молекулы, в некотором роде это "бессмысленные" участки генома.

В 1971 году российский ученый Алексей Матвеевич Оловников впервые предположил, что при каждом делении клеток эти концевые участки хромосом укорачиваются. То есть длина теломерных участков определяет "возраст" клетки - чем короче теломерный "хвост", тем она "старше".

Через 15 лет это предположение экспериментально подтвердил английский ученый Говард Кук. Правда, нервные и мышечные клетки взрослого организма не делятся, теломерные участки в них не укорачиваются, а между тем они "стареют" и умирают. Поэтому вопрос о том, как "возраст" клетки связан с длиной теломер, остается по сей день открытым. Одно несомненно - теломеры служат своего рода счетчиком клеточных делений: чем они короче, тем большее число делений прошло с момента рождения клетки-предшественницы.



Сколько отведено человеку для жизни, мало кто может сказать, почему человек стареет. Ученые уже давно задаются вопросом: что происходит в организме и запускает процесс старения? Клетки могут делиться, и казалось бы, организм будет вечно молодым, здоровым и жить вечно, но оказывается наши клетки могут обновляться до определенного количества раз, а потом наступает время болезней и процесса старения, что приводит к смерти, невозможности клеток возобновляться. Существует много теорий, рассматривающие разные аспекты, как первопричину старения, но сегодня известная настоящая причина, с которой справиться никто не может.

Одни ученые говорят, что старение начинается с процессом повреждения и распада белка. А белок, как мы уже знаем, является строительным материалом нашего тела, в частности костей. Другие исследователи видят гены смерти, которые начинают активизироваться в старости. Еще одно мнение: организм накапливает загрязнения, если доза мусора в организме превышает допустимую, то запускается очередность заболеваний, организм истощается и умирает. Также существует иммунологическая теория. В какую из них верить, дело каждого. Истинная причина, почему человек стареет и начинается отмирание клеток находится в нашем генетическом коде.

Старение начинается из-за укорачивания длины теломер – это конечный участок генетического кода (ДНК). Теломеры направлены защищать хромосомы от прилипания друг к другу, что может повлечь потерю информации. Такие выводы сделали ученные в процессе наблюдения за жизнью клеток молодых и в процессе их старения. Длина теломер в генах молодых клеток отличается от состарившихся. Теломеры ДНК в молодых клетках длиннее, чем концы в старых клетках. Когда теломера разрушается, погибает клетка. Клетка имеет способность делиться до тех пор, пока ее теломера не разрушиться.

Такая теория должна была найти объяснения и доводы. Были проведены опыты над мышами. Специалисты в области генетики искусственным образом укорачивали теломеры клетки ДНК у здоровой молодой мыши. Чем короче становилась теломера, тем больше появлялось заболеваний, характеризующих процесс старения. Полученные результаты послужили доказательством теории зависимости молодости и старения от длины теломер в клетках. При укорачивании длины теломер возникают такие заболевания: артрит, артроз, дегенеративный и дистрофические процессы, заболевания, связанные с сердечно-сосудистой системой, нарушения нервной системы, остеопороз, изменения в кожном покрове.


Теломераза - это фермент-"удлинитель", его функция - достраивать концевые участки линейных молекул ДНК, "пришивая" к ним повторяющиеся нуклеотидные последовательности - теломеры. Клетки, в которых функционирует теломераза (половые, раковые), бессмертны. В обычных (соматических) клетках, из которых в основном и состоит организм, теломераза "не работает", поэтому теломеры при каждом делении клетки укорачиваются, что в конечном итоге приводит к ее гибели.

В 1997 году американские ученые из университета Колорадо получили ген теломеразы. Затем в 1998-м исследователи из Юго-Западного медицинского центра Техасского университета в Далласе встроили ген теломеразы в клетки кожи, зрительного и сосудистого эпителия человека, где фермент в обычных условиях "не работает". В таких генетически модифицированных клетках теломераза находилась "в рабочем состоянии" - пришивала к концевым участкам ДНК нуклеотидные последовательности, поэтому длина теломер от деления к делению не менялась. Таким способом ученым удалось увеличить жизнь обычных клеток человека в полтора раза. Не исключено, что этот метод поможет найти ключ к продлению жизни.

Итак, теломераза остается главным кандидатом на звание эликсира бессмертия. И в то же время этот фермент - один из главных факторов злокачественного перерождения клеток. Раковые клетки бессмертны благодаря тому, что в них "работает" теломераза. Вот почему бессмертие и рак в природе как бы уравновешивают друг друга: бессмертный организм теоретически может жить вечно, но он неминуемо погибнет от рака.

И вот в прошлом году был найден способ удлинения теломер для продления жизни. Ученые из Стэнфордского университета разработали метод стимуляции концевых участков хромосом, которые отвечают за старение человека.


Новая технология использует модифицированную РНК, несущую в себе ген обратной теломеразной транскриптазы (TERT). Введение рибонуклеиновой кислоты многократно повышает активность теломеразы на 1−2 дня, за которые та активно удлиняет теломеры, и запрограммированная РНК распадается. Полученные в итоге клетки ведут себя аналогично «молодым» и делятся во много раз интенсивнее, чем клетки контрольной группы.

Таким образом удалось удлинить теломеры более чем на 1000 нуклеотидов, что эквивалентно нескольким годам человеческой жизни. Что важно, процесс совершенно безопасен для здоровья и не приводит к неконтролируемому делению клеток: иммунная система просто не успевает отреагировать на введенную в организм РНК, которая бесследно распадается. Открытие поможет увеличить количество клеток для исследований медицинских препаратов и моделирования заболеваний, а в перспективе и для продления жизни.

источники

Статья на конкурс «био/мол/текст»: Уже более 50 лет прошло с тех пор, как на культуре фибробластов доказан феномен старения клеток, но существование старых клеток в организме долгое время подвергалось сомнению. Не было доказательств, что старение отдельных клеток играет важную роль в старении всего организма . В последние годы были открыты молекулярные механизмы старения клеток, их связь с онкологическими заболеваниями и воспалением. По современным представлениям, воспаление играет ведущую роль в генезе практически всех возраст-зависимых заболеваний, которые в конечном итоге приводят организм к смертельному исходу. Оказалось, что старые клетки, с одной стороны, выступают в качестве супрессоров опухолей (поскольку необратимо перестают делиться сами и снижают риск трансформации окружающих клеток), а с другой - специфический метаболизм старых клеток может вызывать воспаление и перерождение соседних предраковых клеток в злокачественные. В настоящее время проходят клинические испытания лекарственных препаратов, избирательно элиминирующих старые клетки в органах и тканях, тем самым предотвращая дегенеративные изменения органов и рак.

В организме человека присутствует примерно 300 типов клеток, и все они делятся на две большие группы: одни могут делиться и размножаться (то есть, они митотически компетентны ), а другие - постмитотические - не делятся: это достигшие крайней стадии дифференцировки нейроны, кардиомиоциты, зернистые лейкоциты и другие.

В нашем организме существуют обновляющиеся ткани, в которых есть пул постоянно делящихся клеток, которые заменяют отработанные или погибающие клетки. Такие клетки есть в криптах кишечника, в базальном слое эпителия кожи, в костном мозге (кроветворные клетки). Обновление клеток может происходить довольно интенсивно: так, клетки соединительной ткани в поджелудочной железе заменяются каждые 24 часа, клетки слизистой желудка - каждые три дня, лейкоциты - каждые 10 дней, клетки кожи - каждые шесть недель, примерно 70 г пролиферирующих клеток тонкого кишечника удаляется из организма ежедневно .

Стволовые клетки, существующие практически во всех органах и тканях, способны делиться неограниченно. Регенерация тканей происходит за счет пролиферации стволовых клеток, которые могут не только делиться, но и дифференцироваться в клетки той ткани, регенерация которой происходит. Стволовые клетки есть в миокарде, в головном мозге (в гипокампе и в обонятельных луковицах) и в других тканях. Это открывает большие надежды в плане лечения нейродегенеративных заболеваний и инфаркта миокарда .

Постоянно обновляющиеся ткани способствуют увеличению продолжительности жизни. При делении клеток происходит омоложение тканей: новые клетки приходят на место поврежденных, при этом интенсивнее происходит репарация (устранение повреждений ДНК) и возможна регенерация при повреждении тканей. Не удивительно, что у позвоночных значительно выше продолжительность жизни, чем у беспозвоночных - тех же насекомых, у которых во взрослом состоянии клетки не делятся.

Но в то же время обновляющиеся ткани подвержены гиперпролиферации, что ведет к образованию опухолей, в том числе - злокачественных. Это происходит из-за нарушений регуляции деления клеток и повышенной частоты мутагенеза в активно делящихся клетках. По современным представлениям, чтобы клетка приобрела свойство злокачественности, ей необходимо 4–6 мутаций . Мутации возникают редко, и для того, чтобы клетка стала раковой - это подсчитано для фибробластов человека - должно произойти около 100 делений (такое число делений обычно происходит у человека примерно в возрасте 40 лет) .

Стоит, в прочем, помнить, что мутация мутации рознь, и согласно новейшим геномным исследованиям в каждом поколении человек приобретает около 60 новых мутаций (которых не было в ДНК у его родителей). Очевидно, что большая часть из них вполне нейтральная (см. «Перевалило за тысячу: третья фаза геномики человека »). - Ред.

В целях защиты от самого себя, в организме сформировались специальные клеточные механизмы супрессии опухолей . Один из них - репликативное старение клеток (сенесценция ), заключающееся в необратимой остановке деления клетки в стадии G1 клеточного цикла . При старении клетка перестает делиться: она не реагирует на ростовые факторы и становится устойчивой к апоптозу.

Лимит Хейфлика

Феномен старения клеток был впервые открыт в 1961 г. Леонардом Хейфликом с коллегами на культуре фибробластов. Оказалось, что клетки в культуре фибробластов человека при хороших условиях живут ограниченное время и способны удваиваться примерно 50±10 раз, - и это число стали называть лимитом Хейфлика , . До открытия Хейфлика господствовала точка зрения, что клетки бессмертны, а старение и смерть - это свойство организма в целом.

Эта концепция считалась неопровержимой во многом благодаря экспериментам Карреля, который поддерживал культуру клеток сердца цыпленка 34 года (ее выбросили лишь после его смерти). Однако, как выяснилось впоследствии, бессмертие культуры Карреля было артефактом, поскольку вместе с эмбриональной сывороткой, которая добавлялась в культуральную среду для роста клеток, туда попадали и сами эмбриональные клетки (и, скорее всего, культура Карреля стала уже далеко не тем, чем была в начале).

По-настоящему бессмертными являются раковые клетки. Так, клетки HeLa , выделенные в 1951 г. из опухоли шейки матки Генриетты Лакс , до сих пор используются цитологами (в частности, c помощью клеток HeLa была разработана вакцина против полиомиелита). Эти клетки даже побывали в космосе.

О захватывающей истории бессмертия Генриетты Лакс см. в статье «Бессмертные клетки Генриетты Лакс », а также «Наследники клеток HeLa ». - Ред.

Как выяснилось, лимит Хейфлика зависит от возраста: чем старше человек, тем меньшее число раз удваиваются его клетки в культуре. Интересно, что замороженные клетки при разморозке и последующем культивировании как будто помнят число делений до замораживания. Фактически, внутри клетки существует «счетчик делений», и по достижении определенного предела (лимита Хейфлика) клетка перестает делиться - становится сенесцентной. Сенесцентные (старые) клетки имеют специфическую морфологию - они крупные, уплощенные, с большими ядрами, сильно вакуолизированы, у них меняется профиль экспрессии генов. В большинстве случаев они устойчивы к апоптозу.

Однако старение организма нельзя свести только к старению клеток. Это значительно более сложный процесс. Старые клетки есть и в молодом организме, но их мало! Когда же с возрастом сенесцентные клетки накапливаются в тканях, начинаются дегенеративные процессы, которые приводят к возраст-зависимым заболеваниям. Один из факторов этих заболеваний - так называемое старческое «стерильное» воспаление , которое связано с экспрессией провоспалительных цитокинов старыми клетками.

Еще один важный фактор биологического старения - строение хромосом и их кончиков - теломеров.

Теломерная теория старения

Рисунок 1. Теломеры - концевые участки хромосом. Поскольку хромосом у человека 23 пары (то есть, 46 штук), теломер получается 92.

В 1971 году наш соотечественник Алексей Матвеевич Оловников предположил, что лимит Хейфлика связан с «недорепликацией» концевых участков линейных хромосом (они имеют специальное название - теломеры ). Дело в том, что в каждом цикле деления клетки теломеры укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого кончика , . Кроме того, Оловников предсказал существование теломеразы (фермента, добавляющего повторяющиеся последовательности ДНК на концы хромосом), исходя из того факта, что иначе в активно делящихся клетках ДНК быстро бы «съелась», и генетический материал был бы утерян. (Проблема в том, что активность теломеразы угасает в большинстве дифференцированных клеток.)

Теломеры (рис. 1) играют важную роль: они стабилизируют кончики хромосом, которые иначе, как говорят цитогенетики, стали бы «липкими», т.е. подверженными разнообразным хромосомным аберрациям, что приводит к деградации генетического материала. Теломеры состоят из повторяющихся (1000–2000 раз) последовательностей (5′-TTAGGG-3′), что в сумме дает 10–15 тысяч нуклеотидных пар на каждый хромосомный кончик. На 3′-конце теломеры имеют довольно длинный однонитевой участок ДНК (150–200 нуклеотидов), участвующий в образовании петли по типу лассо , (рис. 2). С теломерами связано несколько белков, образующих защитный «колпачок» - этот комплекс называется шелтерином (рис. 3). Шелтерин предохраняет теломеры от действия нуклеаз и слипания и, видимо, именно он сохраняет целостность хромосомы.

Рисунок 2. Состав и структура теломер. Многократное деление клетки в случае отсутствия активности теломеразы ведет к укорочению теломер и репликативному старению .

Рисунок 3. Строение теломерного комплекса (шелтерина ). Теломеры находятся на концах хромосом и состоят из тандемных повторов TTAGGG, которые заканчиваются 32-членным выступающим одноцепочечным фрагментом. С теломерной ДНК связан шелтерин - комплекс из шести белков: TRF1, TRF2, RAP1, TIN2, TPP1 и POT1.

Незащищенные концы хромосом воспринимаются клеткой как повреждение генетического материала, что активирует репарацию ДНК . Теломерный комплекс вместе с шелтерином «стабилизирует» хромосомные кончики, защищая всю хромосому от разрушения. В сенесцентных клетках критическое укорочение теломер нарушает эту защитную функцию , в связи с чем начинают формироваться хромосомные аберрации, которые часто приводят к малигнизации. Чтобы этого не произошло, специальные молекулярные механизмы блокируют клеточное деление, и клетка переходит в состояние сенесцентности - необратимой остановки клеточного цикла. При этом клетка гарантированно не может размножаться, а значит, не сможет и сформировать опухоль. В клетках с нарушенной способностью к сенесценции (которые размножаются, несмотря на дисфункцию теломер), образуются хромосомные аберрации.

Длина теломер и скорость их укорочения зависит от возраста. У человека длина теломер варьирует от 15 тысяч нуклеотидных пар (т.н.п.) при рождении до 5 т.н.п. при хронических заболеваниях. Длина теломер максимальна у 18-месячных детей, а затем она быстро снижается до 12 т.н.п. к пятилетнему возрасту. После этого скорость укорачивания снижается .

Теломеры укорачиваются у разных людей с разной скоростью. Так, на эту скорость сильно влияют стрессы. Э. Блекберн (лауреат Нобелевской премии по физиологии и медицине 2009 г.) установлено, что женщины, постоянно испытывающие стресс (например, матери хронически больных детей), имеют значительно более короткие теломеры по сравнению со сверстницами (примерно на десять лет!). Лабораторией Э. Блекберн разработан коммерческий тест для определения «биологического возраста» людей на основании длины теломер.

Любопытно, что у мышей очень длинные теломеры (50–40 т.н.п., по сравнению с 10–15 т.н.п. у человека). У некоторых линий лабораторных мышей длина теломер достигает 150 т.н.п. Более того, у мышей теломераза всегда активна, что не дает теломерам укорачиваться. Однако это, как всем известно, не делает мышей бессмертными. Мало того: у них опухоли развиваются намного чаще, чем у людей, что позволяет предположить, что укорачивание теломер как механизм защиты от опухолей у мышей не работает .

При сравнении длины теломер и теломеразной активности у разных млекопитающих оказалось, что виды, для которых характерно репликативное старение клеток, имеют большую продолжительность жизни и большой вес. Это, например, киты, продолжительность жизни которых может достигать 200 лет. Таким организмам репликативное старение просто необходимо, поскольку слишком большое число делений порождает множество мутаций, с которыми необходимо как-то бороться. Предположительно, репликативное старение и есть такой механизм борьбы, который сопровождается к тому же репрессией теломеразы .

Старение диференцированных клеток происходит иначе. Стареют и нейроны, и кардиомиоциты, а ведь они не делятся! Например, в них накапливается липофусцин - старческий пигмент, который нарушает функционирование клеток и запускает апоптоз. В клетках печени и селезенки с возрастом накапливается жир.

Связь репликативного старения клеток со старением организма, строго говоря, не доказана, но возрастная патология сопровождается и старением клеток (рис. 4). Злокачественные новообразования пожилого возраста в большинстве своем связаны с обновляемыми тканями. Онкологические заболевания в развитых странах - одна из основных причин заболеваемости и смертности, причем независимым фактором риска раковых заболеваний является просто... возраст. Число смертей от опухолевых заболеваний увеличивается с возрастом по экспоненте, так же как и общая смертность. Это говорит нам, что между старением и канцерогенезом существует фундаментальная связь.

Рисунок 4. Гистохимически окрашенные на наличие β-галактозидазной активности фибробласты человека линии WI-38. A - молодые; B - старые (сенесцентные).

Теломераза - фермент, который был предсказан

В организме должен существовать механизм, компенсирующий укорочение теломер, - такое предположение сделал А.М. Оловников . Действительно, в 1984 г. такой фермент был открыт Кэрол Грейдер и назван теломеразой . Теломераза (рис. 5) - это обратная транскриптаза, которая увеличивает длину теломер, компенсируя их недорепликацию. В 2009 году Э. Блэкберн, К. Грэйдер и Д. Шостак за открытие этого фермента и цикл работ по изучению теломер и теломеразы была присуждена Нобелевская премия (см: «„Нестареющая“ Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе » ).

Рисунок 5. Теломераза содержит каталитический компонент (обратную транскриптазу ТERT), теломеразную РНК (hTR или TERC), содержащую две копии теломерного повтора и являющуюся матрицей для синтеза теломеров, и белок дискерин.

По данным Э. Блекберн, теломераза участвует в регуляции активности примерно 70 генов. Теломераза активна в зародышевых и эмбриональных тканях, в стволовых и пролиферирующих клетках. Ее обнаруживают в 90% раковых опухолей, что обеспечивает неудержимое размножение раковых клеток. В настоящее время среди препаратов, которые используют для лечения рака, есть и ингибитор теломеразы. Но в большинстве соматических клеток взрослого организма теломераза не активна.

В состояние сенесценции клетку могут привести многие стимулы - дисфункция теломер, повреждения ДНК, причиной которых могут быть мутагенные воздействия окружающей среды, эндогенные процессы, сильные митогенные сигналы (сверхэкспрессия онкогенов Ras, Raf, Mek, Mos, E2F-1 и др.), нарушения хроматина, стрессы и др. Фактически, клетки перестают делиться - становятся сенесцентными - в ответ на потенциально вызывающие рак события.

Страж генома

Дисфункция теломер, которая происходит при их укорачивании либо нарушении работы шелтерина, активирует белок р53 . Этот транскрипционный фактор приводит клетку в состояние сенесценции, либо вызывает апоптоз . При отсутствии р53 развивается нестабильность хромосом, характерная для карцином человека. Мутации в белке р53 обнаруживаются в 50% аденокарцином груди и в 40–60% случаев колоректальной аденокарциномы. Поэтому p53 зачастую называют «стражем генома».

Теломераза реактивируется в большинстве опухолей эпителиального происхождения, которые характерны для пожилых людей. Считается, что реактивация теломеразы - важный этап злокачественных процессов, поскольку это позволяет раковым клеткам «не обращать внимания» на лимит Хейфлика. Дисфункция теломер способствует хромосомным слияниям и аберрациям, что в отсутствии p53 чаще всего приводит к злокачественным новообразованиям.

О молекулярных механизмах старения клеток

Рисунок 6. Схема клеточного цикла. Клеточный цикл подразделяют на четыре стадии: 1. G1 (предсинтетическая) - период, когда клетка готовится к репликации ДНК. В этой стадии может произойти остановка клеточного цикла в случае обнаружения повреждений ДНК (на время репарации). Если обнаруживаются ошибки в репликации ДНК, и они не могут быть исправлены репарацией, клетка не переходит на стадию S. 2. S (cинтетическая) - когда происходит репликация ДНК. 3. G2 (постсинтетическая) - подготовка клетки к митозу, когда происходит проверка точности репликации ДНК; если обнаружены недореплицированные фрагменты или другие нарушения в синтезе, переход на следующую стадию (митоз) не происходит. 4. М (митоз) - формирование клеточного веретена, сегрегация (расхождение хромосом) и формирование двух дочерних клеток (собственно деление).

Чтобы были понятны молекулярные механизмы перехода клетки в состояние сенесцентности, я напомню вам, как происходит деление клетки.

Процесс размножения клеток называют пролиферацией . Время существования клетки от деления до деления именуют клеточным циклом . Процесс пролиферации регулируется как самой клеткой - аутокринными ростовыми факторами, - так и ее микроокружением - паракринными сигналами.

Активация пролиферации происходит через клеточную мембрану, в которой присутствуют рецепторы, воспринимающие митогенные сигналы - это в основном ростовые факторы и межклеточные контактные сигналы. Ростовые факторы обычно имеют пептидную природу (к настоящему времени их известно около 100). Это, например, фактор роста тромбоцитов, который участвует в тромбообразовании и заживлении ран, эпителиальный фактор роста, различные цитокины - интерлейкины, фактор некроза опухолей, колониестимулирующие факторы и т.д. После активации пролиферации клетка выходит из фазы покоя G0 и начинается клеточный цикл (рис. 6).

Клеточный цикл регулируется циклин-зависимыми киназами , разными для каждой стадии клеточного цикла. Они активируются циклинами и инактивируются рядом ингибиторов. Цель такой сложной регуляции - обеспечить синтез ДНК с как можно меньшим числом ошибок, чтобы и дочерние клетки имели абсолютно идентичный наследственный материал. Проверка правильности копирования ДНК осуществляется в четырех «контрольных точках» цикла: если обнаруживаются ошибки, то клеточный цикл останавливается, и включается репарация ДНК . Если нарушения структуры ДНК удается исправить - клеточный цикл продолжается. Если нет - клетке лучше «покончить с собой» (путем апоптоза), чтобы избежать вероятности превращения в раковую.

Молекулярные механизмы, приводящие к необратимой остановке клеточного цикла, контролируются генами-супрессорами опухолей, среди которых p53 и pRB, связанные с ингибиторами циклин-зависимых киназ. Супрессию клеточного цикла в фазе G1 осуществляет белок p53, действующий через ингибитор циклин-зависимой киназы р21. Транскрипционный фактор р53 активируется при повреждениях ДНК, и функция его заключается в удалении из пула реплицирующихся клеток тех, которые являются потенциально онкогенными (отсюда и прозвище р53 - «страж генома»). Данное представление подтверждается тем фактом, что мутации р53 обнаруживают в ~50% случаев злокачественных опохолей. Другое проявление активности р53 связано с апоптозом наиболее поврежденных клеток.

Сенесценция клеток и возраст-зависимые заболевания

Рисунок 7. Взаимосвязь между старением клеток и старением организма.

Сенесцентные клетки накапливаются с возрастом и способствуют возрастным заболеваниям. Они снижают пролиферативный потенциал ткани и истощают пул стволовых клеток, что приводит к дегенеративным нарушениям ткани и снижает способность к регенерации и обновлению.

Сенесцентные клетки характеризуются специфической экспрессией генов: они секретируют воспалительные цитокины и металлопротеиназы, разрушающие межклеточный матрикс. Получается, что старые клетки обеспечивают вялотекущее старческое воспаление, а накопление старых фибробластов в коже служит причиной возрастного снижения способности к заживлению ран (рис. 7). Старые клетки также стимулируют пролиферацию и малигнизацию близлежащих предраковых клеток, благодаря секреции эпителиального фактора роста .

Сенесцентные клетки накапливаются во многих тканях человека, присутствуют в атеросклеротических бляшках, в язвах кожи, в пораженных артритом суставах, а также в доброкачественных и пренеопластических гиперпролиферативных поражениях простаты и печени. При облучении раковых опухолей некоторые клетки также переходят в состояние сенесценции, тем самым обеспечивая рецидивы заболевания.

Таким образом, клеточное старение демонстрирует эффект отрицательной плейотропии, суть которого состоит в том, что хорошее для молодого организма, может стать плохим для старого. Самый яркий пример - процессы воспаления. Выраженная реакция воспаления способствует быстрому выздоровлению молодого организма при инфекционных заболеваниях. В пожилом же возрасте активные воспалительные процессы приводят к возрастным заболеваниям. Сейчас принято считать, что воспаление играет определяющую роль практически при всех возраст-зависимых заболеваниях, начиная с нейродегенеративных.

Изучение процессов старения организма человека всегда занимало умы ученых. И сегодня многие исследователи пытаются до конца разгадать этот механизм, заключающийся в развитии и постепенном увядании клеток тела человека. Возможно, что ответы на эти вопросы помогут медикам увеличивать продолжительность жизни и улучшать ее качество при различных заболеваниях.

Сейчас существует несколько теорий о старении клетки. В этой статье мы рассмотрим одну из них. Она основана на изучении таких частей хромосом, заключающих в себе около 90 % ДНК клетки, как теломеры.

Что такое «теломеры»?

В каждом ядре клетки находится по 23 пары хромосом, представляющих собой Х-образно закрученные спирали, на концах которых находятся теломеры. Эти звенья хромосомы можно сравнить с наконечниками шнурков для обуви. Они выполняют такие же защитные функции и сохраняют целостность ДНК и генов.

Деление любой клетки всегда сопровождается раздвоением ДНК, т. к. материнская клетка должна передать информацию дочерней. Этот процесс всегда вызывает укорачивание ДНК, но клетка при этом не теряет генетическую информацию, т. к. на концах хромосом расположены теломеры. Именно они во время деления становятся короче, предохраняя клетку от утраты генетической информации.

Клетки делятся многократно и с каждым процессом их размножения теломеры укорачиваются. При наступлении критически маленького размера, который называется «предел Хейфлика», срабатывает запрограммированный механизм смерти клетки – апоптоз. Иногда – при мутациях – в клетке запускается другая реакция - программа, приводящая к бесконечному делению клетки. Впоследствии такие клетки становятся раковыми.

Пока человек молод, клетки его тела активно размножаются, но с уменьшением размеров теломер происходит и старение клетки. Она начинает с трудом выполнять свои функции, и организм начинает стареть. Из этого можно сделать такой вывод: именно длина теломер является самым точным индикатором не хронологического, а биологического возраста организма.

Краткая информация о теломерах:

  • они не несут генетической информации;
  • в каждой клетке человеческого организма заключено 92 теломеры;
  • они обеспечивают стабильность генома;
  • они защищают клетки от смерти, старения и мутаций;
  • они защищают структуру конечных участков хромосом при делении клетки.

Возможно ли защитить или удлинить теломеры и продлить жизнь?

В 1998 году американские исследователи смогли преодолеть предел Хейфлика. Значение максимального укорочения теломер различно для разных типов клеток и организмов. Предел Хейфлика для большинства клеток человеческого организма составляет 52 деления. Увеличить это значение в процессе экспериментов стало возможным путем активации такого особого фермента, воздействующего на ДНК, как теломераза.

В 2009 году ученые из Стэнфордского университета были удостоены Нобелевской премии за разработку метода стимуляции теломер. Эта методика основана на применении особой молекулы РНК, несущей в себе ген TERT (обратной теломеразной транскриптазы). Она является матрицей для удлинения теломер и распадается после выполнения своей функции. Полученные клетки «омолаживаются» и начинают делиться более интенсивно, чем ранее. При этом их малигнизация, то есть превращение в злокачественные, не наступает.

Благодаря этому открытию стало возможным удлинять концы хромосом более чем на 1000 нуклеотидов (структурных единиц ДНК). Если пересчитать этот показатель на годы жизни человека, то он составит несколько лет. Такой процесс воздействия на теломеры абсолютно безопасен и не вызывает мутаций, приводящих к бесконтрольному делению и малигнизации клеток. Это объясняется тем фактом, что после введения особая молекула РНК быстро распадается и иммунитет не успевает реагировать на нее.

Ученые сделали выводы о том, что теломераза:

  • защищает клетки от старения;
  • продлевает жизнь клетки;
  • предупреждает уменьшение длины теломер;
  • создает матрицу для «достраивания» теломер;
  • омолаживает клетки, возвращая их к молодому фенотипу.

Пока научные эксперименты, проводящиеся на основе теории ученых из Стэнфордского университета, выполнялись только на лабораторных мышах. В их итоге специалисты смогли затормозить старение кожи животных.

За это открытие работающая в США австралийка Элизабет Блекберн, американка Кэрол Грейдер и ее соотечественник Джек Шостак были удостоены Нобелевской премии. Ученые из Стэнфорда надеются, что созданная ими методика даст возможность в будущем лечить тяжелые заболевания (в том числе и нейродегенеративные), которые провоцируются укорочением теломер.

Питер Лэндсдорп, научный директор Европейского института биологии возраста рассказывает о роли теломер в процессах старения и образования опухолей:

«Нестареющая» Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе

В 2009 году Нобелевская премия по физиологии и медицине вручена трём американским учёным, разрешившим важную биологическую проблему: как хромосомы при делении клетки копируются полностью , без того, чтобы ДНК на их кончиках укорачивалась? В результате их исследований стало известно, что «защитным колпачком» для хромосом служат особым образом устроенные окончания ДНК - теломеры , достройкой которых занимается специальный фермент - теломераза .

В отличие от бактерий, имеющих кольцевую хромосому, хромосомы эукариот устроены линейно, и концы ДНК «подрезаются» при каждом делении. Чтобы избежать порчи важных генов, окончания каждой хромосомы защищены теломерами ..

Длинная нитеобразная молекула ДНК - главный компонент хромосом, несущий генетическую информацию, - с обоих концов закрыта своего рода «заглушками» - теломерами . Теломеры представляют собой участки ДНК с уникальной последовательностью и защищают хромосомы от деградации. Это открытие принадлежит двум лауреатам Нобелевской премии по физиологии и медицине за 2009 г. - Элизабет Блэкберн (Elizabeth Blackburn ), уроженке США и в настоящее время сотруднице Университета Калифорнии (Сан-Франциско, США), и Джеку Шостаку (Jack Szostak ), профессору Института Ховарда Хьюза . Элизабет Блэкберн в сотрудничестве с третьим лауреатом премии этого года - Кэрол Грейдер (Carol Greider ), сотрудницей Университета Джона Хопкинса , - открыла в 1984 году фермент теломеразу , синтезирующий ДНК теломер (и тем самым достраивая их после неизбежного при каждом копировании хромосомы укорачивания). Таким образом, исследования, отмеченные премией в этом году (около 975 тысяч евро, поделенные поровну между лауреатами), объясняют, как теломеры защищают кончики хромосом, и как теломераза синтезирует теломеры.

Давно отмечено, что старение клетки сопровождается укорачиванием теломер. И, наоборот, в клетках с высокой активностью теломеразы, достраивающей теломеры, длина последних остается неизменной, и старение не наступает. Это, кстати, относится и к «вечно молодым» раковым клеткам, в которых механизм естественного ограничения роста не действует. (А для некоторых наследственных заболеваний характерна дефектная теломераза, что приводит к преждевременному клеточному старению.) Присуждение за работы в этой области Нобелевской премии является признанием фундаментального значения этих механизмов в живой клетке и огромного прикладного потенциала, заложенного в отмеченных работах.

Таинственная теломера

В хромосомах содержится наш геном, а «физическим» носителем генетической информации являются молекулы ДНК. Ещё в 1930 году Герман Мёллер (лауреат Нобелевской премии по физиологии и медицине 1946 года «за открытие появления мутаций под влиянием рентгеновского облучения») и Барбара Мак-Клинток (лауреат Нобелевской премии в той же категории 1983 года «за открытие транспозирующих генетических систем») обнаружили, что структуры на концах хромосом - так называемые теломеры - предотвращали слипание хромосом между собой. Было высказано предположение, что теломеры выполняют защитную функцию, но механизм этого явления оставался совершенно неизвестным.

Позже, в 1950-х, когда уже было в общих чертах понятно, как копируются гены, возникла другая проблема. При делении клетки основание за основанием дублируется и вся клеточная ДНК, - при помощи ферментов ДНК-полимераз. Однако для одной из комплементарных цепей возникает проблема: самый конец молекулы не может быть скопирован (дело тут в «посадочном» сайте ДНК-полимеразы). Вследствие этого, хромосома должна укорачиваться при каждом делении клетки, - хотя на самом деле этого не происходит (на рисунке: 1).

И та, и другая проблема были со временем решены, за что в этом году и вручают премию.

ДНК теломер защищает хромосомы

Ещё в начале своей научной карьеры Элизабет Блэкберн занималась картированием последовательностей ДНК на примере одноклеточного жгутикового организма тетрахимены (Tetrahymena ). На концах хромосомы она обнаружила повторяющиеся последовательности ДНК вида CCCCAA, функция которых была на тот момент совершенно неизвестна. В то же время Джек Шостак обнаружил, что линейные молекулы ДНК (что-то вроде минихромосомы), введённые в клетку дрожжей, очень быстро деградируют.

Исследователи встретились на конференции в 1980 г., где Блэкберн докладывала свои результаты, заинтересовавшие Шостака. Они решили провести совместный эксперимент, в основе которого было «растворение барьеров» между двумя эволюционно весьма далёкими видами (на рисунке: 2). Блэкберн выделила из ДНК тетрахимены последовательности CCCCAA, а Шостак присоединил их к минихромосомам, помещённым затем в клетки дрожжей. Результат, опубликованный в 1982 году, превзошёл ожидания: теломерные последовательности действительно защищали ДНК от деградации! Это явление наглядно продемонстрировало существование неизвестного ранее клеточного механизма, регулирующего процессы старения в живой клетке. Позже подтвердилось наличие теломер в подавляющем большинстве растений и животных - от амёбы до человека.

Фермент, синтезирующий теломеры

В 1980-х аспирантка Кэрол Грейдер работала под началом Элизабет Блэкберн; они начали изучение синтеза теломер, за который должен был отвечать неизвестный на ту пору фермент. В канун рождества 1984 года Грейдер зарегистрировала искомую активность в клеточном экстракте. Грейдер и Блэкберн выделили и очистили фермент, получивший название теломераза , и показали, что в его состав входит не только белок, но и РНК (на рисунке: 3). Молекула РНК содержит «ту самую» последовательность CCCCAA, используемую в качестве «шаблона» для достройки теломер, в то время как ферментативная активность (типа обратной транскриптазы ) принадлежит белковой части фермента. Теломераза «наращивает» ДНК теломеры, обеспечивая «посадочное место» для ДНК-полимеразы, достаточное для копирования хромосомы без «краевых эффектов» (то есть, без потерь генетической информации).

Теломераза отсрочивает старение клетки

Учёные начали активно заниматься исследованием роли теломер в клетке. Лаборатория Шостака установила, что дрожжевая культура с мутацией, приводящей к постепенному укорачиванию теломер, развивается очень медленно и, в конце концов, вообще прекращает рост. Сотрудники Блэкберн показали, что в тетрахимене с мутацией в РНК теломеразы наблюдается в точности такой же эффект, который можно охарактеризовать фразой «преждевременное старение» . (По сравнению с этими примерами, «нормальная» теломераза предотвращает укорачивание теломер и задерживает наступление старости.) Позже в группе Грейдер открыли, что те же механизмы работают и в клетках человека. Многочисленные работы в этой области помогли установить, что теломера координирует вокруг своей ДНК белковые частицы, образующие защитный «колпачок» для кончиков молекулы ДНК.

Части головоломки: старение, рак и стволовые клетки

Описанные открытия имели самый сильный резонанс в научном сообществе. Многие учёные заявляли, что укорачивание теломер является универсальным механизмом не только клеточного старения, но и старости всего организма в целом. Однако со временем стало понятно, что теломерная теория не является пресловутым «молодильным яблоком», поскольку процесс старения на самом деле чрезвычайно сложен и многосторонен, и не сводится исключительно к «подрезанию» теломер. Интенсивные исследования в этой области продолжаются и сегодня.

Большинство клеток делится не так уж часто, так что их хромосомы не находятся в зоне риска чрезмерного укорачивания и, в общем-то, не требуют высокой теломеразной активности. Другое дело - раковые клетки: они обладают способностью делиться бесконтрольно и бесконечно, как бы не зная о бедах с укорачиванием теломер. Оказалось, что в опухолевых клетках очень высокая активность теломеразы, что и защищает их от подобного укорачивания и придаёт потенциал к неограниченному делению и росту. В настоящее время существует подход к лечению рака, использующий концепцию подавления теломеразной активности в раковых клетках, что привело бы к естественному исчезновению точек бесконтрольного деления. Некоторые средства с антителомеразным действием уже проходят клинические испытания.

Ряд наследственных заболеваний характеризуется сниженной теломеразной активностью, - например, апластическая анемия, при которой из-за низкого темпа деления стволовых клеток в костном мозге развивается анемия. К этой же группе относится ряд заболеваний кожи и лёгких.

Открытия, сделанные Блэкберн, Грейдер и Шостаком, открыли новое измерение в понимании клеточных механизмов, и, несомненно, имеют огромное практическое применение - хотя бы в лечении перечисленных заболеваний, а может быть (когда-нибудь) - и в обретении если не вечной, то хотя бы более длительной жизни.

==========================================================================

ТЕЛОМЕРЫ И ТЕЛОМЕРАЗА: РОЛЬ В СТАРЕНИИ

В 1961 г. Хейфлик и Мурхед [ HayJlick ea 1961 ] представили данные о том, что даже в идеальных условиях культивирования фибробласты эмбриона человека способны делиться только ограниченное число раз (около 50). Было установлено, что при самом тщательном соблюдении всех мер предосторожности при пересевах клетки проходят in vitro ряд вполне морфологически различимых стадий (фаз), после чего их способность к пролиферации исчерпывается и в таком состоянии они способны находиться длительное время. В повторных опытах это наблюдение было многократно воспроизведено, последняя фаза жизни клеток в культуре была уподоблена клеточному старению , а сам феномен получил по имени автора название " предела Хейфлика ". Более того, оказалось, что с увеличением возраста донора число делений, которые были способны совершить клетки организма, существенно уменьшалось, из чего было сделано заключение о существовании гипотетического счетчика делений, ограничивающего общее их число [ Hayjlick ea 1998 ].

В 1971 г. Оловников [ Оловников ea 1971 ] на основании появившихся к тому времени данных о принципах синтеза ДНК в клетках предложил гипотезу маргинотомии , объясняющую механизм работы такого счетчика. По мнению автора гипотезы, при матричном синтезе полинуклеотидов ДНК-полимераза не в состоянии полностью воспроизвести линейную матрицу, реплика получается всегда короче в ее начальной части. Таким образом, при каждом делении клетки ее ДНК укорачивается, что ограничивает пролиферативный потенциал клеток и, очевидно, является тем "счетчиком" числа делений и, соответственно, продолжительности жизни клетки в культуре. В 19J2 г. Медведев [ Medvedev ea 1972 ] показал, что повторяющиеся копии функциональных генов могут запускать процесс старения или управлять им.

Открытие в 1985 г. теломеразы - фермента, который достраивал укороченную теломеру в половых клетках и клетках опухолей, обеспечивая их бессмертие [ Greider ea 1998 ], вдохнуло новую жизнь в гипотезу Оловникова. Было выполнено огромное количество работ [ Егоров ea 1997 , Оловников ea 1971 , Оловников ea 1999 , Faragher ea 1998 , Greider ea 1985 , Hayjlick ea 1998 , Olovnikov ea 1996 , Reddel ea 1998 , Weng ea 1997 , Zalensky ea 1997 ]. Установлены следующие основные факты:

1. Концы линейных хромосом с З"-конца ДНК заканчиваются повторяющимися последовательностями нуклеотидов, получившими название теломер, которые синтезируются специальным рибонуклеиновым ферментом теломеразой.

2. Соматические клетки эукариот, имеющие линейные хромосомы, лишены теломеразной активности. Их теломеры укорачиваются как в процессе онтогенеза и старения in vivo, так и при культивировании in vitro.

3. Половые клетки и клетки иммортализированных линий, а также опухолей имеют высокоактивную теломеразу, которая достраивает З"- конец ДНК, на котором реплицируется комплементарная цепь при делении.

4. Структуры теломер сильно различаются среди простейших, однако у всех позвоночных они одинаковы - (TTAGGG)n.

5. Имеются существенные межвидовые различия в длине теломер, причем у мыши общая их длина в несколько раз превышает таковую у человека (до 150 тыс. пар нуклеотидов у некоторых линий мышей и 7-15 т.п.н. у человека).

6. Репрессия теломеразы определяет клеточное старение в культуре ("лимит Хейфлика").

7. Клетки больных синдромом преждевременного старения Хатчинсона-Гилфорда и синдромом Дауна имеют укороченные теломеры.

Доказательства правомочности такого предположения были представлены Кионо и соавт. [ Kiyono ea 1998 ]: введение каталитического компонента теломеразы hTERT или теломеразной активности с помощью онкобелка вируса папилломы человека E7 в кератиноциты или клетки эпителия человека не приводило к их полной иммортализации. Она наступала лишь при дополнительном торможении регуляции антионкогена Rb или при угнетении экспрессии р16 в качестве второй важнейшей ступени этого процесса. При элиминации антионкогена р53 такого эффекта не наблюдалось. С другой стороны, протоонкоген с-Мус может активировать экспрессию теломеразы [ Wang ea 1998 ]. С помощью опосредованного микроклетками переноса маркированную геном пео хромосому 20 из стареющих и молодых диплоидных фибробластов человека ввели в молодые фибробласты. Во всех новообразованных клонах наблюдалось уменьшение пролиферативного потенциала на 17-18 удвоений популяции [ Егоров ea 1997 ]. Авторы склонны рассматривать полученные данные как свидетельство того, что отдельные теломеры способны ограничить пролиферативный потенциал клеток.

Показано, что старение некоторых тканей, например, эпителиальных клеток слизистой полости рта или роговицы глаза человека in vivo, не сопровождается укорочением теломер [ Egan ea 1998 , Kang ea 1998 ]. Экспрессия белка аденовируса 13 E1B 54К в нормальных клетках человека сопровождалась существенным увеличением их пролиферативного потенциала (до 100 удвоений). Когда затем деления все же прекратились и клетки перешли в фазу старения, то какого-либо существенного укорочения их теломер выявлено не было [ Gallimore ea 1997 ]. Экспрессию активности теломеразы наблюдали в печени крыс после частичной гепатэктомии [ Tsujiuchi ea 1998 ], т.е. в процессе регенерации. Не удалось наблюдать существенных изменений в продолжительности жизни или развитии мышей с "выключенным" геном теломеразы [ Lee ea 1998 ].

Многое в этой области еще предстоит выяснить. Тем не менее очевидно, что опыты с теломеразой открывают новые перспективы как в геронтологии, так и в онкологии для диагностики рака и, что особенно важно, для его лечения. См. Биология теломер

====================================================================

Демидовский лауреат Алексей Матвеевич Оловников

Оловников Алексей Матвеевич, родился 10 октября 1936 года в Владивостоке, закончил ВГУ - специалист в области биологии старения и теоретической молекулярной и клеточной биологии. Кандидат биологических наук, ведущий научный сотрудник Института Биохимической физики РАН. Оловников Алексей Матвеевич- автор цикла теоретических работ, в которых впервые в мире предсказано укорочение хромосом при старении, описан эффект концевой недорепликации любых линейных молекул ДНК и, кроме того, предсказано существование теломеразы как фермента, компенсирующего укорочение теломер (концевых участков хромосом).

А.М.Оловников сделал ряд ключевых теоретических обобщений, много лет спустя полностью экспериментально подтвержденных во многих лабораториях мира. Суть этих работ АМ Оловникова в следующем:

1) было указано на существование проблемы концевой недорепликации линейных молекул ДНК (концы как ахиллесова пята двойной спирали ДНК);

2) предсказано укорочение теломер (концов хромосом) при делениях соматических клеток, а также существование корреляции между величиной укорочения теломер и числом удвоений, выполненных делящимися нормальными эукариотическими клетками in vitro;

3) предсказано, что в нормальных половых клетках должна экспрессироваться новая форма ДНК-полимеразы, компенсирующая укорочение концов хромосом (то есть, предсказано существование теломеразы);

4) предсказано также, что в клетках злокачественных опухолей должна экспрессироваться эта компенсирующая ДНК-полимераза (то есть теломераза). Указано, что она создана природой для стабильности полового генома (предотвращает укорочение концов хромосом), но в то же самое время она наделяет раковые клетки потенциальным бессмертием (отсутствием у них лимита клеточных удвоений);

5) хорошо известный к тому времени факт кольцевой формы генома бактерий и многих вирусов был впервые интерпретирован как способ защиты их генома от концевой недорепликации ДНК: поскольку у кольцевой ДНК нет конца, то и нечему укорачиваться.

В целом, в этом цикле пионерских работ АМ Оловникова, о которых сообщалось, помимо статей, также в трудах международного конгресса по геронтологии (Киев, 1972) и в лекциях (в том числе в США, 1998) предложена серия идей, которые позволили связать воедино серию до того разрозненных фактов и фактически предложить исследовательскую программу, стимулировавшую соответствующие исследования в ряде биологических и биомедицинских дисциплин.

Следует также заметить, что поиски ингибиторов теломеразы как противораковых факторов, а также использование теломеразы в раковой диагностике, начались в связи с пониманием ключевой роли процесса концевой недорепликации концов ДНК в судьбе клетки, предсказанного А.М. Оловниковым. К настоящему времени начатое АМ Оловниковым новое научное направление – теломерная биология – развивается практически на всех континентах (кроме Антарктиды). Но, несмотря на экспериментально подтвержденные постулаты первой теории, АМ Оловников работает в настоящее время над принципиально новой теорией старения.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии