Скорость звука определение физика. Определение скорости звука в воздухе методом стоячих волн

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Для многих даже спустя годы после окончания школы остается неизвестным, какова же на самом деле скорость звука в воздухе. Кто-то невнимательно слушал преподавателя, а кто-то просто не до конца понял излагаемый материал. Что ж, быть может, настало время восполнить этот пробел в знаниях. Сегодня мы не просто укажем «сухие» цифры, а поясним сам механизм, определяющий скорость звука в воздухе.

Как известно, воздух представляет собой совокупность различных газов. Немногим более 78% приходится на азот, почти 21% занимает кислород, оставшаяся часть представлена углекислым и Следовательно, речь пойдет о скорости распространения звука в газовой среде.

Сначала давайте определимся, Наверняка многие слышали высказывание «звуковые волны» или «звуковые колебания». Действительно, например, диффузор звуковоспроизводящей колонки колеблется с определенной частотой, которая классифицируется слуховым аппаратом человека как звук. Один из законов физики гласит, что давление в газах и жидкостях распространяется без изменения во всех направлениях. Отсюда следует, что в идеальных условиях скорость звука в газах равномерна. Разумеется, в действительности имеет место ее естественное затухание. Нужно запомнить эту особенность, так как именно она объясняет, почему скорость может изменяться. Но это мы немного отвлеклись от главной темы. Итак, если звук - это колебания, то что именно колеблется?

Любой газ - это совокупность атомов определенной конфигурации. В отличие от твердых тел, между атомами в них относительно большое расстояние (по сравнению, например, с кристаллической решеткой металлов). Можно привести аналогию с горошинами, распределенными по емкости с желеобразной массой. колебаний сообщает импульс движения ближайшим атомам газа. Они в свою очередь, подобно шарам на бильярдном столе, «ударяют» по соседним, и процесс повторяется. Скорость звука в воздухе как раз и определяет интенсивность импульса-первопричины. Но это лишь одна составляющая. Чем плотнее расположены атомы вещества, тем выше скорость распространения звука в нем. К примеру, скорость звука в воздухе почти в 10 раз меньше, чем в монолитном граните. Это очень легко понять: чтобы атом в газе мог «долететь» до соседнего и передать ему энергию импульса, ему необходимо преодолеть определенное расстояние.

Следствие: с увеличением температуры скорость распространения волн повышается. Несмотря на собственная скорость атомов выше, они хаотично двигаются и чаще соударяются. Также верно, что сжатый газ проводит звук намного быстрее, но чемпионом все-таки является сжиженное В расчетах скорости звука в газах учитываются начальная плотность, сжимаемость, температура и коэффициент (газовая постоянная). Собственно, все это следует из вышесказанного.

Все-таки какова скорость звука в воздухе? Многие уже догадались, что невозможно дать однозначный ответ. Приведем лишь некоторые основные данные:

При нуле на нулевой точке (уровень моря) скорость звука составляет около 331 м/с;

Снизив температуру до - 20 градусов Цельсия, можно «замедлить» звуковые волны до 319 м/с, так как изначально атомы в пространстве движутся медленнее;

Повышение же ее до 500 градусов ускоряет распространение звука почти в полтора раза - до 550 м/с.

Однако приведенные данные ориентировочны, так как кроме температуры на способность газов проводить звук влияет также давление, конфигурация пространства (помещение с предметами или открытая площадь), собственная подвижность и т.д.

В настоящее время свойство атмосферы проводить звук активно исследуется. К примеру, один из проектов позволяет посредством регистрации отраженного (эха) определять температуру слоев воздуха.

С какой скоростью движется звук?

Скорость звука зависит от того, в какой среде он распространяется. Так, в воздухе звук движется со скоростью 344 м/c. Однако если температура, давление, влажность воздуха варьируют, то и скорость звука изменяется. Через жидкую среду, например воду, звук проходит со скоростью примерно 1500 м/c. Ещё быстрее звук движется сквозь твёрдые вещества: 2500 м/с – через твёрдые пластмассы, 5000 м/с – через сталь и примерно 6000 м/с – через некоторые виды стекла.

Может ли звук отражаться от предметов так же, как свет?

Звуковые волны отражаются от твёрдых, гладких и плоских поверхностей (стены, двери), как световые волны от зеркала. Если между возвращением отзвука (или отражения) и посылом оригинального звука проходит более 0,1 с, то мы слышим их как два раздельных звука, отражённый звук называется эхом. Если разница во времени между приходом отражённого эха и посылом звука меньше, то они смешиваются. Что увеличивает общую длительность звучания. Данное явление известно как реверберация.

Специальные звукопоглощающие комнаты изнутри полностью покрыты мягкими материалами определённой фактуры. Стены, потолки и пол улавливают почти всю звуковую энергию, и отражения звука не происходит ни в виде эха, ни в виде реверберации. Такие помещения называют глухими комнатами: все звуки в них приглушены.

Охотящиеся киты, например белухи, издают акустические щелчки, похожие на те, что рассылает летучая мышь. Эти импульсы отражаются как эхо, сообщая киту о расположенных рядом объектах.

Измерим звук

Скорость в соответствии с числом Маха

Некоторые самолёты могут летать со скоростью выше скорости звука, по шкале Маха она соответствует числу М=1. Вокруг летящего сверхзвукового самолёта образуется волна сжатия, которая распространяется в виде громкого глубокого глухого удара, известного как звуковой (когда самолёт преодолевает звуковой барьер). Удар мог бы выдать присутствие самолёта-невидимки «Стелс», бомбардировщика Б-2, поэтому такие самолёты обычно летают со скоростью чуть меньше числа М=1.

Крейсерская скорость Б-2 – примерно 700 км/ч.

Число Маха

Скорость звука можно описать по шкале Маха. Единицу измерения представляют в виде сравнительного числа отношения скорости самолёта к скорости звука в определённых условиях. Число Маха названо так по имени австрийского учёного Эрнста Маха (1838-1916).

Скорость звука в воздухе при температуре 20 градусов и стандартном давлении воздуха на уровне моря соответствует примерно 1238 км/ч. Поэтому предмет, двигающийся так же быстро, имеет скорость М=1 в числах Маха.

Очень высоко над землёй, где температура и давление воздуха ниже обычных, скорость звука составляет 1062 км/ч. Поэтому число Маха 1,5 там соответствует 1593 км/ч.

10 дБ – самые тихие звуки, которые может уловить наш слух, например тиканье часов

20 дБ – шёпот

40 дБ – спокойная беседа окружающих людей

50 дБ – телевидение или радио в среднем звуковом диапазоне

60 дБ – достаточно громкая беседа

70 дБ – домашние приборы: пылесос или домашний комбайн

80 дБ – поезд, проезжающий мимо станции

100 дБ – очень шумный станок или отбойный молоток для дорожных работ

120 дБ – взлетающий реактивный самолёт

По шкале децибелов каждый разрыв в 10 дБ означает 10-кратное увеличение энергии. Например, 60 дБ – звук, в десять раз более сильный, чем 50 дБ.

Скорость звука - скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях - меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества, в монокристаллах - от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

Энциклопедичный YouTube

    Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей, Евклид). Аристотель отмечает, что скорость звука имеет конечную величину и правильно представляет себе природу звука. Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф.Бэкон в «Новом органоне» указал на возможность определения скорости звука путем сравнения промежутков времени между вспышкой света и звуком выстрела. Применив этот метод, различные исследователи (М.Мерсенн, П.Гассенди, У.Дерхам, группа учёных Парижской Академии наук - Д.Кассини, Пикар, Гюйгенс, Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350-390 м/с). Теоретически вопрос о скорости звука впервые рассмотрел Ньютон в своих «Началах». Ньютон фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку. Правильное теоретическое значение скорости звука было получено Лапласом. [ ]

    Расчёт скорости в жидкости и газе

    Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

    c = 1 β ρ {\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}}

    В частных производных:

    c = − v 2 (∂ p ∂ v) s = − v 2 C p C v (∂ p ∂ v) T {\displaystyle c={\sqrt {-v^{2}\left({\frac {\partial p}{\partial v}}\right)_{s}}}={\sqrt {-v^{2}{\frac {Cp}{Cv}}\left({\frac {\partial p}{\partial v}}\right)_{T}}}}

    где β {\displaystyle \beta } - адиабатическая сжимаемость среды; ρ {\displaystyle \rho } - плотность; C p {\displaystyle Cp} - изобарная теплоемкость; C v {\displaystyle Cv} - изохорная теплоемкость; p {\displaystyle p} , v {\displaystyle v} , T {\displaystyle T} - давление, удельный объем и температура среды; s {\displaystyle s} - энтропия среды.

    Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

    Твёрдые тела

    При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.

    Sacor 23-11-2005 11:50

    В принципе вопрос не такой простой как кажется, нашел такое определение:

    Скорость звука, скорость распространения какой-либо фиксированной фазы звуковой волны; называется также фазовой скоростью, в отличие от групповой скорости. С. з. обычно величина постоянная для данного вещества при заданных внешних условиях и не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и С. з. зависит от частоты, говорят о дисперсии звука.

    Так чему равна скорость звука зимой, летом, в туман, в дождь - вот такие непонятные для меня теперь вещи...

    Sergey13 23-11-2005 12:20

    при н.у. 320 м/с.

    TL 23-11-2005 12:43

    Чем "плотнее" среда, тем выше скорость распространения возмущения(звука), в воздухе прибл. 320-340м/c.(с высотой падает) 1300-1500 м/c в воде(соленая/пресная) 5000 м/с в металле и т.д Тоесть при тумане скорость звука будет выше, зимой тоже выше и т.д

    StartGameN 23-11-2005 12:48

    StartGameN 23-11-2005 12:49

    Одновременно ответили

    Sacor 23-11-2005 13:00

    Значит диапазон 320-340 м/с - посмотрел справочник, там при 0 по Цельсию и давлении в 1 атмосферу скорость звука в воздухе 331 м/с. Значит 340 в мороз, а 320 в жару.
    И вот теперь самое интересное, а какая тоглда скорость пули у дозвуковых боеприпасов?
    Вот для малокалиберных патронов к примеру с ада.ру такая классификация:
    Стандартные (дозвуковые) патроны скорость до 340 м/с
    Патроны High velocity (высокоскоростные)скорость от 350 до 400 м/с
    Патроны Hyper Velocity или Extra high velocity (сверхвысокоскоростные)скорость от 400 м/с и выше
    То есть Eley Tenex 331 м/с Соболь 325 м/с -считаются дозвуковыми, а Стандарт 341 м/с - уже нет. Хотя и те и эти в принципе лежат в одном диапазоне звуковых скоростей. Как это?

    Костя 23-11-2005 13:39

    ИМХО не стоит так заморачиваться на этом, вы же не акустикой, а стрельбой увлекаетесь.

    Sacor 23-11-2005 13:42

    quote: Originally posted by Костя:
    ИМХО не стоит так заморачиваться на этом, вы же не акустикой, а стрельбой увлекаетесь.

    Да просто интересно, а то все дозвук сверзвук, а как копнул оказалось все совсем неодназначно.

    Кстати, а какая скорость у дозвука для бесшумной стрельбы у х54, х39, 9ПМ?

    John JACK 23-11-2005 13:43

    У патронов еще и разброс начальной скорости есть, и от температуры она тже зависит.

    GreenG 23-11-2005 14:15


    Звук - это упругая продольная волна, скорость распостранения которой зависит от свойств окружающей среды. Т.е. выше местность - ниже плотность воздуха - ниже скорость. В отличии от света - поперечной волны.
    Принято считать V = 340 м/c (приблизительно).

    Впрочем это офф

    StartGameN 23-11-2005 14:40


    Тока свет имеет поперечную электромагнитную волну, а звук механическую продольную. Если я правильно понимаю их роднит тока описание одной и той же математической функцией.

    Впрочем это офф

    Hunt 23-11-2005 14:48

    Вот что мне интересно, отдыхал на Урале максимальное атмосферное давление (в целом за месяц) ни разу не поднялось до параметров тутошних. На данную минуту тут 765 t-32. И что интересно температура ниже и давление ниже. Ну... это насколько я для себя отметил, ...постоянных наблюдений то не веду. У меня и балл. таблицы были прошлогодние на давление 775мм\рт\ст. Может недостаток кислорода в наших краях частично компенсируется повышенным атмосферным давлением. Задавал у себя на кафедре вопрос, оказывается ДАННЫХ НЕТ!. И это люди создающие декомпрессионные таблицы для таких как я! А для военных пробежки (на физзарядке) в наших палестинах запрещены, т.к. недостаток кислорода. Я думаю, если кислорода недостаток, значит чем замещено, ...азотом, те.е и плотность другая. И если на все это смотреть и считать, надо быть стрелком галактического класса. Я для себя (пока Сеньор корпит над калькулятором, а таможня над моими посылками) решил: За 700 ни-ни, Фиг ли патроны палить.
    Вот написал и подумал. Ведь плевался и зарекался не раз, ну нафиг все это. Что на чепионат ехать? Соревноваться с кем?
    ...Почитаешь форум и опять несет. Пули где взять, матрицы, и.т.д.
    ВЫВОД: Жуткая зависимость от общения с себе подобными людьми, любящими оружие - homo... (предлагаю найти продолжение выражения)

    GreenG 23-11-2005 16:02

    quote: Originally posted by StartGameN:

    Могу офф развить - мой диплом назывался "Нелинейные акустоэлектромагнитные взаимодействия в кристаллах с квадратичной электрострикцией"

    StartGameN 23-11-2005 16:24

    Не Я у нас физик-теоретик, так шо "экспериментов" никаких не было. Была попытка учесть вторую производную и объяснить возникновение резонанса.
    Но идея правильная

    Хабаровск 23-11-2005 16:34

    Можно я тут с краю постою послушаю? Мешать не буду, чесслово. С уважением Алексей

    Antti 23-11-2005 16:39

    quote: Originally posted by GreenG:

    основной экспериментальный метод был, видимо, стучать магнитом по кристаллу?

    Квадратным магнитом по кривому кристаллу.

    Sacor 23-11-2005 19:03

    Тогда еще вопрос, из-за чего зимой звук выстрела кажется более громким, чем летом?

    SVIREPPEY 23-11-2005 19:27

    Я вам всем вот что скажу.
    Из боеприпасов к скорости звука близок.22lr. Надеваем на ствол модер (для снятия звукового фона) и палим на сотню, к примеру. И тогда все патроны можно легко разделить на дозвук (слышно, как в мишень прилетает - легкий такой "пук" имеет место) и на сверхзвук - при попадании в мишень бахает так, что вся затея с модером летит коту под хвост. Из дозвука могу отметить темп, биатлон, из импортных - RWS Target (ну, мало я их знаю, да и в магазинах выбор не того). Из сверхзвуковых - например, Лапуа Стандарт, дешевые, интересные, но весьма шумные патроны. Потом берем начальные скорости с сайта производителя - и вот вам приблизительный диапазон, где находится скорость звука при данной температуре отстрела.

    StartGameN 23-11-2005 19:56


    Тогда еще вопрос, из-за чего зимой звук выстрела кажется более громким, чем летом?

    Зимой усе в шапках ходят и потому слух притупляется

    STASIL0V 23-11-2005 20:25

    А если серьезно: с какои целью требуется знать реальную скорость звука для конкретных условии (в смысле с практическои точки зрения) ? цель обычно определяет средства и способы/точность измерения. По мне, так вроде как для попадания в мишень или на охоте не требуется ету скорость знать(если конечно без глушителя)...

    Паршев 23-11-2005 20:38

    Вообще-то скорость звука является в какой-то степени предельной для стабилизированного полета пули. Если смотреть на разгоняемое тело, то до звукового барьера сопротивление воздуха растет, перед самым барьером довольно резко, а потом, по прохождении барьера, резко падает (потому авиаторы так стремились достичь сверхзвука). При торможении картина строится в обратном порядке. То есть, когда скорость перестаёт быть сверхзвуковой, пуля испытывает резкий скачок сопротивления воздуха и может пойти кувырком.

    vyacheslav 23-11-2005 20:38


    оказалось все совсем неодназначно.

    Самый интересный вывод во всём рассуждении.

    q123q 23-11-2005 20:44

    И так, товарищи, скорость звука непосредственно зависит от температуры, чем больше температура, тем больше и скорость звука, а совсем не наоборот как отмечали в начале топика.
    *************** /------- |
    скорость звука а=\/ k*R*T (это корень так обозначен)

    Для воздуха k = 1.4 - это показатель адиабаты
    R = 287 - удельная газовая постоянная для воздуха
    T - температура в Кельвинах (0 градусов Цельсия соответствует 273.15 градусов Кельвина)
    То есть при 0 по Цельсию а=331.3 м/с

    Таким образом в диапазоне -20 +20 по Цельсию скорость звука меняется в диапазонах от 318.9 до 343.2 м/с

    Думаю больше вопросов не возникнет.

    Что касается для чего все это надо, это необходимо при исследовании режимов обтекания.

    Sacor 24-11-2005 10:32

    Исчерпывающе,а от плотности, давления разве скорость звука не зависит?

    БИТ 24-11-2005 12:41

    [B] Если смотреть на разгоняемое тело, то до звукового барьера сопротивление воздуха растет, перед самым барьером довольно резко, а потом, по прохождении барьера, резко падает (потому авиаторы так стремились достичь сверхзвука).

    Я уже изрядно подзабыл физику, но насколько я помню, сопротивление воздуха растет с увеличением скорости и до "звука" и после. Только на дозвуке основной вклад вносит преодоление силы трения о воздух, а на сверхзвуке эта составляющая резко уменьшается, но увеличиваются потери энергии на создание ударной волны. А. в целом, энергопотери увеличиваются, и чем дальше, тем прогрессивнее.

    Blackspring 24-11-2005 13:52

    Согласен с q123q. Нас как учили - норма при 0 по цельсию 330 м/с, плюс 1 градус - плюс 1 м/с, минус 1 градус - минус 1 м/с. Вполне рабочая схема для практического применения.
    Наверное, норма может меняться от давления, но изменение будет все равно будет примерно градус- метр в секунду.
    BS

    StartGameN 24-11-2005 13:55

    quote: Originally posted by Sacor:

    Зависит-зависит. Но: есть такой закон Бойля, согласно которому при постоянной температуре p/p1=const, т.е. изменение плотности прямо пропорционально изменению давления

    Паршев 24-11-2005 14:13


    Originally posted by Паршев:
    [B]
    Я уже изрядно подзабыл физику, но насколько я помню, сопротивление воздуха растет с увеличением скорости и до "звука" и после. .

    А я так и не знал никогда.

    Оно растёт и до звука и после звука, причём по-разному на разных скоростях, но на звуковом барьере падает. То есть за 10 м/с до скорости звука сопротивление выше, чем когда на 10 м/с после скорости звука. Потом растёт снова.
    Конечно, природа этого сопротивления разная, поэтому разные по форме объекты по-разному барьер переходят. До звука лучше летают каплеобразные объекты, после звука - с острым носом.

    БИТ 24-11-2005 14:54

    Originally posted by Паршев:
    [B]

    То есть за 10 м/с до скорости звука сопротивление выше, чем когда на 10 м/с после скорости звука. Потом растёт снова.

    Не совсем так. При переходе звукового барьера СУММАРНАЯ сила сопротивления возрастает, причем скачком, за счет резкого увеличения расхода энергии на образование ударной волны. Вклад же СИЛЫ ТРЕНИЯ (а точнее, силы сопротивления из-за турбулентности за телом) резко уменьшается из-за резкого уменьшения плотности среды в пограничном слое и за телом. Поэтому, оптимальная форма тела на дозвуке становится неоптимальной на сверхзвуке, и наоборот. Обтекаемое на дозвуке каплевидное тело на сверхзвуке создает очень мощную ударную волну, и испытывает гораздо большую СУММАРНУЮ силу сопротивления, по сравнению с остроконечным но с "затупленной" задней частью (которая на сверхзвуке практически не имеет значения). При обратном переходе задняя необтекаемая часть создает большую, по сравнению с каплевидным телом, турбулентность и след-но силу сопротивления. В общем, этим процессам посвящен целый раздел общей физики - гидродинамика, и проще прочитать учебник. А изложенная Вами схема, насколько я могу судить, не соответствует действительности.

    С уважением. БИТ

    GreenG 24-11-2005 15:38

    quote: Originally posted by Паршев:

    До звука лучше летают каплеобразные объекты, после звука - с острым носом.

    Ураааа!
    Осталось придумать пулю умеющую летать носом вперед на сверх звуке и ж..пой после перехода барьера.

    Вечером тяпну коньячка за свою светлую голову!

    Machete 24-11-2005 15:43

    Навеяло дискуссией (офф).

    Господа, а вы таракановку пили?

    БИТ 24-11-2005 15:56

    Рецептик, плиз.

    Antti 24-11-2005 16:47


    В общем, этим процессам посвящен целый раздел общей физики - гидродинамика...

    Гидра-то тут причём?

    Паршев 24-11-2005 18:35


    Гидра-то тут причём?

    А название красивое. Ни при чём, конечно, разные процессы в воде и в воздухе, хотя есть и общее.

    Вот тут можно посмотреть, что происходит с коэффициентом лобового сопротивления на звуковом барьере (3-й график):
    http://kursy.rsuh.ru/aero/html/kurs_580_0.html

    В любом случае - на барьере происходит резкая смена картины обтекания, возмущающая движение пули - вот для этого и может быть полезно знать скорость звука.

    STASIL0V 24-11-2005 20:05

    Возвращаясь опять же в практическую плоскость, получается, что при переходе на дозвук возникают дополнительные малопредсказуемые "возмущения" приводящие к дестабилизации пули и увеличению разброса. Стало быть для достижения спортивных целей сверхзвуковой мелкашечный патрон ни в коем случае нельзя применять (да и на охоте максимально возможная кучность не помешает). В чём же тогда преимущество сверхзвуковых патронов? Больше (ненамного) энергии и следовательно убойной силы? И это за счёт точности да и шуму больше. Стоит ли вообще сверхзвуковой 22лр использовать?

    гыруд 24-11-2005 21:42

    quote: Originally posted by Hunt:
    А для военных пробежки (на физзарядке) в наших палестинах запрещены, т.к. недостаток кислорода. Я думаю, если кислорода недостаток, значит чем замещено, ...азотом,

    Ни о каком замещении кbслорода азотом говорить нельзя т.к. его, замещения, просто нету. Процентный состав атмосферного воздуха одинаков при любом давлении. Другое дело что при пониженом давлении в том же литре вдыхаемого воздуха реально кислорода меньше чем при нормальном давлении, вот и развивается кислородная недостаточность. Именно поэтому летчики на высотах выше 3000м дышат через маски обагащенной до 40% кислорода воздушной смесью.

    q123q 24-11-2005 22:04

    quote: Originally posted by Sacor:
    Исчерпывающе,а от плотности, давления разве скорость звука не зависит?

    Только через температуру.

    Давление и плотность, а точнее их отношение жестко связано с температурой
    давление/плотность = R*T
    что такое R, T см. в моём посте выше.

    То есть скорость звука - однозначная функция температуры.

    Паршев 25-11-2005 03:03

    Сдается мне, что отношение давления и плотности жестко связано с температурой только при адиабатических процессах.
    Являются ли климатические изменения температуры и атмосферного давления таковыми?

    StartGameN 25-11-2005 03:28

    Корректный вопрос.
    Ответ: климатические изменения не являются адиабатическим процессом.
    Но какую-то ж модель использовать надо...

    БИТ 25-11-2005 09:55

    quote: Originally posted by Antti:

    Гидра-то тут причём?
    Чевой-то я подозреваю, что в воздухе и воде картина может несколько различаться из-за сжимаемости/несжимаемости. Или нет?

    У нас в университете был объединенный курс гидро- и аэродинамики а также кафедра гидродинамики. Поэтому я назвал этот раздел сокращенно. Вы конечно правы, процессы в жидкостях и газах могут протекать по разному, хотя есть очень много общего.

    БИТ 25-11-2005 09:59


    В чём же тогда преимущество сверхзвуковых патронов? Больше (ненамного) энергии и следовательно убойной силы? И это за счёт точности да и шуму больше. Стоит ли вообще сверхзвуковой 22лр использовать?

    StartGameN 25-11-2005 12:44

    "Точность" мелкашечного патрона объясняется крайне слабым нагревом ствола и безоболочечной свинцовой пулей, а не скоростью ее вылета.

    БИТ 25-11-2005 15:05

    Про нагрев понятно. А безоболочечность? Большая точность изготовления?

    STASIL0V 25-11-2005 20:48

    quote: Originally posted by БИТ:

    ИМХО - баллистика, тобишь траектория. Меньше подлетное время - меньше внешних возмущений. А вообще, возникает вопрос: Поскольку при переходе на дозвук резко снижается сопротивление воздуха, то должен резко уменьшиться и опрокидывающий момент, а след-но возрасти стабильность пули? Не поэтому ли мелкашечный патрон является одним из самых точных?

    Machete 26-11-2005 02:31
    quote: Originally posted by STASIL0V:

    Мнения разделились. По вашему выходит сверхзвуковая пуля при переходе на дозвук стабилизируется. А по Паршеву наоборот - возникает дополнительный возмущающий эффект ухудшающий стабилизацию.

    Dr. Watson 26-11-2005 12:11

    Именно так.

    БИТ 28-11-2005 12:37

    И не думал спорить. Просто задавал вопросы и, открыв рот, внимал.

    Sacor 28-11-2005 14:45

    quote: Originally posted by Machete:

    В данном случае Паршев абсолютно прав - при обратном трансзвуковом переходе пуля дестабилизируется. Именно поэтому максимальная дальность стрельбы для каждого конкретного патрона в ЛонгРэйндже определяется дистанцией обратного трансзвукового перехода.

    Это получается, что малокалиберная пуля выпущенная со скоростью 350 м/с где то на 20-30 м сильно дестабилизируется? И кучность существенно ухудшается.

    Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

    1 километр в час [км/ч] = 0,0001873459079907 скорость звука в пресной воде

    Исходная величина

    Преобразованная величина

    метр в секунду метр в час метр в минуту километр в час километр в минуту километр в секунду сантиметр в час сантиметр в минуту сантиметр в секунду миллиметр в час миллиметр в минуту миллиметр в секунду фут в час фут в минуту фут в секунду ярд в час ярд в минуту ярд в секунду миля в час миля в минуту миля в секунду узел узел (брит.) скорость света в вакууме первая космическая скорость вторая космическая скорость третья космическая скорость скорость вращения Земли скорость звука в пресной воде скорость звука в морской воде (20°C, глубина 10 метров) число Маха (20°C, 1 атм) число Маха (стандарт СИ)

    Американский калибр проводов

    Подробнее о скорости

    Общие сведения

    Скорость - мера измерения пройденного расстояния за определенное время. Скорость может быть скалярной величиной и векторной - при этом учитывается направление движения. Скорость движения по прямой линии называется линейной, а по окружности - угловой.

    Измерение скорости

    Среднюю скорость v находят, поделив общее пройденное расстояние ∆x на общее время ∆t : v = ∆x /∆t .

    В системе СИ скорость измеряют в метрах в секунду. Широко используются также километры в час в метрической системе и мили в час в США и Великобритании. Когда кроме величины указано и направление, например 10 метров в секунду на север, то речь идет о векторной скорости.

    Скорость движущихся с ускорением тел можно найти с помощью формул:

    • a , с начальной скоростью u в течении периода ∆t , имеет конечную скорость v = u + a ×∆t .
    • Тело, движущееся с постоянным ускорением a , с начальной скоростью u и конечной скоростью v , имеет среднюю скорость ∆v = (u + v )/2.

    Средние скорости

    Скорость света и звука

    Согласно теории относительности, скорость света в вакууме - самая большая скорость, с которой может передвигаться энергия и информация. Она обозначается константой c и равна c = 299 792 458 метров в секунду. Материя не может двигаться со скоростью света, потому что для этого понадобится бесконечное количество энергии, что невозможно.

    Скорость звука обычно измеряется в упругой среде, и равна 343,2 метра в секунду в сухом воздухе при температуре 20 °C. Скорость звука самая низкая в газах, а самая высокая - в твердых телах. Она зависит от плотности, упругости, и модуля сдвига вещества (который показывает степень деформации вещества при сдвиговой нагрузке). Число Маха M - это отношение скорости тела в среде жидкости или газа к скорости звука в этой среде. Его можно вычислить по формуле:

    M = v /a ,

    где a - это скорость звука в среде, а v - скорость тела. Число Маха обычно используется в определении скоростей, близких к скорости звука, например скоростей самолетов. Эта величина непостоянна; она зависит от состояния среды, которое, в свою очередь, зависит от давления и температуры. Сверхзвуковая скорость - скорость, превышающая 1 Мах.

    Скорость транспортных средств

    Ниже приведены некоторые скорости транспортных средств.

    • Пассажирские самолеты с турбовентиляторными двигателями: крейсерская скорость пассажирских самолетов - от 244 до 257 метров в секунду, что соответствует 878–926 километрам в час или M = 0,83–0,87.
    • Высокоскоростные поезда (как «Синкансэн» в Японии): такие поезда достигают максимальных скоростей от 36 до 122 метров в секунду, то есть от 130 до 440 километров в час.

    Скорость животных

    Максимальные скорости некоторых животных примерно равны:

    Скорость человека

    • Люди ходят со скоростью примерно 1,4 метра в секунду или 5 километров в час, и бегают со скоростью примерно до 8,3 метра в секунду, или до 30 километров в час.

    Примеры разных скоростей

    Четырехмерная скорость

    В классической механике векторная скорость измеряется в трехмерном пространстве. Согласно специальной теории относительности, пространство - четырехмерное, и в измерении скорости также учитывается четвертое измерение - пространство-время. Такая скорость называется четырехмерной скоростью. Ее направление может изменяться, но величина постоянна и равна c , то есть скорости света. Четырехмерная скорость определяется как

    U = ∂x/∂τ,

    где x представляет мировую линию - кривую в пространстве-времени, по которой движется тело, а τ - «собственное время», равное интервалу вдоль мировой линии.

    Групповая скорость

    Групповая скорость - это скорость распространения волн, описывающая скорость распространения группы волн и определяющая скорость переноса энергии волн. Ее можно вычислить как ∂ω /∂k , где k - волновое число, а ω - угловая частота . K измеряют в радианах/метр, а скалярную частоту колебания волн ω - в радианах в секунду.

    Гиперзвуковая скорость

    Гиперзвуковая скорость - это скорость, превышающая 3000 метров в секунду, то есть во много раз выше скорости звука. Твердые тела, движущиеся с такой скоростью, приобретают свойства жидкостей, так как благодаря инерции, нагрузки в этом состоянии сильнее, чем силы, удерживающие вместе молекулы вещества во время столкновения с другими телами. При сверхвысоких гиперзвуковых скоростях два столкнувшихся твердых тела превращаются в газ. В космосе тела движутся именно с такой скоростью, и инженеры, проектирующие космические корабли, орбитальные станции и скафандры, должны учитывать возможность столкновения станции или космонавта с космическим мусором и другими объектами при работе в открытом космосе. При таком столкновении страдает обшивка космического корабля и скафандр. Разработчики оборудования проводят эксперименты столкновений на гиперзвуковой скорости в специальных лабораториях, чтобы определить, насколько сильные столкновения выдерживают скафандры, а также обшивка и другие части космического корабля, например топливные баки и солнечные батареи, проверяя их на прочность. Для этого скафандры и обшивку подвергают воздействию ударов разными предметами из специальной установки со сверхзвуковыми скоростями, превышающими 7500 метров в секунду.

Сегодня многие новоселы, обустраивая квартиру, вынуждены проводить дополнительные работы, в том числе по звукоизоляции своего жилища, т.к. применяемые стандартные материалы позволяют лишь отчасти скрыть, что творится в собственном доме, и не интересоваться против воли общением соседей.

На в твердых телах влияет как минимум плотность и упругость вещества, противостоящего волне. Поэтому при оборудовании помещений слой, прилегающий к несущей стене, делают звукоизолирующим с «напусками» сверху и снизу. Он позволяет снизить в децибелах иногда более чем в 10 раз. Затем укладывают базальтовые маты, а сверху - гипсокартонные листы, которые отражают звук вовне от квартиры. Когда звуковая волна «подлетает» к такой конструкции, то она затухает в слоях изолятора, которые являются пористыми и мягкими. Если звук имеет большую силу, то материалы, его поглощающие, могут даже нагреваться.

Упругие же вещества, такие, как вода, дерево, металлы, хорошо передают поэтому мы слышим прекрасное «пение» музыкальных инструментов. А некоторые народности в прошлом определяли приближение, например, всадников, прикладывая ухо к земле, которая также является достаточно упругой.

Скорость звука в км зависит от характеристик той среды, в которой он распространяется. В частности, на процесс могут повлиять ее давление, химический состав, температура, упругость, плотность и другие параметры. Например, в стальном листе звуковая волна проходит со скоростью 5100 метров в секунду, в стекле - около 5000 м/с, в дереве и граните - около 4000 м/с. Для перевода скорости в километры в час нужно умножить показатели на 3600 (секунд в часе) и разделить на 1000 (метров в километре).

Скорость звука в км в водной среде различна для веществ с разной соленостью. Для пресной воды при температуре 10 градусов Цельсия она составляет около 1450 м/с, а при температуре в 20 градусов Цельсия и том же давлении - уже около 1490 м/с.

Соленая же среда отличается заведомо большей скоростью прохождения звуковых колебаний.

Распространение звука в воздухе также зависит от температуры. При значении этого параметра, равном 20 звуковые волны проходят со скоростью около 340 м/с, что составляет около 1200 км/час. А при нуле градусов скорость замедляется до 332 м/с. Возвращаясь к нашим изоляторам для квартиры, мы можем узнать, что в таком материале, как пробка, которую часто используют для снижения уровня внешнего шума, скорость звука в км составляет всего 1800 км/ч (500 метров в секунду). Это в десять раз ниже этой характеристики в стальных деталях.

Звуковая волна представляет собой продольное колебание среды, в которой она распространяется. При прохождении, например, мелодии музыкального произведения через какое-то препятствие, уровень его громкости понижается, т.к. изменяется При этом частота остается той же, благодаря чему мы слышим женский голос как женский, а мужской - как мужской. Самым интересным является место, где скорость звука в км близка к нулю. Это - вакуум, в котором волны такого типа почти не распространяются. Чтобы продемонстрировать, как это работает, физики помещают звенящий будильник под колпак, из которого выкачивают воздух. Чем больше разреженность воздуха, тем тише слышен звонок.

Под звуком понимают упругие волны, лежащие в пределах слышимости человеческого уха, в интервале колебаний от 16 гц до 20 кгц. Колебания с частотой ниже 16 гц называются инфра­звуком, свыше 20 кгц -ультразвуком.

Вода по сравнению с воздухом обладает большей плотностью и меньшей сжимаемостью. В связи с этим скорость звука в воде в четыре с половиной раза больше, чем в воздухе, и составляет 1440 м/сек. Частота колебаний звука (ню) связана с длиной вол­ны (лямбда) соотношением: c = лямбда-ню. Звук распространяется в воде без дисперсии. Скорость звука в воде изменяется в зависимости от двух параметров: плотности и температуры. Изменение темпера­туры на 1° влечет за собой соответственное изменение скорости звука на 3,58 м в секунду. Если проследить за скоростью рас­пространения звука от поверхности до дна, окажется, что сна­чала из-за понижения температуры она быстро убывает, достиг­нув на некоторой глубине минимума, а затем, с глубиной, начи­нает быстро возрастать за счет увеличения давления воды, которое, как известно, возрастает приблизительно на 1 атм на каждые 10 м глубины.

Начиная с глубины приблизительно 1200 м , где температура воды практически остается постоянной, изменение скорости зву­ка происходит за счет изменения давления. «На глубине, равной приблизительно 1200 м (для Атлантики), имеется минимум значения скорости звука; на больших глубинах благодаря уве­личению давления скорость звука опять увеличивается. Так как звуковые лучи всегда изгибаются к участкам среды, где их скорость наименьшая, то они концентрируются в слое с мини­мальной скоростью звука» (Красильников, 1954). Этот слой, открытый советскими физиками Л. Д. Розенбергом и Л.М. Бре­ховских, носит название «подводного звукового канала». Звук, попавший в звуковой канал, может распространяться без ослабления на огромные расстояния. Эту особенность необходи­мо иметь в виду при рассмотрении акустической сигнализации глубоководных рыб.

Поглощение звука в воде в 1000 раз меньше, чем в воздухе. Источник звука в воздухе мощностью в 100 квт в воде слы­шен на расстоянии до 15 км ; в воде источник звука в 1 квт слышен на расстоянии 30-40 км. Звуки различных частот по­глощаются неодинаково: сильнее всего поглощаются звуки высо­ких частот и мгнее всего - низкие звуки. Малое поглощение звука в воде позволило использовать его для гидролокации и сигнализации. Водные пространства наполнены большим коли­чеством различных звуков. Звуки водоемов Мирового океана, как показал американский гидроакустик Венц (Wenz, 1962), возникают в связи со следующими факторами: приливами и от­ливами, течениями, ветром, землетрясениями и цунами, инду­стриальной деятельностью человека и биологической жизнью. Характер шумов, создаваемых различными факторами, отли­чается как набором звуковых частот, так и их интенсивностью. На рис. 2 показана зависимость спектра и уровня давления зву­ков Мирового океана от вызывающих их факторов.

В различных участках Мирового океана состав шумов опре­деляют различные компоненты. Большое влияние при этом на состав звуков оказывают дно и берега.

Таким образом, состав и интенсивность шумов в различных участках Мирового океана исключительно разнообразны. Суще­ствуют эмпирические формулы, показывающие зависимость ин­тенсивности шумов моря от интенсивности вызывающих их факторов. Однако в практических целях шумы океана измеря­ются обычно эмпирически.

Следует отметить, что среди звуков Мирового океана наи­большей интенсивностью отличаются индустриальные звуки, со­здаваемые человеком: шум кораблей, тралов и т. д. По данным Шейна (1964), они по интенсивности в 10-100 раз превышают иные звуки Мирового океана. Однако, как видно из рис. 2, их спектральный состав несколько отличается от спектрального состава звуков, вызываемых другими факторами.

При распространении в воде звуковые волны могут отра­жаться, преломляться, поглощаться, испытывать диффракцию и интерференцию.

Встречая на своем пути препятствие, звуковые волны могут отразиться от него в случае, когда длина их волны (лямбда) меньше размера препятствия, или обогнуть (диффрагировать) его в слу­чае, когда их длина волны больше препятствия. В этом случае можно слышать то, что происходит за препятствием, не видя источника непосредственно. Падая на препятствие, звуковые волны в одном случае могут отразиться, в другом - проникнуть в него (поглотиться им). Величина энергии отраженной волны зависит от того, как сильно разнятся между собой так называ­емые акустические сопротивления сред «р1с1» и «р2с2», на гра­ницу раздела которых падают звуковые волны. Под акустиче­ским сопротивлением среды подразумевается произведение плотности данной среды р на скорость распространения звука с в ней. Чем больше разница акустических сопротивлений сред, тем большая часть энергии отразится от раздела двух сред, и наоборот. В случае, например, падения звука из воздуха, рс ко­торого 41, в воду, рс которой 150 000, он отражается согласно формуле:

В связи с указанным звук гораздо лучше проникает в твер­дое тело из воды, чем из воздуха. Из воздуха в воду звук хоро­шо проникает через кусты или камыши, выступающие над водной поверхностью.

В связи с отражением звука от препятствий и его волновой природой может происходить сложение или вычитание амплитуд звуковых давлений одинаковых частот, пришедших в данную точку пространства. Важным следствием такого сложения (ин­терференции) является образование стоячих волн при отраже­нии. Если, например, привести в колебание камертон, прибли­жая и удаляя его от стены, можно слышать из-за появления пуч­ностей и узлов в звуковом поле усиление и ослабление громко­сти звука. Обычно стоячие волны образуются в закрытых емко­стях: в аквариумах, бассейнах и пр. при относительно длительном по времени звучании источника.

В реальных условиях моря или другого естественного водо­ема при распространении звука наблюдаются многочисленные сложные явления, возникающие в связи с неоднородностью водной среды. Огромное влияние на распространение звука в естественных водоемах оказывают дно и границы раздела (вода - воздух), температурная и солевая неоднородность, гид­ростатическое давление, пузырьки воздуха и планктонные орга­низмы. Поверхности раздела вода - воздух и дно, а также не­однородность воды приводят к явлениям рефракции (искрив­ление звуковых лучей), или реверберации (многократное отра­жение звуковых лучей).

Пузырьки воды, планктон и другие взвеси способствуют по­глощению звука в воде. Количественная оценка этих многочис­ленных факторов в настоящее время еще не разработана. Учи­тывать же их при постановке акустических опытов необходимо.

Рассмотрим теперь явления, происходящие в воде при излу­чении в ней звука.

Представим себе звуковой источник как пульсирующую сфе­ру в бесконечном пространстве. Акустическая энергия, излучае­мая таким источником, ослабляется обратно пропорционально квадрату расстояния от его центра.

Энергия образующихся звуковых волн может быть охарак­теризована тремя параметрами: скоростью, давлением и смеще­нием колеблющихся частиц воды. Два последних параметра представляют особый интерес при рассмотрении слуховых спо­собностей рыб, поэтому на них остановимся более подробно.

По Гаррису и Бергельджику (Harris a. Berglijk, 1962), рас­пространение волн давления и эффекта смещения по-разному представлены в ближнем (на расстоянии менее одной длины волны звука) и дальнем (на расстоянии, более одной длины вол­ны звука) акустическом поле.

В дальнем акустическом поле давление ослабляется обратно пропорционально расстоянию от источника звука. При этом в дальнем акустическом поле амплитуды смещения прямо пропор­циональны амплитудам давления и связаны между собой фор­мулой:

где Р - акустическое давление в дин/см 2 ;

d - величина смещения частиц в см.

В ближнем акустическом поле зависимость между амплиту­дами давления и смещения иная:

где Р -акустическое давление в дин/см 2 ;

d - величины смещения частиц воды в см;

f - частота колебаний в гц;

рс - акустическое сопротивление воды, равное 150 000 г/см 2 сек 2 ;

лямбда - длина волны звука в м ; r - расстояние от центра пульсирующей сферы;

i = SQR i

Из формулы видно, что амплитуда смещения в ближнем аку­стическом поле зависит от длины волны, звука и расстояния от источника звука.

На расстояниях, меньших, чем длина волны рассматриваемо­го звука, амплитуда смещения убывает обратно пропорциональ­но квадрату расстояния:

где А - радиус пульсирующей сферы;

Д - увеличение радиуса сферы за счет пульсации; r - расстояние от центра сферы.

Рыбы, как будет показано ниже, обладают двумя разными типами приемников. Одни из них воспринимают давление, а другие - смещение частиц воды. Приведенные уравненияимеют поэтому большое значение для правильной оценки ответных реакций рыб на подводные источники звука.

В связи с излучением звука отметим еще два явления, свя­занные с излучателями: явление резонанса и направленности излучателей.

Излучение звука телом происходит в связи с его колебания­ми. Каждое тело имеет собственную частоту колебаний, опреде­ляемую размером тела и его упругими свойствами. Если такое тело приводится в колебание, частота которого совпадает с его собственной частотой, наступает явление значительного увели­чения амплитуды колебания - резонанс. Применение понятия о резонансе позволяет охарактеризовать некоторые акустические свойства излучателей и приемников рыб. Излучение звука в воду может быть направленным и ненаправленным. В первом случае звуковая энергия распространяется преимущественно в определенном направлении. График, выражающий простран­ственное распределение звуковой энергии данного источника звука, называют диаграммой его направленности. Направлен­ность излучения наблюдается в случае, когда диаметр излучате­ля значительно больше длины волны излучаемого звука.

В случае ненаправленного излучения звуковая энергия рас­ходится во все стороны равномерно. Такое явление происходит в случае, когда длина волны излучаемого звука превосходит диаметр излучателя лямбда>2А. Второй случай наиболее характерен для подводных излучателей низкой частоты. Обычно длины волн низкочастотных звуков бывают значительно больше размеров применяемых подводных излучателей. Такое же явление харак­терно и для излучателей рыб. В этих случаях диаграммы на­правленности у излучателей отсутствуют. В настоящей главе были отмечены лишь некоторые общие физические свойства зву­ка в водной среде в связи с биоакустикой рыб. Некоторые более частные вопросы акустики будут рассмотрены в соответствую­щих разделах книги.

В заключение рассмотрим применяемые различными автора­ми системы измерений звука. Звук может быть выражен его ин­тенсивностью, давлением или уровнем давления.

Интенсивность звука в абсолютных единицах измеряется или числом эрг/сек-см 2 , или вт/см 2 . При этом 1 эрг/сек=10 -7 вт.

Давление звука измеряется в барах.

Между интенсивностью и давлением звука существует зави­симость:

пользуясь которой можно переводить эти величины одну в дру­гую.

Не менее часто, особенно при рассмотрении слуха рыб, в связи с огромным диапазоном пороговых величин звуковое дав­ление выражают в относительных логарифмических единицах децибеллах, дб. Если звуковое давление одного звука Р , а друго­го Р о, то считают, что первый звук громче второго на k дб и вы­числяют его по формуле:

Большинство исследователей при этом за нулевой отсчет давле­ния звука Р о принимают пороговую величину слуха человека, равную 0,0002 бара для частоты 1000 гц.

Достоинством такой системы является возможность непо­средственного сопоставления слуха человека и рыб, недостат­ком - сложность сопоставления полученных результатов по зву­чанию и слуху рыб.

Фактические величины звукового давления, создаваемого ры­бами, на четыре - шесть порядков выше принятого нулевого уровня (0,0002 бара), а пороговые уровни слуха различных рыб лежат как выше, так и ниже условного нулевого отсчета.

Поэтому для удобства сопоставления звуков и слуха рыб американские авторы (Tavolga a. Wodinsky, 1963, и др.) поль­зуются другой системой отсчета.

За нулевой уровень отсчета принято давление звука в 1 бар, который на 74 дб выше ранее принятого.

Ниже приводится примерное соотношение обеих систем.

Фактические величины по американской системе отсчета в тексте помечены звездочкой.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии