Создание местной гипотермии. Создание и применение местной гипотермии гордей р а. Осложнения, связанные с периоперационной гипотермией

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Cодержание статьи: classList.toggle()">развернуть

Искусственная гипотермия – это преднамеренное охлаждение тела человека, применяемое в медицине. Данный вид гипотермии проводят для замедления обменных процессов в организме, повышения устойчивости к травмам и кислородному голоданию.

Искусственная гипотермия может быть общей и локальной, а также умеренной (при снижении температуры тела до 32 – 27,9 градусов) и глубокой (температура тела человека 20 градусов и ниже). В медицине широко используется именно умеренное переохлаждение.

Показания к проведению искусственной гипотермии

Широко применяется искусственная гипотермия в хирургии и травматологии. Бывают такие случаи, когда необходимо замедлить все биохимические процессы, протекающие в организме, для оказания помощи и восстановления пациента.

Показаниями к проведению искусственной гипотермии являются:

Способы переохлаждения

Методы искусственной гипотермии бывают:

  • Физические;
  • Химические;
  • Комбинированные (сочетание физических и химических способов). Этот метод позволяет эффективно снизить температуру тела до 24 градусов, и в то же время повысить устойчивость клеток головного мозга в условиях кислородного голодания.

К физическим способам охлаждения тела человека относятся:


Химический способ основан на применении лекарственных препаратов, которые способствуют снижению температуры тела, воздействуя на различные отделы терморегуляции.

Выделяют следующие группы химических препаратов:

  • Оказывающие воздействие на центральную нервную систему, а точнее на центр терморегуляции. Действие данных препаратов приводит к снижению выработке тепла и повышенной теплоотдачи организмом. Сюда включают вещества для общего наркоза и нейротропные средства;
  • Миорелаксанты . Эти препараты приводят к значительному расслаблению скелетной мускулатуры. При этом производство тепла мышечной массой снижается, а его отдача в окружающую среду увеличивается;
  • Антагонисты тиреоидных гормонов. Данные гормоны щитовидной железы принимают активное участие в процессе теплопродукции. При их угнетении теплоотдача станет преобладать над выработкой тепла организмом;
  • Адренолитеческие средства . Они вызывают расширение периферических сосудов, то есть расположенных ближе к поверхности тела. Благодаря этому отдача тепла значительно увеличивается.

Аппараты для искусственной гипотермии

Искусственное охлаждение тела человека (общее и локальное) осуществляют с помощью специальных аппаратов.

Аппараты для искусственной гипотермии представляют собой прибор, который:

  • Охлаждает тело;
  • Контролирует температуру тела и реагента;
  • Поддерживает определенную температуру тела, которая была задана.

Большинство аппаратов искусственной гипотермии работает как на охлаждение, так и на согревание пациента.

Принцип работы аппаратов для искусственной гипотермии можно рассмотреть на примере прибора «Гипотерм-3».

Похожие статьи

Аппарат для локальной гипотермии состоит из:


Таким образом, охлаждение тела, его участка или определенного внутреннего органа осуществляется путем непрерывного охлаждения теплоносителя, который, поступая в охлаждающее приспособление, понижает температуру тканей и органа. При этом сам теплоноситель нагревается и требует повторного охлаждения в камере-теплообменнике и вновь направляется в охлаждающее приспособление.

Особенности локального переохлаждения

Локальное искусственное переохлаждение – это снижение температуры тела в определенном участке тела или органе. Его проводят для снижения обменных процессов и повышения устойчивости к кислородному голоданию тканей.

В случае локального искусственного переохлаждения исключаются осложнения, возникающие после общей гипотермии.

Локальная искусственная гипотермия широко применяется в таких областях медицины: Гинекология, Нейрохирургия, Реаниматология, Хирургия, Урология, Трансплантология.

Гипотермия желудка

Показаниями к проведению охлаждения желудка являются:

  • Сильные желудочные кровотечения на фоне геморрагического воспаления слизистой оболочки желудка, а также язвенной болезни желудка и/или двенадцатиперстной кишки;
  • Тяжелое течение острого панкреатита (для снятия воспаления).

При локальной гипотермии желудка происходит ряд изменений:

  • Моторика желудка резко снижена или отсутствует;
  • Кровоток в стенках органа уменьшен значительно;
  • Выработка соляной кислоты подавлена;
  • Активность желудочного сока резко снижена;
  • Уменьшение выработки и снижение активности панкреатического сока.

Искусственное охлаждение желудка проводят 2 способами:


Охлаждение почки

Показаниями для проведения управляемой гипотермии почки являются состояния, при которых орган будет длительное время находиться в условиях острой гипоксии (кислородного голодания).

Переохлаждение почки назначается в случае:

  • Трансплантация (операция по пересадки органа) почки;
  • Удаление множественных и/или крупных камней их пачки;
  • Операция на крупных почечных сосудах;
  • Операция на почке;
  • Удаление одного из полюсов органа.

Локальная гипотермия почки осуществляется 2 методами:


Гипотермия предстательной железы

Искусственная гипотермия предстательной железы используется с целью улучшения гемостаза при проведении операции по удалению аденомы (доброкачественная опухоль).

Кровопотеря во время операции предстательной железы значительно уменьшается после переохлаждения, а остановка кровотечения ускоряется.

Уменьшение кровопотери связано со спазмом сосудов под влиянием низкой температуры.

Методы охлаждения предстательной железы:

  • Промывание мочевого пузыря холодным физиологическим раствором или фурацилином;
  • Охлаждение прямой кишки с помощью ректальных охладителей и эластичных зондов. В данном случае охлажденная до 1 градуса вода циркулирует в закрытом пространстве (в охлаждающем приспособлении) и не контактирует со слизистой кишечника;
  • Воздействие холода со стороны надлобковой области (например, пузырь со льдом).

При локальном охлаждении простаты снижается потребность ее тканей в кислороде и питании.

Искусственное охлаждение сердца

Искусственная гипотермия сердца называется холодовая кардиоплегия.

Охлаждение сердца проводится с целью:

  • Резкого замедления обменных процессов;
  • Снижения чувствительности миокарда к условиям кислородного голодания.

Гипотермия сердца достигается следующими способами:


Кранио-церебральное переохлаждение

Искусственное охлаждение головного мозга через наружные ткани головы.

Искусственная гипотермия головного мозга применяется:

  • В реаниматологии, чтобы избежать возникновения отека головного мозга, а также при уже возникшем отеке;
  • В кардиохирургии при проведении операции на сердце по поводу врожденных или приобретенных пороков, поражениях аорты.

Методы кранио-церебральной гипотермии разнообразны:


Два последних метода малоэффективны, так как не достигают необходимого результата.

При использовании аппарата «Холод-2Ф» происходит эффективное снижение температуры коры головного мозга до 30 градусов.

В основу данного способа положен метод струйного охлаждения. Охлаждающим агентом служит дистиллированная вода. Ее заливают в аппарат в объеме 7 литров. Температура воды должна быть 2 градуса.

На голову человека надевается шлем в виде полусферы. В шлеме есть отверстия, через которые охлажденная вода под прямым углом поступает на поверхность волосистой части головы.

Аппарат «Холод-2Ф» используют:

  • Во время операции. Он также позволяет экстренно охладить головной мозг в ходе операции, не прерывая ее ход;
  • В послеоперационном периоде для профилактики развития осложнений, с целью реанимации.

Аппарат «Холод-2Ф» способен поддерживать заданную температуру в теплоносителе и на поверхности головы, контролировать показатели температуры тела.

Чтобы определить температуру головного мозга при проведении искусственного охлаждения необходимо измерить температуру внутри наружного слухового прохода.

Гипотермия новорожденных

Первое использование гипотермии у новорожденных относится к концу 50-х годов 20 века. Уже в то время отмечалась положительная тенденция общего охлаждения новорожденных детей с асфиксией: снижалось число мертворожденных, улучшалось состояние детей с глубокой гипоксией, отмечалось отсутствие задержки психо-физического развития.

Для общего охлаждения в 60-х годах использовали Аминазин с Дипрозолом , которые вводили ребенку. После чего его оставляли раздетым при комнатной температуре. При этом отмечается восстановление функционирования сердечной, дыхательной и нервной систем.

В современной медицине не используют общее охлаждение младенцев из-за неудобства и несовершенства. Предпочтение отдается локальному охлаждению головы.

Показания к проведению кранио-церебральной гипотермии у новорожденных:

  • Тяжелая асфиксия. Оценка по шкале Апгар не более 4 баллов без тенденции к улучшению в ближайшие 10 – 15 минут;
  • Родовая травма головы;
  • Тяжелые оперативные роды (в настоящее время крайне редко, так как используется кесарево сечение).

Используют 2 метода локального охлаждения головы у новорожденных:

  • Орошение волосистой части головы ребенка проточной водой , температура которой должна быть не более 12 и не менее 10 градусов. Добиться охлаждения с помощью данного способа можно довольно быстро, за 10 – 20 минут;
  • Использование шлема из полиэтиленовых трубок . В трубках непрерывно циркулирует охлажденная вода, температура которой равна 5 градусов.

У ребенка может возникнуть нейровегетативная реакция на охлаждение, для ее устранения применяют препараты Аминазин, Дроперидол, Оксибутират натрия раствор.

Следует отметить, что локальная гипотермия у новорожденных всегда сопровождается общей гипотермией. Температура тела снижается до 34 – 32 градусов.

После гипотермии отмечается восстановление всех жизненно важных функций, улучшение состояния как физического, так и неврологического.

- Как и когда начались исследования в области жидкостного дыхания?

Исторически интерес возник еще в начале ХХ века. Тогда медики использовали солевой раствор, чтобы понять, насколько растяжимы легкие человека. Сегодня наполнение легких физиологическим раствором изучают студенты в курсе медицины. Но, конечно, это имеет мало отношения к жидкостному дыханию. По-настоящему все началось с 1962 года, когда Иоганн Килстра и его коллеги из Лейденского университета и голландского военно-морского флота опубликовали в журнале ASAIO (American Society of Artificial Internal Organs) Journal знаменитую статью «Мыши как рыбы» (Of mice as fish). В их эксперименте мыши, погруженные в буферный солевой раствор, дышали на протяжении 18 часов, извлекая кислород из жидкости с помощью легких. Правда, тут есть одна важная деталь. Вода при обычном атмосферном давлении и нормальной температуре способна растворить около 3% кислорода по объему, и этого хватает рыбам, но не млекопитающим, которые привыкли к содержанию кислорода около 20% (то есть парциальное давление кислорода составляет 0,2 атм). Мыши находились под давлением в восемь атмосфер, поэтому кислорода им вполне хватало (при большем давлении можно даже не полностью насыщать раствор кислородом). Правда, возврат обратно к дыханию воздухом оказался проблемой - мыши при этом гибли, но именно эта работа дала серьезный толчок научным исследованиям в этой области.

…те, кто говорит: «Дышать солевым раствором нельзя - он смывает сурфактанты!» - в общем-то, совершенно правы.

- Удалось потом установить, почему гибли животные при переходе обратно к дыханию газом?

Основная причина в том, что солевой раствор, даже насыщенный кислородом до нужного уровня под большим давлением, не подходит для долговременного дыхания млекопитающих. Через легкие раствор попадает в сосудистое русло и в кровь, что приводит к гиперволемии - избыточному объему крови и плазмы, а это увеличение нагрузки на сердечно-сосудистую и на множество других систем организма. Кроме того, солевой раствор имеет еще одно крайне неприятное действие. Наши легкие внутри состоят из огромного количества альвеол - микроскопических, в доли миллиметра, структур в форме пузырьков, насыщенных капиллярами. Альвеолы имеют огромную поверхность, и, чтобы они не слипались между собой при выдохе, их покрывает слой поверхностно-активного комплекса белков и фосфолипидов - сурфактанта. Так вот, солевой раствор этот слой смывает! В результате мало откачать солевой раствор - нужно еще восстановить слой сурфактантов и расправить легкие, это отдельные реанимационные мероприятия. Поэтому те, кто говорит: «Дышать солевым раствором нельзя - он смывает сурфактанты!» - в общем-то, совершенно правы. Но вот только в нашей системе жидкостного дыхания солевой раствор не используется.

- А как вы сами занялись жидкостным дыханием?

Я узнал об этом направлении в 1960-х, когда моему отцу, офицеру ВМФ и сотруднику НИИ ВМФ (где в том числе занимались и вопросами подводного флота), предложили дать рецензию на эту идею. Тема была одобрена, и позднее в новосибирском Академгородке я видел мышей, которые дышали солевым раствором. А в 1966 году появилась еще одна историческая статья - «Выживание млекопитающих, дышащих органической жидкостью, насыщенной кислородом при атмосферном давлении» (Survival of Mammals Breathing Organic Liquids Equilibrated with Oxygen at Atmospheric Pressure). В статье американский биохимик и врач Лиланд Кларк показал, что млекопитающие - мыши и кошки - способны длительное время дышать фторуглеродными жидкостями при атмосферном давлении. Можно сказать, что эта статья положила начало всем современным исследованиям, в которых для жидкостного дыхания используются перфторуглероды - углеводороды, в которых все атомы водорода замещены на атомы фтора. Некоторые из таких соединений обладают очень важным свойством - они имеют аномально высокую способность растворять газы, такие как кислород и диоксид углерода. А это как раз одно из основных свойств, которые необходимы для реализации жидкостного дыхания.

То есть при использовании перфторуглеродов проблем с жидкостным дыханием и с возвращением к газовому дыханию нет?

Конечно же есть. Тот же Кларк экспериментировал с силиконовым маслом, которое также растворяет кислород и углекислый газ, но все такие мыши и кошки погибли после возвращения к газовому дыханию. А вот те, которые дышали перфторуглеродом, выживали, хотя и с различными повреждениями легких и осложнениями типа пневмонии. С перфторуглеродами есть свои проблемы. Одна из них - это примеси, которые как раз могут быть причиной многих крайне неприятных эффектов. Другие - это высокие (по сравнению с газами) плотность и вязкость, которые могут затруднять процесс самостоятельного дыхания - все же легкие не рассчитаны на подобную долговременную нагрузку. В первых экспериментах вообще считалось, что самостоятельное дыхание животных больше 20-30 минут невозможно и требуется искусственная механическая вентиляция, то есть жидкость требуется прокачивать сквозь легкие каким-то насосом. Я с этим не вполне согласен, но это, конечно, зависит от контекста: в некоторых ситуациях действительно требуется искусственная вентиляция легких, а в других все же возможно самостоятельное дыхание.

- Например, в каких?

Например, в спасательных аппаратах для подводников. Спасение с глубины сотен метров длится 15-20 минут, это время человек может дышать самостоятельно. Стимулом к началу этих работ стал инцидент с подводной лодкой К-429, которая затонула в 1983 году на Дальнем Востоке. Погибло 16 подводников, и результатом этого стало повышенное внимание ЦК и поручение ученым разработать методы спасения подводников при авариях подлодок. Я в это время уже работал в 40-м НИИ аварийно-спасательного дела, водолазных и глубоководных работ МО СССР в Ломоносове, где занимался перфторуглеродами в качестве кровезаменителей (сейчас из таких соединений наиболее известен «Перфторан», разработанный в Институте биофизики АН СССР) для борьбы с декомпрессионной болезнью. Эти препараты представляют собой эмульсию 10-20% перфторуглеродов в солевом растворе и повышают газотранспортные функции крови. Но прогресс был очень небольшой: сколько бы мы ни переливали перфторуглероды в кровь, как бы они хорошо ни растворяли пузырьки газов, они не могли существенно решить проблему. Поэтому была предложена альтернатива полностью избежать декомпрессионной болезни, используя жидкостное дыхание - перфторуглероды способны растворять кислород в 20 раз лучше, чем вода (до 50% по объему). Это означает, что даже при нормальном давлении теоретически уже можно дышать.

В 40-м НИИ у нас была собака, прожившая после погружения более 10 лет.

- Но ведь кроме кислорода нужно еще выводить углекислый газ?

В перфторуглеродах углекислый газ растворяется еще лучше, чем кислород, - 150-200%. Так что остается только его связать. Это можно сделать с помощью химических веществ типа щелочей (или некоторых других), как это реализовано в дыхательных аппаратах с замкнутым циклом дыхания. Так что эта проблема, в общем-то, чисто технической реализации.

- Так в 1980-х в итоге появилась идея системы жидкостного дыхания?

Ну это примерно как сказать в 1960-х про пилотируемую космическую программу: «Так Гагарин полетел в космос». Я был инициатором работ по жидкостному дыханию, ну, а поскольку инициатива, как известно, наказуема, мне пришлось стать и исполнителем. Когда мы стали экспериментировать с собаками, оказалось, что они самостоятельно способны дышать до получаса, но не дольше (за рубежом были примерно такие же результаты). Оказалось, что мы еще недостаточно хорошо представляли себе процесс дыхания. По тем теориям дыхания, которые существовали в то время, с учетом мощности дыхательных мышц и их утомляемости получалось, что длительное жидкостное дыхание невозможно. Но к этому времени появился принцип высокочастотной вентиляции легких, то есть небольшие объемы с высокой частотой - не единицы или десятки вдохов-выдохов в минуту, а сотни. Этот принцип, кстати, тоже противоречил теориям, но работал! При этом высокочастотная вентиляция требует гораздо меньших усилий, но даже с помощью очень небольшого дыхательного объема все же может обеспечить необходимый газообмен. Наши представления и наши знания о дыхании были несовершенны, и гидродинамические модели и расчеты жидкостного дыхания не соответствовали тому, что я видел в опытах на животных. Кроме того, мы предприняли серьезные усилия по дополнительной очистке жидкости (это был в основном перфтордекалин), и таким методом удалось достичь весьма значительных результатов: собаки дышали самостоятельно, успешно выживали после возврата к газовому дыханию, некоторые жили после этого долгие годы (в 40-м НИИ у нас была собака, прожившая после погружения более 10 лет) и давали здоровое потомство. Если придерживаться нашей методики, собаки выживают и живут после этого долго и ничем не отличаются от других собак. Разве что только тем, что к ним проявляют повышенное внимание.

- А как же смывание сурфактанта и расправление легких?

Еще раз подчеркну: для жидкостного дыхания мы использовали не солевой раствор и даже не «Перфторан», который представляет собой эмульсию и благодаря наличию эмульгатора еще лучше смывает сурфактант. Для дыхания мы использовали перфторуглероды, которые не взаимодействуют с сурфактантами, не растворяют их и не смывают. Поэтому специальных реанимационных мероприятий по расправлению легких не требовалось.

- Как же выглядит система жидкостного дыхания в вашем варианте?

Ну вот представим себе подлодку на грунте на глубине 600 метров. Если спасение происходит самым современным на сегодняшний день, но обычным методом, то есть быстрая компрессия в спасательном люке и потом выход и всплытие «на выдохе», то примерно половина подводников погибает от декомпрессионной болезни. И каждая минута на поверхности до помещения в барокамеру увеличивает эту вероятность. Метод жидкостного дыхания предусматривает другой алгоритм действий. Подводник должен быть хорошо обучен, и физически, и психологически готов к нему. Итак, подготовленный человек заходит в спасательный люк. На нем резиновый раздувающийся гидрокомбинезон, который способен сверху создать достаточно большой объем, - баллон, который сможет его вытащить на поверхность (это, кстати, проблема: чем глубже, тем большее нужно давление, чтобы его надуть). Включение в аппарат начинается с того, что нам нужно подавить кашель, - ингаляционным способом вводится специальное вещество в дозе, необходимой для конкретного человека. Это может быть внешний ингалятор или встроенный в аппарат. Человек всего лишь должен не кашлять, не должно быть смыкания голосовой щели (есть еще один, более сложный вариант - с постановкой ингаляционной трубки). Человек должен быть в этот момент спокоен, не должен паниковать. После этого начинаем заливать фторуглеродную жидкость, насыщенную кислородом, и после того, как легкие заполнятся, делаем компрессию - заливаем отсек водой и выравниваем давление. Потом открываем внешний люк и баллон тянет человека наверх. При таком всплытии изменения объема легких не происходит и насыщения тканей организма азотом тоже, то есть вообще нет никакой декомпрессионной болезни. Там, конечно, есть много проблем. Например, переохлаждение и дыхание холодной жидкостью (хотя в аппарате предусмотрен подогрев) могут привести к пневмонии. Но дело в том, что на поверхности мы умеем лечить пневмонию, а вот если подводник останется на дне, мы ничем не сможем ему помочь.

Сейчас мы подошли к тому, чтобы перейти к экспериментам на человеке. Техника за 30 лет ушла далеко вперед.

Сейчас мы подошли к тому, чтобы перейти к экспериментам на человеке. Техника за 30 лет ушла далеко вперед, появилось большое количество технологий, которые сильно облегчают исследования, - скажем, малогабаритные и очень информативные системы мониторинга различных медицинских показателей. С их помощью можно очень много узнать о жидкостном дыхании человека, достаточно быстро довести систему до рабочей эксплуатации - и спасти множество жизней, и сильно продвинуть науку.

- Существуют ли для жидкостного дыхания принципиальные ограничения на глубину?

Изначально нам поставили задачу спасения с глубины 350 м, обеспечив дыхание на протяжении 15 минут. Это достаточно реальная задача, сильно повышающая шансы выжить для терпящих бедствие подводников. В итоге мы «погружали» собак в барокамере до 700 м и успешно «спасали» их, вдвое превысив заданную глубину. А в 2015 году мы провели морские испытания системы на собаках на Черном море, правда, на небольшой глубине в 15 м, но зато в совершенно реальной обстановке (собака нормально дышала головой вниз и на глубине, и потом на поверхности, хотя и сильно переохладилась за время жидкостного дыхания).

Джеймс Кэмерон в фильме «Бездна» 1989 года показал глубоководный скафандр с системой жидкостного дыхания, но, как вы понимаете, он это не сам придумал: к этому времени у нас собаки «погружались» в барокамерах и дышали самостоятельно. За рубежом, кстати, такого делать в то время не умели - только с искусственной вентиляцией легких. А в фильме главный герой дышит самостоятельно!

Для использования такой системы в качестве глубоководного рабочего скафандра нужно решить много технических проблем, в частности с запасом кислорода, с подогревом, с сервопомощью дыханию, а также неприятными эффектами типа нервного синдрома высоких давлений (НСВД) - помните, в фильме Кэмерона у главного отрицательного героя был тремор и нервный срыв? Но на самом деле НСВД, возможно, связан именно с дыханием газами, а не воздействием давления. В зарубежных экспериментах мыши погружались на глубину более 2 км, и никакого НСВД у них не наблюдалось. В любом случае, эта область науки пока недостаточно изучена, чтобы можно было делать выводы, но я лично считаю, что мы сможем противодействовать НСВД тем или иным образом (скажем, введением каких-либо лекарственных препаратов или небольшого количества газов типа азота в дыхательную жидкость). Других принципиальных ограничений на глубину работы системы я не вижу. Было бы интересно сделать скафандр, в котором можно погрузиться в Марианскую впадину. Кстати, ко мне уже есть такой запрос…

К гипотермическим относятся состояния, характеризующиеся понижением температуры тела ниже нормы. В основе их развития лежит расстройство механизмов терморегуляции, обеспечивающих оптимальный тепловой режим организма. Различают охлаждение организма (собственно гипотермию) и управляемую (искусственную) гипотермию, или медицинскую гибернацию.

Гипотермия

Гипотермия - типовая форма расстройства теплового обмена - возникает в результате действия на организм низкой температуры внешней среды и/или значительного снижения теплопродукции в нём.

Гипотермия характеризуется нарушением (срывом) механизмов теплорегуляции и проявляется снижением температуры тела ниже нормы.

Этиология

Причины развития охлаждения организма многообразны.

Низкая температура внешней среды (воды, воздуха, окружающих предметов и др.) - наиболее частая причина гипотермии. Важно, что развитие гипотермии возможно не только при отрицательной (ниже 0 °C), но и при положительной внешней температуре. Показано, что снижение температуры тела (в прямой кишке) до 25 °C уже опасно для жизни; до 20 °C, - как правило, необратимо; до 17–18 °C - обычно смертельно.

Показательна статистика смертности от охлаждения. Гипотермия и смерть человека при охлаждении наблюдается при температуре воздуха от +10 °C до 0 °C примерно в 18%; от 0 °C до –4 °C в 31%; от –5 °C до –12 °C в 30%; от –13 °C до –25 °C в 17%; от –26 °C до –43 °C в 4%. Видно, что максимальный показатель смертности при переохлаждении находится в интервале температуры воздуха от +10 °C до –12 °C. Следовательно, человек в условиях существования на Земле, постоянно находится в потенциальной опасности охлаждения.

Обширные параличи мышц и/или уменьшение их массы (например, при их гипотрофии или дистрофии). Это может быть вызвано травмой либо деструкцией (например, постишемической, в результате сирингомиелии или других патологических процессов) спинного мозга, повреждением нервных стволов, иннервирующих поперечно‑полосатую мускулатуру, а также некоторыми другими факторами (например, дефицитом Ca 2+ в мышцах, миорелаксантами).

Нарушение обмена веществ и/или снижение эффективности экзотермических процессов метаболизма. Такие состояния могут развиваться при надпочечниковой недостаточности, ведущей (помимо прочих изменений) к дефициту в организме катехоламинов; при выраженных гипотиреоидных состояниях; при травмах и дистрофических процессах в области центров симпатической нервной системы гипоталамуса.

Крайняя степень истощения организма.

В трёх последних случаях гипотермия развивается при условии пониженной внешней температуры.

Факторы риска охлаждения организма.

Повышенная влажность воздуха. Это значительно снижает его теплоизоляционные свойства и увеличивает тепловые потери, в основном, путём проведения и конвекции.

Высокая скорость движения воздуха. Ветер способствует быстрому охлаждению организма в связи с уменьшением теплоизоляционных свойств воздуха

Повышенная влажность одежды или её намокание. Это уменьшает её теплоизоляционные свойства.

Попадание в холодную воду. Вода примерно в 4 раза более теплоёмка и в 25 раз более теплопроводна, чем воздух. В связи с этим замерзание в воде может наблюдаться при сравнительно высокой температуре: при температуре воды +15 °C человек сохраняет жизнеспособность не более 6 ч., при +1 °C - примерно 0,5 часа. Интенсивная потеря тепла происходит в основном путём конвекции и проведения.

Длительное голодание, физическое переутомление, алкогольное опьянение, а также при различные заболеванияе, травмы и экстремальные состояния. Эти и ряд других факторов снижают резистентность организма к охлаждению.

Виды острого охлаждения

В зависимости от времени наступления смерти человека при действии холода выделяют три вида острого охлаждения, вызывающего гипотермию:

Острое , при котором человек погибает в течение первых 60 мин (при пребывании в воде при температуре от 0 °C до +10 °C или под действием влажного холодного ветра).

Подострое , при котором смерть наблюдается до истечения четвёртого часа нахождения в условиях холодного влажного воздуха и ветра.

Медленное , когда смерть наступает после четвёртого часа воздействия холодного воздуха (ветра) даже при наличии одежды или защиты тела от ветра.

Патогенез гипотермии

Развитие гипотермии - процесс стадийный. В основе её формирования лежит более или менее длительное перенапряжение и, в конце концов, срыв механизмов терморегуляции организма. В связи с этим при гипотермии различают две стадии её развития: 1) компенсации (адаптации) и 2) декомпенсации (деадаптации). Некоторые авторы выделяют финальную стадию гипотермии - замерзание.

Стадия компенсации

Стадия компенсации характеризуется активацией экстренных адаптивных реакций, направленных на уменьшение теплоотдачи и увеличение теплопродукции.

Механизм развития стадии компенсации включает:

† изменение поведения индивида, направленное на уход из условий, в которых действует низкая температура окружающей среды (например, уход из холодного помещения, использование тёплой одежды, обогревателей и т.п.).

† снижение эффективности теплоотдачи достигается благодаря уменьшению и прекращению потоотделения, сужению артериальных сосудов кожи и мышц, в связи с чем в них значительно уменьшается кровообращение.

† активацию теплопродукции за счёт увеличения кровотока во внутренних органах и повышения мышечного сократительного термогенеза.

† включение стрессорной реакции (возбуждённое состояние пострадавшего, повышение электрической активности центров терморегуляции, увеличение секреции либеринов в нейронах гипоталамуса, в аденоцитах гипофиза - АКТГ и ТТГ, в мозговом веществе надпочечников - катехоламинов, а в их коре - кортикостероидов, в щитовидной железе - тиреоидных гормонов.

Благодаря комплексу указанных изменений температура тела хотя и понижается, но ещё не выходит за рамки нижней границы нормы. Температурный гомеостаз организма сохраняется.

Указанные выше изменения существенно модифицируют функцию органов и физиологических систем организма: развивается тахикардия, возрастают АД и сердечный выброс, увеличивается частота дыханий, нарастает число эритроцитов в крови.

Эти и некоторые другие изменения создают условия для активации метаболических реакций, о чём свидетельствует снижение содержания гликогена в печени и мышцах, увеличение ГПК и ВЖК, возрастание потребления тканями кислорода.

Интенсификация метаболических процессов сочетается с повышенным выделением энергии в виде тепла и препятствует охлаждению организма.

Если причинный фактор продолжает действовать, то компенсаторные реакции могут стать недостаточными. При этом снижается температура не только покровных тканей организма, но и его внутренних органов, в том числе и мозга. Последнее ведёт к расстройствам центральных механизмов терморегуляции, дискоординации и неэффективности процессов теплопродукции - развиваются их декомпенсация.

Стадия декомпенсации

Стадия декомпенсации (деадаптация) процессов терморегуляции является результатом срыва центральных механизмов регуляции теплового обмена (рис. 6–12).

Рис. 6–12. Основные патогенные факторы гипотермии на стадии декомпенсации системы терморегуляции организма.

На стадии декомпенсации температура тела падает ниже нормального уровня (в прямой кишке она снижается до 35 °C и ниже) и продолжает снижаться далее. Температурный гомеостаз организма нарушается: организм становится пойкилотермным.

Причина развития стадии декомпенсации: нарастающее угнетение деятельности корковых и подкорковых структур головного мозга, включая центры терморегуляции. Последнее обусловливает неэффективность реакций теплопродукции и продолжающуюся потерю тепла организмом.

Патогенез

† Нарушение механизмов нейроэндокринной регуляции обмена веществ и функционирования тканей, органов и их систем.

† Дезорганизация функций тканей и органов.

† Угнетение метаболических процессов в тканях. Степень расстройств функции и обмена веществ прямо зависит от степени и длительности снижения температуры тела.

Проявления

† Расстройства кровообращения:

‡ уменьшение сердечного выброса как за счёт уменьшения силы сокращения, так и за счёт ЧСС - до 40 в минуту;

‡ снижение АД,

‡ нарастание вязкости крови.

† Нарушения микроциркуляции (вплоть до развития стаза):

‡ замедление кровотока в сосудах микроциркуляторного русла,

‡ увеличение тока крови по артериоло-венулярным шунтам,

‡ значительное снижение кровенаполнения капилляров.

† Повышение проницаемости стенок микрососудов для неорганических и органических соединений. Это является результатом нарушения кровообращения в тканях, образования и высвобождения в них БАВ, развития гипоксии и ацидоза. Увеличение проницаемости стенок сосудов приводит к потере из крови белка, главным образом альбумина (гипоальбуминемия). Жидкость выходит из сосудистого русла в ткани.

† Развитие отёка. В связи с этим ещё более повышается вязкость крови, что усугубляет расстройства микроциркуляции и способствует развитию сладжа, тромбов.

† Локальные очаги ишемии в тканях и органах являются следствием указанных изменений.

† Дискоординация и декомпенсация функций и метаболизма в тканях и органах (брадикардия, сменяющаяся эпизодами тахикардии; аритмии сердца, артериальная гипотензия, снижение сердечного выброса, уменьшение частоты до 8–10 в минуту и глубины дыхательных движений; прекращение холодовой мышечной дрожи, снижение напряжения кислорода в тканях, падение его потребления в клетках, уменьшение в печени и мышцах содержания гликогена).

† Смешанная гипоксия:

‡ циркуляторная (в результате снижения сердечного выброса, нарушения тока крови в сосудах микроциркуляторного русла),

‡ дыхательная (в связи со снижением объёма лёгочной вентиляции),

‡ кровяная (в результате сгущения крови, адгезии, агрегации и лизиса эритроцитов, нарушения диссоциации HbO 2 в тканях;

‡ тканевая (вследствие холодового подавления активности и повреждения ферментов тканевого дыхания).

† Нарастающие ацидоз, дисбаланс ионов в клетках и в межклеточной жидкости.

† Подавление метаболизма, снижение потребления тканями кислорода, нарушение энергетического обеспечения клеток.

† Формирование порочных кругов, потенцирующих развитие гипотермии и расстройств жизнедеятельности организма (рис. 6–13).

Рис. 6–13. Основные порочные круги на стадии декомпенсации системы терморегуляции при гипотермии.

Метаболический порочный круг . Снижение температуры тканей в сочетании с гипоксией тормозит протекание метаболических реакций. Известно, что уменьшение температуры тела на 10 °C снижает скорость биохимических реакций в 2–3 раза (эта закономерность описывается как температурный коэффициент вант Хоффа - Q 10). Подавление интенсивности метаболизма сопровождается уменьшением выделения свободной энергии в виде тепла. В результате температура тела ещё более снижается, что дополнительно подавляет интенсивность метаболизма и т.д.

Сосудистый порочный круг . Нарастающее снижение температуры тела при охлаждении сопровождается расширением артериальных сосудов (по нейромиопаралитическому механизму) кожи, слизистых оболочек, подкожной клетчатки. Этот феномен наблюдается при температуре тела, равной 33–30 °C. Расширение сосудов кожи и приток к ним тёплой крови от органов и тканей ускоряет процесс потери организмом тепла. В результате температура тела ещё более снижается, ещё в большей мере расширяются сосуды, теряется тепло и т.д.

Нервно мышечный порочный круг . Прогрессирующая гипотермия обусловливает снижение возбудимости нервных центров, в том числе контролирующих тонус и сокращение мышц. В результате этого выключается такой мощный механизм теплопродукции как мышечный сократительный термогенез. В результате температура тела интенсивно снижается, что ещё более подавляет нервно‑мышечную возбудимость, миогенный термогенез и т.д.

‡ В патогенез гипотермии могут включаться и другие порочные круги, потенцирующие её развитие.

† Углубление гипотермии вызывает торможение функций вначале корковых, а в последующем и подкорковых нервных центров. В связи с этим у пациентов развивается гиподинамия, апатия и сонливость, которые могут завершиться комой. В связи с этим нередко в качестве отдельного этапа гипотермии выделяют стадии гипотермического «сна» или комы.

† При выходе организма из гипотермического состояния в последующем у пострадавших нередко развиваются воспалительные процессы - пневмония, плеврит, острое респираторные заболевания, цистит и др. Указанные и другие состояния являются результатом снижения эффективности системы ИБН. Нередко выявляются признаки трофических расстройств, психозов, невротических состояний, психастении.

При нарастании действия охлаждающего фактора наступает замерзание и смерть организма.

† Непосредственные причины смерти при глубокой гипотермии: прекращение сердечной деятельности и остановка дыхания. Как первое, так и второе в большей мере являются результатом холодовой депрессии сосудодвигательного и дыхательного бульбарных центров.

† Причиной прекращения сократительной функции сердца является развитие фибрилляции (чаще) или его асистолия (реже).

† При преимущественном охлаждении области позвоночника (в условиях длительного нахождения в холодной воде или на льду) смерти нередко предшествует коллапс. Его развитие является результатом холодового угнетения спинальных сосудистых центров.

† Гибель организма при гипотермии наступает, как правило, при снижении ректальной температуры ниже 25–20 °C.

† У погибших в условиях гипотермии обнаруживают признаки венозного полнокровия сосудов внутренних органов, головного и спинного мозга; мелко‑ и крупноочаговые кровоизлияния в них; отёк лёгких; истощение запасов гликогена в печени, скелетных мышцах, миокарде.

Принципы лечения и профилактики гипотермии

Лечение гипотермии строится с учётом степени снижения температуры тела и выраженности расстройств жизнедеятельности организма.

На стадии компенсации пострадавшие нуждаются главным образом в прекращении внешнего охлаждения и согревании тела (в тёплой ванне, грелками, сухой тёплой одеждой, тёплым питьём). Температура тела и жизнедеятельность организма при этом обычно нормализуется самостоятельно, поскольку механизмы теплорегуляции сохранены.

На стадии декомпенсации гипотермии необходимо проведение интенсивной комплексной врачебной помощи. Она базируется на трех принципах: этиотропном, патогенетическом и симптоматическом.

Этиотропный принцип включает:

Меры по прекращению действия охлаждающего фактора и согревание организма. Пострадавшего немедленно переводят в тёплое помещение, переодевают и согревают. Наиболее эффективно согревание в ванне (с погружением всего тела). При этом необходимо избегать согревания головы из‑за опасности усугубления гипоксии мозга (в связи с усилением обмена веществ в нём в условиях ограниченной доставки кислорода).

Активное согревание тела прекращают при температуре в прямой кишке 33–34 °C во избежание развития гипертермического состояния. Последнее вполне вероятно, поскольку у пострадавшего ещё не восстановлена адекватная функция системы теплорегуляции организма. Согревание целесообразно проводить в условиях поверхностного наркоза, миорелаксации и ИВЛ. Это позволяет устранить защитные реакции организма, в данном случае излишние, на холод (в частности ригидность мышц, их дрожь) и снизить тем самым потребление кислорода, а также уменьшить явления тканевой гипоксии. Согревание даёт больший эффект, если - наряду с наружным - применяют способы согревания внутренних органов и тканей (через прямую кишку, желудок, лёгкие).

Патогенетический принцип включает:

Восстановление эффективного кровообращения и дыхания. С этой целью необходимо освободить дыхательные пути (от слизи, запавшего языка) и провести вспомогательную или ИВЛ воздухом либо газовыми смесями с повышенным содержанием кислорода. Если при этом не восстанавливается деятельность сердца, то выполняют его непрямой массаж, а при возможности - дефибрилляцию. При этом необходимо помнить, что дефибрилляция сердца при температуре тела ниже 29 °C может быть неэффективной.

Коррекция КЩР, баланса ионов и жидкости. С этой целью применяют сбалансированные солевые и буферные растворы (например, гидрокарбоната натрия), растворы полиглюкина и реополиглюкина.

Устранение дефицита глюкозы в организме. Это достигается путём введения её растворов разной концентрации в сочетании с инсулином, а также витаминами.

При кровопотере переливают кровь, плазму и плазмозаменители.

Симптоматическое лечение направлено на устранение изменений в организме, усугубляющих состояние пострадавшего. В связи с этим:

Применяют средства, предотвращающие отёк мозга, лёгких и других органов;

Устраняют артериальную гипотензию,

Нормализуют диурез,

Устраняют сильную головную боль;

При наличии отморожений, осложнений и сопутствующих болезней проводят их лечение.

Профилактика охлаждения организма и гипотермии включает комплекс мероприятий.

Использование сухой тёплой одежды и обуви.

Правильная организация труда и отдыха в холодное время года.

Организация обогревательных пунктов, обеспечение горячим питанием.

Медицинский контроль за участниками зимних военных действий, учений, спортивных соревнований.

Запрещение приёма алкоголя перед длительным пребыванием на холоде.

Большое значение имеют закаливание организма и акклиматизация человека к условиям окружающей среды.

Медицинская гибернация

Управляемая (искусственная) гипотермия применяется в медицине в двух разновидностях: общей и местной.

Общая управляемая гипотермия

Область применения

Выполнение операций в условиях значительного снижения или даже временного прекращения кровообращения. Это получило название операций на так называемых «сухих» органах: сердце, мозге и некоторых других.

Наиболее широко общая искусственная гибернация используется при операциях на сердце для устранения дефектов его клапанов и стенок, а также на крупных сосудах, что требует остановки кровотока.

Преимущества

Существенное возрастание устойчивости и выживаемости клеток и тканей в условиях гипоксии при сниженной температуре. Это даёт возможность отключить орган от кровоснабжения на несколько минут с последующим восстановлением его жизнедеятельности и адекватного функционирования.

Диапазон температуры

† Обычно используют гипотермию со снижением ректальной температуры до 30–28 °C. При необходимости длительных манипуляций создают более глубокую гипотермию с использованием аппарата искусственного кровообращения, миорелаксантов, ингибиторов метаболизма и других воздействий. При проведении продолжительных операций (несколько десятков минут) на «сухих» органах выполняют «глубокую» гипотермию (ниже 28 °C), применяют аппараты искусственного кровообращения и дыхания, а также специальные схемы введения ЛС и средств для наркоза.

† Наиболее часто для общего охлаждения организма применяют жидкость с температурой +2–12 °C, циркулирующую в специальных «холодовых» костюмах, одеваемых на пациентов или в «холодовых» одеялах, которыми их укрывают. Дополнительно используют также ёмкости со льдом и воздушное охлаждение кожных покровов пациента.

Медикаментозная подготовка

С целью устранения или снижения выраженности адаптивных реакций организма в ответ на снижение его температуры, а также для выключения стресс‑реакции непосредственно перед началом охлаждения пациенту дают общий наркоз, вводят нейроплегические вещества, миорелаксанты в различных комбинациях и дозах. В совокупности указанные воздействия обеспечивают значительное снижение обмена веществ в клетках, потребления ими кислорода, образования углекислоты и метаболитов, предотвращают нарушения КЩР, дисбаланса ионов и воды в тканях.

Эффекты медицинской гибернации

При гипотермии 30–28 °C (в прямой кишке)

† не наблюдается жизненно опасных изменений функции коры головного мозга и рефлекторной деятельности нервной системы;

† снижается возбудимость, проводимость и автоматизм миокарда;

† развивается синусовая брадикардия,

† уменьшаются ударный и минутный выбросы сердца,

† понижается АД,

† снижается функциональная активность и уровень метаболизма в органах и тканях.

Локальная управляемая гипотермия

Локальная управляемая гипотермия отдельных органов или тканей (головного мозга, почек, желудка, печени, предстательной железы и др.) применяется при необходимости проведения оперативных вмешательств или других лечебных манипуляций на них: коррекции кровотока, пластических процессов, обмена веществ, эффективности ЛС и др

В эту пятницу устраиваем шестое занятие на курсах выживания. А параллельно по субботам пока погода более-менее позволяет проводятся лекции по гипотермии. Если по-русски, то по переохлаждению.

Тема по погоде. Букавально на днях у добровольческого отряда Красного Креста уже пошли первые пациенты. Поэтому отрабатывают усердно. Пеленают члена отряда, производят разные прочие манипуляции. И делают над всем этим селфи.

И, поскольку тему должны знать все, ребята выложили в общий доступ методичку. Я ее сюда продублирую.

Тема создана на базе курса: "Руководство по действиям при гипотермии и обморожениях."
(

Деятельность человека в холодных погодных условиях может быть опасна для жизни! Приведенная здесь информация дана только в образовательных целях и не заменяет собой специальную подготовку. Принстонский университет и автор руководства не несут никакой ответственности за использование данного материала, содержащегося или упомянутого в этом документе. Медицинские исследования по гипотермии и обморожениям находятся в постоянном совершенствовании, поэтому данный материал вы применяете под свою ответственность. Данная статья может не содержать самых последних результатов исследований и рекомендаций.

Как человеческое тело теряет тепло?!

Radiation - потери тепла в окружающую среду посредством излучения за счет разницы температур (это происходит только если температура окружающей среды ниже 98.6 по Фаренгейту = 37 Цельсия). Важными факторами потери посредством излучения являются площадь поверхности и разница температур (температура тела <=> температура окружающей среды).

Conduction – проводные потери через прямой контакт между объектами, молекулярный перенос тепловой энергии.
Вода проводит тепло 25 раз быстрее воздуха, поскольку имеет большую плотность (следовательно, обладает большей теплоемкостью).
Не промокнуть = остаться в живых!
Сталь проводит тепло еще быстрее, чем вода.

Пример: В целом проводные потери тепла составляют лишь около 2% от общих тепловых потерь. Тем не менее, в мокрой одежде потери увеличиваются в 5 раз в сравнении с сухой.

Convection – проводная конвекция - это процесс, где один из объектов находится в движении. Молекулы поверхности нагреваются, и постоянно заменяются новыми, которые также нагреваются. Скорость конвективных тепловых потерь зависит от плотности движущегося вещества (конвекция в воде происходит быстрее, чем конвекция в воздухе) и скорости движущегося вещества.

Wind Chill – температура на ветру это пример эффекта конвекции воздуха, таблица температур при охлаждении ветром дает наглядное представление о потерях тепла в окружающую среду по сравнению с температурой воздуха.

Evaporation - потери тепла посредством испарения при переходе влаги из жидкого состояния в газообразное.

Perspiration – потоотделение, как реакция организма, для удаления избытка тепла.

Respiration – потери при дыхании, воздух нагревается когда он входит в легкие и отводит тепло из организма с каждым выдохом, так же выдыхаемый воздух имеет чрезвычайно высокое содержание влаги.

Важно понимать тесную связь между уровнем жидкости в организме и теплопотерей, так как при потере влаги через различные процессы теплообмена общий объем циркулирующей крови в теле уменьшается, что может привести к обезвоживанию. Это снижение уровня жидкости делает тело еще более восприимчивым к гипотермии и другим холодовым травмам.

Реакция на холод:

Причины переохлаждения - (негативные факторы)
Температура (низкая)
Влага (дождь, потоотделение, нахождение в воде)
Ветер (активный обдув, активное перемещение – например на велосипеде)
Как результат - переохлаждение

Сохранение тепла - (позитивные факторы)
Размеры и форма тела (толстый/тонкий)
Изоляция (количество слоев и тип ткани)
Жировая прослойка (в качестве утеплителя)
Большой и малый круг кровообращения (при переключении организма на малый круг создается барьер между холодом и жизненноважными органами)
Как результат – сохранение тепла в организме

Выработка тепла - (позитивные факторы)
Физические упражнения
Дрожь
Запасы естественного топлива в организме (гликогена)
Уровень жидкости в организме
Натренированность (готовность к нагрузкам)
Прием пищи
Разведение огня
Как результат - выработка тепла

Температура вашего тела
1. Тепло вырабатывается на клеточном уровне. Окружающая среда воздействует на наше тело постоянно нагревая или охлаждая его. Тело должно быть в состоянии генерировать тепло, сохранять тепло и сбрасывать излишки тепла в зависимости от своей активности и температуры окружающей среды.
2. Температура тела является результатом метаболизма - общего уровня химической активности в организме.
3. Гипоталамус является главным центром мозга регулирующим температуру тела. Он чувствителен к изменениям в температуре крови даже на 0,5 градуса по Цельсию, а также реагирует на нервные импульсы, полученные от нервных окончаний на коже.
4. Оптимальная температура для химических реакций в организме 98,6 градусов по Фаренгейту (37 Цельсия), выше 105 по Фаренгейту (40.5 Цельсия) большинство ферментов тела становятся денатурированными в следствие чего химические реакции останавливаются что в свою очередь приводит к смерти. При температуре тела ниже 98,6 по Фаренгейту (37 Цельсия) химические реакции замедляются что приводит к различным осложнениям в свою очередь приводящим к смерти.
5. Основные потребители тепла:
«Ядро» - внутренние органы, особенно сердце, легкие и мозг.
«Периферия» - кожа и мышечная ткань.
6. Температура «ядра» (внутренние органы) имеет более важное значение для общего метаболизма, температура периферии при этом не является критическим фактором.

Как ваше тело регулирует температуру «ядра».
1. Расширение сосудов - увеличивает поверхностное кровообращение, увеличивает потерю тепла (при температуре окружающей среды меньше чем температура тела). Максимальное расширение кровеносных сосудов может увеличить кровоток до 3000 мл/мин (средний кровоток составляет 300-500 мл/мин).
2. Сужение сосудов – резко уменьшает приток крови к периферии тем самым уменьшает потери тепла. Максимальное сужение сосудов может уменьшить кровоток до 30 мл/мин.
3. Потоотделение - охлаждает организм через испарение пота что и приводит к охлаждению.
4. Дрожь - генерирует тепло за счет резкого увеличения химических реакций, необходимых для мышечной деятельности. Дрожь может максимально увеличить производство тепла организмом на 500%. Тем не менее, это состояние ограничено до нескольких часов из-за истощения глюкозы (гликогена) в мышцах и последующим наступлением усталости.
5. Увеличение / уменьшение активности вызывает соответствующее увеличение производства тепла или его снижение.
6. Поведенческие реакции - надевая или снимая одежду вы производите терморегуляцию организма.

ГИПОТЕРМИЯ

1. Переохлаждение
"снижение температуры тела до уровня, при котором нормальные функции мышечной и церебральной системы ослаблены ". – (с) «Медицина альпинизма»

2. Условия, ведущие к гипотермии:
· Холодная температура
· Неправильная одежда и оборудование
· Влажность
· Усталость, истощение
· Обезвоживание
· Плохое питание
· Отсутствие опыта при гипотермии
· Употребление алкоголя (вызывает расширение кровеносных сосудов и приводит к увеличению теплопотерь)

3. Температуры при которых развивается гипотермия
· Любая температура ниже «0»
· 40 по Фаренгейту (4.4 Цельсия) при ветре и (или) дожде
· 60 по Фаренгейту (15.5 Цельсия) при сильном ветре и дожде
· Любые температуры ниже 98.6 по Фаренгейту (37 Цельсия) могут привести к гипотермии (например гипотермии у пожилых людей или людей имеющих проблемы с циркуляцией крови, такими как тромбоз)

4. Признаки и симптомы гипотермии
а) Начальная гипотермия
Следите за внутренним состоянием (человек спотыкается, бормочет, путается, ворчит), за любыми изменениями в координации и мышлении.
б) Легкая гипотермия - температура «ядра» 98,6 - 96 по Фаренгейту (37-35.5 Цельсия):
· Неконтролируемая дрожь
· Невозможность выполнения сложных двигательных функций (ледолазание или лыжи) при этом пострадавший все еще может ходить и говорить.
· Сужение сосудов в «Периферии»
в) Средняя гипотермия - температура «ядра» 95 - 93 по Фаренгейту (35-33.8 Цельсия):
· Полубессознательное состояние
· Ярковыраженная потеря координации движений - особенно в руках (невозможность застегнуть куртку, в связи с ограничением периферийного кровотока)
· Невнятная речь
· Сильная дрожь
· Иррациональное поведение (человек начинает снимать одежду, не понимая что находится на холоде)
· Эмоциональная отстраненность (отношение к происходящему на уровне - «Мне все равно»)
г) Тяжелая гипотермия - температура «ядра» 92 - 86 по Фаренгейту (33.3 – 30 Цельсия) и ниже (непосредственно угрожающая жизни)
· Дрожь происходит волнообразно через паузы с гипертонусом мышц, паузы становятся все длиннее до тех пор пока наконец дрожь не прекращается потому что тепла от сжигания гликогена в мышцах становится недостаточно для восполнения теплопотерь (чтобы противодействовать падению температуры «ядра», мозг отключает механизм дрожи для сохранения гликогена)
· Человек падает на землю и сворачивается в позу эмбриона чтобы сохранить тепло.
· Развивается ригидность мышц («окоченение») это происходит из-за снижения кровотока и накопления в результате дрожи молочной кислоты и CO2 в мышечной ткани.
· Кожные покровы становятся бледными
· Зрачки расширены
· Начинается брадикардия (снижение частоты сердечных сокращений)
· При температуре «ядра» ниже 90 градусов (32.2 Цельсия) организм переходит в «спящий режим», полностью прекращается периферический кровоток, снижается частота дыхания и сердечных сокращений.
· При температуре «ядра» ниже 86 градусов (30 Цельсия) организм переходит в состояние "метаболического холодильника". Человек выглядит мертвым, но все еще жив.
д) Смертельная гипотермия
· Дыхание становится неустойчивым и очень редким (до 2-х вдохов в минуту)
· Бессознательное состояние
· Развивается сердечная аритмия, любые внезапные удары могут привести к фибрилляции желудочков.
· Сердце останавливается, наступает смерть

5. Оценка степени гипотермии
Если дрожь может быть остановлена усилием воли = легкая гипотермия
Задайте человеку вопрос, ответ на который требует вычислений (например сосчитать в обратном порядке от 100 до 9), при гипотермии человек будет не в состоянии этого сделать.
Если дрожь не может быть остановлена усилием воли = средняя либо тяжелая гипотермия
Если вы не можете нащупать пульс на лучевой артерии запястья это указывает на то что температура «ядра» упала ниже 90 - 86 градусов (32.2 – 30 Цельсия).
Чаще всего такой пострадавший находится в позе эмбриона. Попробуйте отвести его руку вверх, если она возвращается в исходное положение – человек жив (мертвая мышечная ткань не может сокращаться, сокращаются только живые мышцы).

Борьба с гипотермией

Основные принципы согревания пострадавшего при гипотермии заключаются в сохранении тепла генерируемого телом и в создании условий для поднятия температуры тела до значений при которых тело само начнет генерировать тепло.
При дрожи тело может отогреть себя со скоростью примерно 2° С в час.

При легкой и средней гипотермии:

1. Уменьшить потери тепла
· Обеспечить дополнительные изолирующие слои одежды
· Обеспечить сухой одеждой
· Повысить физическую активность
· Обеспечить укрытие от внешних факторов
2. Обеспечение мышечной ткани топливом и жидкостью.
(при гипотермии крайне важно обеспечить правильное питание и питье)
А) Типы питания
· Углеводы - 5 калорий на грамм веса - быстро поступают в кровоток обеспечивая короткий всплеск теплогенерации – идеальный вариант для быстрого усвоения энергии, особенно в случаях легкой гипотермии.
· Белки - 5 калорий на грамм веса – действуют медленнее, но обеспечивают больший чем в случае с углеводами период теплогенерации.
· Жиры - 9 калорий на грамм веса- действуют медленнее чем белки, медленно высвобождаются и хороши тем, что выделяют тепло в течение очень длительного периода, однако требуют большее количество энергии для расщепления жиров на глюкозу и большего количества жидкости, что в свою очередь может привести к обезвоживанию в случае ее недостатка.
Б) Прием пищи
· Горячие жидкости - калории плюс сама жидкость работает как источник тепла
· Сахар (как источник быстрой энергии - углеводы)
· Высококалорийная закуска – мюсли и пр. (обычно сочетает и жиры и углеводы)
В) Чего следует избегать
· Алкоголь – сосудорасширяющее действие - увеличивает потери периферийного тепла
· Кофеин – мочегонное действие - вызывает увеличение потерь жидкости вызывая обезвоживание
· Табачные изделия / никотин – сосудосуживающее действие - увеличивает риск обморожения

· Костер или другой внешней источника тепла
· Можно согреть теплом другого тела. Переодеть в сухую одежду и положить в один спальный мешок с человеком имеющим нормальную температуру тела.

При тяжелой гипотермии:

1. Уменьшить потери тепла
Гипотермический кокон: Идея заключается в том, чтобы обеспечить изоляцию пациента от воздействия холода. Независимо от того насколько холодно, пациенты могут по-прежнему внутренне отогреть себя намного эффективнее, чем любое внешнее согревание. Убедитесь, что пациент находится в сухой одежде, обеспечьте изоляционный полипропиленовый слой, чтобы минимизировать потоотделение («космическое одеяло»). Обеспечьте защиту от влаги (укрытие). Используйте несколько спальных мешков, шерстяные одеяла, шерстяную одежду и туристические коврики для создания минимум 4 слоев для изоляции пациента, особенно снизу.
При тяжелой гипотермии метод согревания другим телом в одном спальном мешке не работает!

2. Обеспечить пострадавшего жидкостью и «топливом»
Теплая вода с сахаром: при тяжелой гипотермии желудок пациента не способен переваривать твердую пищу, но может эффективно усваивать углеводы и жидкость. Обеспечьте пациента горячим напитком с сахаром раз в 15 минут.
Температура жидкости не должна быть менее 37 градусов Цельсия, так как в противном случае организм вынужден тратить энергию на ее подогрев.

Мочеиспускание: при тяжелой гипотермии происходит постоянное неконтролируемое мочеиспускание. Из-за сужения сосудов кровяное давление постоянно повышается. Для уменьшения давления почки постоянно отводят жидкость из организма, уменьшая объем кровотока. Чтобы уменьшить потери тепла от влажной одежды постарайтесь обеспечить пациента подгузником или хотя бы полиэтиленовым пакетом. При этом не забывайте постоянно восполнять потери жидкости организма теплым питьем.

3. Дополнительный источник тепла
Дополнительные источники тепла крайне эффективно воздействуют на магистральные артерии организма:
на шее (сонная артерия)
под мышками (подмышечная артерия)
в паховой области (бедренная артерия)
В качестве дополнительных источников тепла рекомендуется использовать химические грелки, которые способны нагреваться до 110 градусов по Фаренгейту (43.3 Цельсия) и работают на протяжении от 6 до 10 часов.
Также в качестве грелок можно использовать пластиковые бутылки наполненные теплой водой, разогретые камни завернутые в ткань.
Если есть возможность, то можно дать пострадавшему кислород, который так же способствует выработке тепла в организме.

«Afterdrop» эффект
Этот термин описывает ситуацию, когда во время активного согревания пострадавшего реальная температура тела внезапно резко уменьшается. Это происходит если вместо согревания «ядра» вы пытаетесь отогреть конечности («периферию») пострадавшего. В этом случае в результате расширения сосудов периферии переохлажденная кровь из конечностей начинает быстро поступать к внутренним органам пострадавшего. Кровь из конечностей имея более низкую температуру чем само «ядро» быстро охлаждает внутренние органы что в свою очередь приводит к быстрому летальному исходу. Кроме того кровь в конечностях в следствие смещения кислотно-щелочного баланса может привести к ацидозу, что в свою очередь вызовет фибрилляцию сердечной мышцы так же приводящую к смерти пациента.
«Afterdrop» эффекта можно избежать, если не предпринимать попыток по отогреванию периферии, а сосредоточить все усилия на отогревании «ядра».
Предупреждение:
Ни в коем случае, ни при каких условиях не подвергайте пострадавшего воздействию экстремально высоких температур!

Реанимационные мероприятия при гипотермии
При тяжелой гипотермии не редко присутствуют все признаки клинической смерти:
· Холодные кожные покровы
· Синюшность
· Отсутствует зрачковая реакция (зрачки расширены)
· Отсутствует пульс
· Отсутствует дыхание
· Отсутствует реакция на любые раздражители (кома)
· «Окоченевшие» мышцы (сходность с трупным окоченением)
Обладая всеми вышеперечисленными признаками, пациент находится в «метаболическом холодильнике» и все еще поддается реанимации. В этих условиях необходимо обеспечить повышение температуры тела с одновременным проведением сердечно-легочной реанимации (СЛР). Если перед вами жертва гипотермии - помните, смерть в этом случае может быть установлена только после того как температура тела была приведена к норме.

При тяжелой гипотермии сердце особенно чувствительно к механическим раздражителям (например СЛР, «Afterdrop» эффект и просто перемещение пострадавшего) что может привести к аритмии и летальному исходу.

В результате СЛР может быть противопоказана в некоторых случаях:
1. Убедитесь что сердцебиение и дыхание полностью отсутствуют. Помните, что при гипотермии частота сердечных сокращений может быть не более 2-3 ударов в минуту при частоте дыхания не более 2-х за минуту. Начало СЛР в этот момент может привести к опасной для жизни аритмии. Проверьте пульс на сонной артерии в течение одной минуты чтобы убедится что сердцебиение присутствует. Даже при том, что сердце бьется очень медленно, оно всегда наполняется полностью и распределяет кровь по организму довольно эффективно. Внешнее же воздействие при СЛР наполняет сердце лишь на 20-30% от нормы, что менее эффективно. В условиях «метаболического холодильника» потребность организма в крови при сокращениях в 2-3 удара в минуту полностью удовлетворяется.
Перед началом СЛР обязательно убедитесь что пульс полностью отсутствует.
Имейте в виду что вам придется продолжать СЛР как минимум до момента нормализации температуры тела.
2. Активное дыхание может отсутствовать, но обеспечение тканей кислородом может продолжаться за счет накопленных в организме резервов в условиях минимальной потребности тела в кислороде при тяжелой гипотермии. Если дыхание остановилось, можно начать ИВЛ для увеличения доступного запаса кислорода в организме, кроме того нагнетание теплого воздуха в легкие способствует общему повышению температуры организма, что увеличивает шансы на выживание.
3. Процедуры СЛР
· Проверьте пульс на лучевой артерии, между 91,4 и 86 градусов по Фаренгейту (33 – 30 Цельсия) пульс может не определяться
· Проверьте пульс на сонной артерии в течение минуты, чтобы убедится что сердцебиение полностью отсутствует.
· Если есть пульс, но дыхание отсутствует (либо очень слабое) приступайте к ИВЛ (помните, что нагнетание теплого воздуха в легкие способствует общему повышению температуры организма)
· При отсутствии сердцебиения приступайте к внешнему массажу сердца и будьте готовы продолжать СЛР вплоть до нормализации температуры тела пострадавшего.
(по существующей практике лица подвергшиеся гипотермии выживали и в последующем выздоравливали без всяких неврологических последствий, даже когда СЛР продолжалась на протяжении 3,5 часов)
· Начните активное согревание

В ЗАКЛЮЧЕНИЕ НЕБОЛЬШАЯ ПАМЯТКА КОТОРУЮ НУЖНО ИМЕТЬ С СОБОЙ

Лицевая сторона памятки:

Оборотная сторона памятки:

Информация о курсах:

Записаться на курсы выживания можно, как и раньше, на

Терапевтическая гипотермия


Умеренная терапевтическая гипотермия – контролируемое индуцируемое снижение центральной температуры тела у больного до 32- 34°С , с целью снижению риска ишемического повреждения тканей головного мозга после периода нарушения кровообращения .

Доказано, что гипотермия оказывает выраженный нейропротективный эффект. В настоящий момент терапевтическая гипотермия рассматривается как основной физический метод нейропротекторной защиты головного мозга, поскольку не существует ни одного, с позиций доказательной медицины, метода фармакологической нейропротекции.

Терапевтическая гипотермия входит в стандарты лечения:

  • Международного Комитета Взаимодействия по Реанимации (ILCOR)
  • Американской Ассоциации Кардиологов (AHA)
  • Ассоциации Нейрохирургов России

Применение умеренной терапевтическая гипотермии, для снижения рисков возникновения необратимых изменений в мозге, рекомендуется при следующих патологических состояниях:

1. Энцефалопатии новорожденных

2. Остановка сердца

3. Инсульты

4. Травматических поражений головного или спинного мозга без лихорадки

5. Травмы головного мозга с нейрогенной лихорадкой

Методология терапевтической гипотермии

Перед началом лечения гипотермией следует ввести фармакологические средства для контроля дрожи.

Температура тела больного снижается до 32- 34°С градусов и поддерживается на таком уровне 24 часа. Врачи должны избегать уменьшения температуры ниже целевого значения. Принятые медицинские стандарты устанавливают, что температура пациента не должна падать ниже порога в 32 °C .

Затем температуру тела постепенно поднимают до нормального уровня в течение 12 часов, под контролем компьютера блока управления системы охлаждения / согревания. Согревание пациента должно происходить со скоростью не менее 0,2-0,3°С в час, чтобы избежать осложнений, а именно: аритмии, снижения порога коагуляции, повышения риска инфекции и увеличения риска нарушения баланса электролитов.

Методы осуществления терапевтической гипотермии :

  • Инвазивный метод

Охлаждение осуществляют через катетер введенный в бедренную вену. Жидкость, циркулирующая в катетере, выводит тепло наружу, не попадая в пациента. Метод позволяет контролировать скорость охлаждения, устанавливатьтемпературу тела в пределах1 °C от целевого значения.

Проводить процедуру должен только хорошо подготовленный и владеющий методикой врач.

Основным недостатком методики являются серьезные осложнения - кровотечения, тромбоз глубоких вен, инфекции, коагулопатии.

  • Неинвазивный метод

Для неинвазивного метода терапевтической гипотермии сегодня используются специализированныеаппараты, состоящие из блока системы охлаждения / согревания на водной основе и теплообменного одеяла. Вода циркулирует через специальное теплообменное одеялоили облегающий жилет на торсе с аппликаторами на ноги. Для снижения температуры с оптимальной скоростью необходимо покрыть теплообменными одеялами не менее 70 %площади поверхности тела пациента. Для локального снижения температуры мозга используют специальный шлем.

Современные системы охлаждения / согревания с микропроцессорным контролем и обратной связью с пациентом, обеспечивают создание управляемой терапевтической гипо / гипертермии. Прибор контролирует температуру тела пациента с помощью датчика внутренней температуры и корригирует ее, в зависимости от заданных целевых значений, изменяя температуру воды в системе.

Принцип обратной связи с пациентом обеспечивает высокую точность достижения и контроля температуры в первую очередь тела пациента, как во время охлаждения, так и во время последующего согревания. Это важно для минимизации побочных эффектов связанных с гипотермией.

Система гипо-гипертермии пациента BLANKETROL (CSZ, USA)

Протокол управляемой гипотермии в неонатологии

Практика в США

Практика в Великобритании

Протокол терапевтической гипотермии при неонатальной г ипоксическ ишемической энцефалопати и (ГИЭ)

Показатели заболеваемости и смертности новорожденных являются одними из важнейших критериев уровня состояния здравоохранения. В качестве наиболее частого патологического состояния неонатального периода диагностируется гипоксически-ишемическая энцефалопатия (ГИЭ) – 47% , или гипоксическое поражение ЦНС. По данным различных авторов, она может выявляться у 6-8% новорожденных.

Гипоксически-ишемическая энцефалопатия (ГИЭ) у доношенных новорожденных, возникающая вследствие острой перинатальной асфиксии, является важной причиной последующих нарушений их нервно-психического развития. Риск смертельного исхода у младенцев с умеренной ГИЭП составляет 10%, а у выживших детей в 30% случаев выявляются нарушения нервно-психического развития. При тяжелой ГИЭП 60% младенцев умирают и практически все выжившие дети становятся инвалидами.

Клинические синдромы, ассоциированные с перинатальной гипоксией, зависят от периода ГИЭ: к синдромам острого периода относятся повышенная нейрорефлекторная возбудимость, синдромы общего угнетения центральной нервной системы, вегетовисцеральных дисфункций, гидроцефально-гипертензионный, судорожный, коматозное состояние; в структуру восстановительного периода ГИЭ входят синдромы задержки речевого, психического, моторного развития, гипертензионно-гидроцефальный, вегетовисцеральной дисфункции, гиперкинетический, эпилептический, церебрастенический. Некоторые авторы в восстановительном периоде выделяют синдромы двигательных нарушений, повышенной нервно-рефлекторной возбудимости.

К. Nelson и соавт. в своих работах отметили, что у детей, имеющих оценку по шкале Апгар менее 3 на 10, 15, 20-й минутах и выживших, чаще, чем у детей с более высокой оценкой, наблюдались детский церебральный паралич, задержка психомоторного развития, судороги. Прогностические признаки зависят от тяжести клинических проявлений. Смертность новорожденных при перинатальном поражении ЦНС гипоксической природы составляет 11,5 % (среди детей с умеренными церебральными нарушениями - 2,5 %, тяжелыми - 50 %). У детей с легким течением гипоксически-ишемической энцефалопатии в неонатальном периоде осложнений не возникает. По данным М.І. Levene , у 80 % доношенных новорожденных тяжелые ГИП ЦНС приводят к смерти или тяжелым неврологическим нарушениям.

В оздействия на мозг ребенка повреждающего фактора (травма, кислородное голодание и т. д.) начинается острый период энцефалопатии, который длится 3-4 недели. Именно в остром периоде необходима активная терапия, которая способна серьезным образом повлиять на исход болезни.

Известно, что общая гипотермия (ОГ) в момент реанимационных мероприятий уменьшает частоту летальных исходов, и умеренных и серьёзных нарушений психомоторного развития у новорождённых с гипоксически-ишемической энцефалопатией (ГИЭ) вследствие острой перинатальной асфиксии. Это подтверждено на целом ряде мультицентровых исследований в США и Европе. Более того селективное охлаждение головы вскоре после рождения может применяться для лечения детей с перинатальной энцефалопатией средней и легкой степеней тяжести для предотвращения развития тяжелой неврологической патологии. Селективное охлаждение головы малоэффективно при тяжелой энцефалопатии.

Проведение гипотермии при лечении ГИЭ сочетается с меньшим поражением серого и белого вещества головного мозга. У большего числа детей, которым проводится гипотермия, отсутствуют изменения при ЯМР (Rutherford M., et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic–ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurology, November 6, 2009).

«Накопление доказательств поддерживает преимущества нейропротективной терапевтической гипотермии у доношенных новорожденных с гипоксически-ишемической энцефалопатией» (Сьюзен Е. Джакобс (Susan E. Jacobs) (Neonatal Services, Royal Women"s Hospital, Victoria, Australia) .

Гипотермия всего тела состоит из обеспечения новорожденному целевой температуры 33,5°C в течение 72 часов.

Терапевтическая гипотермия, как было обнаружено, уменьшала риск смерти или главной сенсоневральной инвалидности в возрасте 2 года

Отмечаются только минимальные отрицательные воздействия гипотермии. У младенцев с гипотермией был удлинен интервал QT, по сравнению с младенцами контроля, но никакой аритмии, требующей лечения или прекращения гипотермии, не наблюдается.

«Пятнадцатипроцентное сокращение сложного первичного исхода - смерти или главной сенсоневральной инвалидности является и статистически существенным и клинически важным»

Итогом работы специалистов, стало создание ряда клинических протоколов США и Великобритании. В настоящее время этот метод также принят неонатологами Австралии.

В соответствии с национальными мультицентровыми исследованиями в которых участвовали ведущие клиники США (500 новорожденых, система Blanketrol ® II , СSZ), Американская Академия Педиатрии ( AAP ) вынесла резолюцию в 2005 году о необходимости использования гипотермии при ГИЭ в неонатальном периоде для снижения неврологических осложнений в более позднем возрасте.

В 2007 году врачами Детского Госпиталя в Бостоне разработан Национальный протокол с применением одеял устройства Blanketrol ® II Hypo ‐ Hyperthermia System , при котором новорожденный охлаждался до 33.5° C (92.3°F ) в течение 72 часов с последующим плавным повышением температуры до нормальной. В разработке Национального протокола США участвовала Медицинский директор и профессор педиатрии Гарвардской медицинской школы Анна Хансен ( Anne Hansen , MD , MPH ).

Результаты аналогичной работы в клиниках Европы отражены в мультицентровом исследовании TOBY (Национальный Институт Стандартов в здравоохранении Великобритании), которые легли в основу Клинического протокола Великобритании. В исследовании участвовали клиники Великобритании, Швеции, Израиля, Финляндии. Подробнее о данном протоколе вы можете ознакомиться по ссылке http://www.npeu.ox.ac.uk/toby

Терапевтическая гипотермия сегодня – Национальный стандарт лечения для соответствующих групп риска новорожденных и утвержден Британской Ассоциацией Перинатальной медицины.

«Библиотека репродуктивного здоровья ВОЗ» (БРЗ) Департамента репродуктивного здоровья и исследований штаб - квартиры ВОЗ в Женеве (Швейцария) опубликовала следующий обзор: «Охлаждение новорожденных с гипоксической ишемической энцефалопатией», в котором отмечено, что терапевтическая гипотермия у родившихся в срок новорожденных с гипоксической ишемической энцефалопатией оказывается эффективной. Л.В. Усенко
Член Европейского Совета по реанимации
А.В. Царев



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии