Расстройства кровообращения. Строение и функции лимфатической системы человека - заболевания, состав и очищение лимфы народными средствами

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Динамическая недостаточность лимфатической системы возникает при несоответствии между избытком тканевой жидкости и скоростью ее отведения, что имеет место при значительном повышении проницаемости кровеносных сосудов.

Резорбционная недостаточность лимфатической системы обусловлена уменьшением проницаемости лимфатических капилляров или изменением дисперсных свойств тканевых белков.

К последствиям лимфостаза относят лимфедему - лимфатический отек, сочетающийся с хилезом серозных полостей, придающим жидкости молочный белый цвет (хилезный асцит, хилоторакс). Могут возникатьхилезные кисты ,лимфатические свищи (наружные или внутренние, образующиеся после травмы тканей с лимфостазом),лимфовенозные шунты, лимфатические тромбы , состоящие из белковых коагулятов и закрывающие просвет сосудов,лимфангиоэктазии (неравномерные расширения лимфатических сосудов, содержащие свернувшуюся лимфу).

Значение нарушений лимфообращения (развивающегося, как правило, в тесной связи с нарушениями кровообращения) заключается в нарушении обмена веществ в пораженных тканях, развитии в острых случаях дистрофических, гипоксических и некротических изменений. При хронических нарушениях к перечисленным патологическим процессам присоединяются атрофия и склероз (вследствие активации фибробластов) вплоть до развития слоновости.

Оснащение лекции

Макропрепараты: мускатная печень, бурая индурация легких, цианотическая индурация почки, цианотическая индурация селезенки, гематома головного мозга, петехии (диапедезные кровоизлияния) головного мозга, “ржавая” киста головного мозга, шоковая почка.

Микропрепараты: венозное полнокровие кожи, мускатная печень (гематоксилин и эозин), мускатная печень (эритрозин), бурая индурация легких (гематоксилин и эозин), бурая индурация легких

(реакция Перлса), кровоизлияние в головной мозг, гиалиноз сосудов селезенки, фибриноидный некроз артериолы почки, некроз эпителия извитых канальцев почки, шоковое легкое.

Электронограммы: капилляризация синусоидов, пиноцитоз, плазматическое пропитывание сосудистой стенки.

Лекция № 5

РАССТРОЙСТВА КРОВООБРАЩЕНИЯ: ГЕМОСТАЗ, СТАЗ, ТРОМБОЗ, ДВС-СИНДРОМ,

ЭМБОЛИЯ, ИШЕМИЯ, ИНФАРКТ

Нормальное состояние крови в сосудистом русле поддерживается гемостазом, отражающим взаимодействие четырех систем: коагуляции, фибринолиза, эндотелиальных клеток и тромбоцитов (схема 5.1).

Коагуляция (свертывание) крови осуществляется каскадом ферментных воздействий, направленных на превращение растворимого белка плазмы фибриногена в нерастворимый фибрин, что происходит в результате действия плазменных факторов свертывания крови (табл.5.1). В коагуляции выделяют внутреннюю и внешнюю системы, тесно связанные между собой и объединяющиеся на стадии образования активного фактора Х.

Внутренняя система коагуляции активируется при контакте плазмы крови с отрицательно заряженной поверхностью, в частности, с базальной мембраной сосуда, коллагеновыми волокнами. В месте повреждения сосудистой стенки откладывается фактор XII, превращающий прекалликреин (фактор Флетчера) в активный фермент калликреин, который, в свою очередь, активизирует высокомолекулярный кининоген (фактор Фитцджеральда-Фложе) и всю систему кинина. В ответ формируется протеолитический вариант фактора Хагемана - ХIIа, активирующий дальнейшую ступень коагуляции и систему фибринолиза, прежде всего факторы Х, II. В результате возникает стандартный полимер фибрина.

Фактор ХII вследствие своей мультидоменной структуры активирует плазминоген, подобно калликреину освобождает брадикинин из высокомолекулярного кининогена, активирует фактор VII, вызывает агрегацию нейтрофилов и освобождение их эластазы, участвующей в повреждении эндотелия. При различных заболеваниях, связанных с активацией внутренней системы коагуляции (брюшной тиф, нефротический синдром, септицемия и др.), уровень фактора ХII значительно снижается из-за перехода его в активную форму ХIIа, что способствует нарушению свертывания крови.

Система свертывания крови

Внутренняя система (путь)

Наружная

коагуляции

Фосфолипид

Калликреин

Фибринолиз

Обоз начения:

Высокомолекулярный кининоген

Эндотелий

Тромбоцит

Предшественник калликреина

Основные плазменные факторы гемостаза

Место синтеза

Функция активной формы

Фибриноген

Гепатоциты

Образует полимер фибрина

Протромбин

Гепатоциты

Образование тромбина,

активирует факторы V,VII,XII,

хемотаксис моноцитов, синтез

простациклина, протеина С и S

III. Тканевой фактор

Эндотелиоциты,

Кофактор фактора VIIа

(тромбопластин)

фибробласты,

мозг, плацента,

Связь с фосфолипидами,

полимеризация фибринмоно-

мера, активация тромбоцитов

Проакцелерин

Гепатоциты,

Кофактор фактора Ха

эндотелиоциты,

тромбоциты,

моноциты

VII. Проконвертин

Гепатоциты

Активация фактора Ха

(внешняя система коагуляции)

VIII. Антигемо-

Кофактор фактора IXа,

селезенка,

способствует адгезии

тромбоцитов. В плазме

эндотелиоциты,

в комплексе с фактором

Виллебранда)

мегакариоциты

Виллебранда

Антигемо-

Гепатоциты

Адгезия тромбоцитов,

активация фактора Х

(Кристмаса)

Гепатоциты

Образование тромбина

Стюарда-Проуэра

Предшествен-

Макрофагальная

Активация фактора IX,

ник плазмен-

освобождение брадикинина

ного тромбо-

пластина

XII. Фактор

Гепатоциты

Активация факторов XI, VII,

Хагемана

перехода прекалликреина

в калликреин, системы компле-

мента (С1 ), агрегации нейтро-

филов, освобождения эластазы

XIII. Фибрин-

Гепатоциты,

Полимеризация фибрина

стабилизирующий

тромбоциты

(Лаки-Лоранда)

Внешняя система коагуляции “запускается” при повреждении эндотелия и внесосудистых тканей, освобождающем тканевой фактор (тромбопластин, фактор III - апопротеино-липид- ный комплекс, содержащийся в цитоплазматических мембранах). При этом происходит связывание факторов VII, Х и IV (ионов кальция), активация фактора Х, что замыкает каскадный механизм, направленный на образование тромбина и фибрина. Последний стабилизируется под воздействием трансглютаминазы фактора ХIII (активирующегося тромбином), связывающей молекулы фибрин-мономера в фибрин-полимер через остатки лизина и глютаминовой кислоты.

Существует ряд ингибиторов коагуляции. Так, антитромбин III, синтезируемый гепатоцитами и эндотелиоцитами, тормозит образование тромбина, действие факторов Ха, IХа, ХIа, ХII, калликреина

и плазмина, причем гепарин выступает в качестве катализатора этих процессов. Плазменные протеины С (образуется в гепатоцитах) и S (образуется в гепатоцитах и эндотелиоцитах) инактивируют факторы Vа и VIIa и вызывают образование нековалентных комплексов комплемента, не обладающих кофакторной активностью.

Фибринолиз - это система разрушения возникающих в сосудистом русле коагулятов и агрегатов крови.Происходит активация плазминогена с образованием протеолитического фермента плазмина, который разрушает фибрин/фибриноген, факторы коагуляции V, VШ. Следует отметить, что фибринолиз начинает действовать одновременно с внутренней системой коагуляции, так как активируется фактором ХII, калликреином и высокомолекулярным кининогеном. Существуют тканевой и урокиназный активаторы плазминогена. Тканевой активатор, вырабатываемый эндотелиоцитами, растворяет фибрин, что препятствует образованию тромба. Урокиназный активатор, синтезируемый эндотелиоцитами и внесосудистыми клетками, участвует не только в растворении внеклеточного матрикса, а также в процессах воспаления, инвазии злокачественных опухолей

и в фибринолизе.

Эндотелиоциты и тромбоциты синтезируют ингибитор активации плазминогена 1, подавляющий тканевой и урокиназный активаторы, тогда как α 2 -плазмин ингибирует плазмин. Следовательно, фибринолитическая активность регулируется этими двумя противоположными по действию системами, обеспечивающими разрушение излишков фибрина и образование продуктов его деградации. Усиление фибринолиза, также как и подавление коагуляции, приводит к повышенной кровоточивости сосудов.

Эндотелий в коагуляции и фибринолизе. Гемостаз во многом определяется состоянием эндотелиоцитов, вырабатывающих биологически активные вещества, влияющие на коагуляцию, фибринолиз и кровоток. Так, гликопротеин тромбомодулин обеспечивает скольжение крови по поверхности эндотелия, препятствуя ее свертыванию и увеличивая, в частности, скорость активации протеина С

в тысячу раз. С другой стороны, эндотелиоциты образуют факторы коагуляции V, VIII, Ш, XII и адгезирующий белок фибронектин (табл.5.2). Возникает тромбогеморрагическое равновесие (схема 5.2). Любое повреждение эндотелия приводит к сдвигу этого равновесия

в сторону коагуляции, тем более что обнажение субэндотелиальных структур (коллаген, эластин, фибронектин, гликозаминогликаны, ламинин и др.) активизирует процессы свертывания крови.

Тромбоциты. Через несколько секунд после повреждения эндотелия к обнажившейся базальной мембране сосуда прилипают тромбоциты, что получило названиеадгезии . Этот процесс зависит от фактора VIII, соединяющего гликопротеиновые рецепторы тромбоцитов с коллагеном базальной мембраны сосуда или стромы. Тромбоциты заполняют небольшой дефект эндотелия, способствуя его дальнейшему заживлению. Более крупный участок повреждения закрывается тромбом, формирование которого направлено на предотвращение кровопотери. Адгезия тромбоцитов “запускает” и два последующих процесса: их секрецию и агрегацию.

Анти- и протромботические продукты эндотелия

Простациклин

Фактор, активирующий

Тромбомодулин

тромбоциты

Гепарино-подобные

Тканевой фактор

молекулы

Факторы коагуляции

Активаторы

Фактор фон Виллебранда

плазминогена

Фибронектин

Ингибиторы активаторов

плазминогена

Антитромботические

Протромботические

продукты

продукты

Вещества, выделяемые эндотелиальными клетками и участвующие в гемостазе и регуляции кровотока

Вещество

Направленность действия

Регуляция коагуляции

Факторы V, VIII, III

Факторы коагуляции

Гепариноподобные молекулы,

Направлены на антикоагуляцию

тромбомодулин, белок S

Фактор, активирующий тромбоциты

Обеспечивают активацию

Коллаген базальных мембран

тромбоцитов

Простациклин

Способствуют инактивации

Аденозиндифосфатаза

тромбоцитов

Оксид азота

Тканевой инактиватор плазминогена

Обеспечивает фибринолиз

Ингибитор активатора плазминогена

Тормозит фибринолиз

Регуляция кровотока

Эндотелин I

Вазоконстрикторы

Ангиотензинпревращающий фермент

Оксид азота

Вазодилататоры

Простациклин

Секреция тромбоцитов приводит к освобождению из α-гранул фибриногена, фибронектина, тромбоцитарного фактора роста, β-тромбомодулина. В это же время из плотных гранул выделяются ионы кальция, аденозиндифосфатаза, гистамин и серотонин. Активируется расположенный на поверхности тромбоцитов фактор III (тромбопластин), запускающий внутренюю систему коагуляции. Образуются метаболиты арахидоновой кислоты, например, тромбоксан А2 - сильный, но короткоживущий (до 30 сек) вазоконстриктор.

Агрегация тромбоцито в регулируется тромбоксаном А2 , аденозиндифосфатазой и тромбином. Воздействие последнего на фибриноген приводит к формированию полимера фибрина. Ингибитором агрегации тромбоцитов (но не их адгезии) является вырабатываемый клетками эндотелия простагландин I2 , который обладает сильным и продолжительным (до 2 мин) сосудорасширяющим действием. Нарушение равновесия между регуляторами функционирования тромбоцитов ведет к тромбозу или кровотечению.

Стаз (от лат. stasis - остановка) -остановка кровотока в сосудах микроциркуляторного русла (прежде всего в капиллярах, реже - в венулах) . Остановке крови обычно предшествует ее замедление(престаз). Причинами стаза являются инфекции, интоксикации, шок, длительное искусственное кровообращение, воздействие физических факторов (холодовой стаз при обморожениях). В патогенезе стаза основное значение имеет изменение реологических свойств крови в микрососудах вплоть до развития сладж-феномена (от англ. sludge - тина), для которого характерно слипание форменных элементов крови, прежде всего эритроцитов, что вызывает значительные гемодинамические нарушения. Сладжирование эритроцитов, лейкоцитов, тромбоцитов возможно не только в микроциркуляторном русле, но и в крупных сосудах. Оно приводит, в частности, к увеличению скорости оседания эритроцитов (СОЭ). Остановка кровотока приводит к повышению сосудистой проницаемости капилляров (и венул), отеку, плазморрагии и нарастающей ишемии.

Значение стаза определяется его локализацией и продолжительностью. Так, острый стаз большей частью приводит к обратимым изменениям в тканях, но в головном мозге способствует развитию тяжелого, иногда смертельного отека с дислокационным синдромом, отмечаемым, например, при коме. В случаях длительного стаза возникают множественные микронекрозы, диапедезные кровоизлияния.

Тромбоз (от греч. thrombus - сверток, сгусток) -прижизненное свертывание крови в просвете сосудов или полостях сердца. Являясь одним из важнейших защитных механизмов гемостаза, тромбы могут полностью или частично закрывать просвет сосуда с развитием в тканях и органах значительных нарушений кровообращения и тяжелых изменений вплоть до некроза.

Выделяют общие и местные факторы тромбообразования. Среди общих факторов отмечают нарушение соотношения между системами гемостаза (свертывающей и противосвертывающей системами крови), а также изменения качества крови (прежде всего ее вязкости). Последнее наблюдается при тяжелой дегидратации организма, увеличении содержания грубодисперсных белковых фракций (например, при миеломной болезни), при гиперлипидемии (при тяжелом сахарном диабете). К местным факторам относят нарушение целостности сосудистой стенки (повреждение структуры и нарушение функции эндотелия), замедление и нарушение (завихрения, турбулентное движение) кровотока.

Наиболее часто тромбы развиваются у послеоперационных больных, находящихся на длительном постельном режиме, при хро-

нической сердечно-сосудистой недостаточности (хроническом общем венозном застое), атеросклерозе, злокачественных новообразованиях, врожденных и приобретенных состояниях гиперкоагуляции, у беременных.

Выделяют следующие стадии тромбообразования:

А г г л ю т и н а ц и я т р о м б о ц и т о в. Адгезия тромбоцитов к поврежденному участку интимы сосуда происходит за счет тромбоцитарного фибронектина и коллагенов III и IV типов, входящих в состав обнаженной базальной мембраны. Это вызывает связывание вырабатываемого эндотелиоцитами фактора Виллебранда, способствующего агрегации тромбоцитов и фактора V. Разрушаемые тромбоциты освобождают аденозиндифосфат и тромбоксан

А2 , обладающие сосудосуживающим действием и способствующие замедлению кровотока и увеличению агрегации кровяных пластинок, выбросу серотонина, гистамина и тромбоцитарного фактора роста. Следует отметить, что небольшие дозы ацетилсалициловой кислоты (аспирин) блокируют образование тромбоксана

А2 , что лежит в основе профилактического лечения тромбообразования, применяемого, в частности, у больных ишемической болезнью сердца. Происходит активация фактора Хагемана (XII) и тканевого активатора (фактор III, тромбопластин), запускающих коагуляционный каскад. Поврежденный эндотелий активирует проконвертин (фактор VII). Протромбин (фактор II) превращается в тромбин (фактор IIa), что и вызывает развитие следующей стадии.

К о а г у л я ц и я ф и б р и н о г е н а. Отмечается дальнейшая дегрануляция тромбоцитов, выделение аденозиндифосфата и тромбоксана А 2 . Фибриноген трансформируется в фибрин и процесс

становится необратимым, так как формируется нерастворимый фибриновый сверток, захватывающий форменные элементы и компоненты плазмы крови с развитием последующих стадий.

А г г л ю т и н а ц и я э р и т р о ц и т о в.

П р е ц и п и т а ц и я п л а з м е н н ы х б е л к о в.

Свертывающая система крови функционирует в тесной связи с противосвертывающей. Фибринолиз начинается после превращения плазминогена в плазмин, который обладает выраженной способностью переводить фибрин из нерастворимой полимерной в растворимую мономерную форму. Кроме того, при этом разрушаются или инактивируются факторы свертывания V, VIII, IX, XI, что блокирует коагулянтную, кининовую и комплементарную системы.

Морфология тромба. В зависимости от строения и внешнего вида, в значительной мере определяемого особенностями и скоростью тромбообразования, выделяют белый, красный, смешанный и гиалиновый тромбы. Б е л ы й т р о м б, состоящий из тромбоцитов, фибрина и лейкоцитов, образуется медленно, при быстром кровотоке, как правило, в артериях, между трабекулами эндокарда, на створках клапанов сердца при эндокардитах. К р а с н ы й т р о м б, в состав которого входят тромбоциты, фибрин и эритроциты, возникает быстро в сосудах с медленным током крови, в связи с чем встречается обычно в венах. С м е ш а н н ы й т р о м б включает в себя тромбоциты, фибрин, эритроциты, лейкоциты и встречается в любых отделах кровеносного русла, в том числе и полостях сердца, аневризмах. В этом тромбе отмечают наличие небольшой, тесно связанной с сосудистой стенкойголовки (по строению белый тромб),тела (смешанный тромб) и рыхло прикрепленного к интимехвоста (красный тромб). Последний может отрываться и служить причиной тромбоэмболий. Ги а л и - н о в ы е т р о м б ы обычно множественные и в отличие от предыдущих формируются только в сосудах микроциркуляторного русла при шоке, ожоговой болезни, тяжелых травмах, ДВС-синдроме, обезвоживании организма, тяжелой интоксикации и т.п. В их состав входят преципитированные белки плазмы и агглютинированные форменные элементы крови, образующие гомогенную бесструктурную массу со слабой положительной гистохимической реакцией на фибрин.

По отношению к просвету сосуда тромбы разделяются на пристеночные (чаще всего по строению белые или смешанные, например на атеросклеротических бляшках) иобтурирующие (обычно красные). В первом случае хвост тромба растет против тока крови, тогда как во втором - может распространяться в любом направлении, хотя, как правило, по току крови, например, при тромбофлебитах. По течению можно выделитьлокализованный ипрогрессирующий тромбы.

В зависимости от особенностей возникновения выделяют также марантические тромбы (от греч. - marasmas - изнурение, упадок сил), обычно смешанные по составу, возникающие при истощении, дегидратации организма, как правило, в поверхностных венах нижних конечностей, синусах твердой мозговой оболочки, а в ряде случаев у стариков, тогда их называют старческими;опухолевые тромбы , образующиеся при врастании злокачественного новообразования в просвет вены и разрастании там по току крови или при закупорке конгломератом опухолевых клеток просвета микрососудов. При истинной полицитемии встречаются красные тромбы в венах, тогда как при лейкозах в микрососудах часто обнаруживаются лейкемические

Если вести речь о работе организма и в частности о жидкостях, которые протекают в организме, то не многие сразу называют лимфу.

Тем не менее, лимфа имеет огромное значение для организма и обладает весьма значимыми функциями, которые позволяют организму нормально функционировать.

Что такое лимфатическая система?

Многие знают о потребности организма в циркуляции крови и работе других систем, но не многие знают о высоком значении лимфатической системы. Если лимфа не циркулирует по организму всего в течение пары часов, то такой организм не может более функционировать .

Таким образом, каждый человеческий организм испытывает непрерывную потребность в работе лимфатической системы.

Легче всего сравнить лимфатическую систему с кровеносной и выделить следующие отличия:

  1. Незамкнутость , в отличие от кровеносной системы лимфатическая является незамкнутой, то есть как таковая циркуляция отсутствует.
  2. Однонаправленность , если кровеносная система обеспечивает движение в двух направлениях, то лимфа двигается по направлению только от периферийных до центральных частей системы, то есть жидкость собирается сначала в самые мелкие капилляры и далее двигается в более крупные сосуды, и движение идет только в этом направлении.
  3. Отсутствует центральный насос. Для того, чтобы обеспечить движение жидкости в нужном направлении, используется только система клапанов.
  4. Более медленное движение жидкости по сравнению с кровеносной системой.
  5. Наличие особых анатомических элементов – лимфоузлов, которые выполняют значимую функцию и являются своеобразными складами для лимфоцитов.

Наибольшее значение система лимфатических сосудов имеет для метаболизма и для обеспечения иммунитета . Именно в лимфоузлах обрабатывается основная часть инородных элементов, которые поступают в организм.

Если в организме оказывается какой-либо вирус, то именно в лимфатических узлах начинается работа по изучению и вытеснению этого вируса из организма.

Вы и сами можете заметить данную деятельность, когда имеете , которые свидетельствуют о борьбе организма с вирусом . Помимо этого, лимфа регулярно занимается очищением организма и выводит из тела ненужные элементы.

Узнайте больше о лимфатической системе из видео:

Функции

Если говорить более подробно о функциях, то следует отметить связь лимфатической системы с сердечно-сосудистой. Именно благодаря лимфе выполняется доставка различных элементов , которые не могут оказаться сразу в сердечно-сосудистой системе:

  • белки;
  • жидкость из тканевого и межтканевого пространства;
  • жиры, которые поставляются в основном из тонкой кишки.

Эти элементы транспортируются до венозного русла и, таким образом, оказываются в кровеносной системе. Далее эти компоненты могут удаляться из организма.

При этом множество ненужных для организма включений обрабатывается еще на стадии лимфы, в частности речь идет о вирусах и инфекциях, которые обезвреживаются лимфоцитами и уничтожаются в лимфоузлах .

Следует отметить особую функцию лимфатических капилляров, которые имеют больший размер по сравнению с капиллярами кровеносной системы и более тонкие стенки. Благодаря этому из межтканевого пространства в лимфу могут поступать белки и другие компоненты .

Дополнительно лимфатическая система может использоваться для очищения организма , так как интенсивность протекания лимфы во многом зависит от сдавливания сосудов и мышечного напряжения.

Таким образом, массаж и физическая активность позволяют сделать движение лимфы более эффективным. Благодаря этому становится возможным дополнительное очищение и оздоровление организма.

Особенности

Собственно слово “лимфа” происходит от латинского “lympha”, что переводится как влага или чистая вода. Только из этого названия возможно многое понять относительно строения лимфы, которая омывает и очищает весь организм .

Многие могли наблюдать лимфу, так как данная жидкость выделяется на поверхности при ранках на коже . В отличие от крови жидкость является практически полностью прозрачной.

По анатомическому строению лимфа относится к соединительной ткани и содержит в себе большое количество лимфоцитов при полном отсутствии эритроцитов и тромбоцитов.

Помимо этого лимфа, как правило, содержит различные продукты жизнедеятельности организма. В частности, ранее отмеченные крупные белковые молекулы, которые не могут всасываться в венозные сосуды.

Такие молекулы зачастую могут являться вирусами , поэтому для всасывания подобных белков и используется лимфатическая система.

В лимфе могут содержаться различные гормоны, которые вырабатываются эндокринными железами. Из кишечника сюда поступают жиры и некоторые другие питательные элементы, из печени – белок.

Направление движения лимфы

На рисунке ниже изображена схема движения лимфы лимфатической системы человека. Здесь не отображается каждый лимфатический сосуд и полностью лимфатические узлы, которых около пятисот в человеческом организме.

Обратите внимание на направление движения. Лимфа двигается от периферии к центру и снизу вверх . Жидкость протекает от мелких капилляров, которые далее соединяются в более крупные сосуды.

Движение идет через лимфатические узлы, которые содержат огромное количество лимфоцитов и очищают лимфу.

Как правило, к лимфатическим узлам приходит больше сосудов, чем отходит , то есть лимфа поступает по множеству каналов, а выходит по одному-двум. Таким образом, движение продолжается до так называемых лимфатических стволов, которые являются наиболее крупными лимфатическими сосудами.

Самым крупным является грудной проток , который располагается поблизости от аорты и пропускает через себя лимфу от:

  • всех органов, которые располагаются ниже ребер;
  • левой стороны груди и левой стороны головы;
  • левой руки.

Данный проток соединяется с левой подключичной веной , которую вы можете видеть, отмеченную синим цветом на рисунке с левой стороны. Именно туда и поступает лимфа из грудного протока.

Следует отметить и правый проток , который собирает жидкость от правой верхней стороны тела, в частности от груди и головы, руки.

Отсюда лимфа поступает в правую подключичную вену , которая располагается на рисунке симметрично левой. Дополнительно следует отметить такие крупные сосуды, которые относятся к лимфатической системе как:

  1. правый и левый яремные стволы;
  2. левый и правый подключичные стволы.

Следует сказать о частом расположении лимфатических сосудов вдоль кровеносных, в частности венозных сосудов. Если вы обратите внимание на рисунок, то увидите некоторое подобие расположение сосудов кровеносной и лимфатической системы.

Лимфатическая система имеет большое значение для человеческого организма .

Многие доктора считают анализ лимфы не менее актуальным, чем анализ крови, так как именно лимфа может указывать на некоторые факторы, которые в других анализах не обнаруживаются.

В целом лимфа составляет в сочетании с кровью и межклеточной жидкостью внутреннюю жидкую среду в человеческом организме.

Лимфатическая система

Лимфатическая система - сеть сосудов, пронизывающих органы и ткани, содержащие бесцветную жидкость - лимфу.

Лишь структуры мозга, эпителиальный покров кожи и слизистые оболочки, хрящи, паренхима селезенки, глазного яблока и плаценты не содержат лимфатических сосудов.

Лимфатическая система, являясь составной частью сосудистой системы, осуществляет наряду с венами дренаж тканей путем образования лимфы, а также выполняет специфические для нее функции: барьерную, лимфоцитопоэтическую, иммунную.

Лимфоцитопоэтическая функция лимфатической системы обеспечивается деятельностью лимфатических узлов. В них осуществляется продукция лимфоцитов, которые поступают в лимфатическое и кровеносное русло. В периферической лимфе, образующейся в капиллярах и протекающей по лимфатическим сосудам до их впадения в лимфатические узлы, число лимфоцитов меньше, чем в лимфе, оттекающей от лимфатических узлов.

Иммунная функция лимфатической системы заключается в том, что в лимфатических узлах образуются плазматические клетки, вырабатывающие антитела, находятся В-и Т-лимфоциты, ответственные за гуморальный и клеточный иммунитет.

Барьерная функция лимфатической системы осуществляется также лимфатическими узлами, в которых задерживаются поступающие с лимфой инородные частицы, микробы, опухолевые клетки, а затем поглощаются фагоцитирующими клетками.

Протекающая в кровеносных капиллярах кровь не имеет непосредственного соприкосновения с тканями тела: ткани омываются лимфой.

Выйдя из кровеносных капилляров, лимфа движется в межтканевых щелях, откуда переходит в тонкостенные капиллярные лимфатические сосуды, которые сливаются и образуют более крупные стволы. В конце концов вся лимфа через два лимфатических ствола вливается в вены недалеко от впадения их в сердце. Количество лимфатических сосудов в теле во много раз превышает численность кровеносных сосудов.

В отличие от крови, свободно движущейся по сосудам, лимфа протекает через особые скопления соединительной (лимфатической) ткани, так называемые лимфатические узлы (рис. 4).

Ток лимфы по лимфатическим сосудам определяется многочисленными факторами: а) постоянным давлением образующейся лимфы; б) сокращением стенок лимфангионов; в) пульсацией кровеносных сосудов; г) движением различных сегментов тела и конечностей; д) сокращением гладкой мускулатуры в стенках органов; е) присасывающим действием грудной полости и др.

Рис. 4. Направление тока лимфы к лимфатическим узлам

Лимфатические сосуды под воздействием нервной системы способны к активной сократительной функции, т. е. может изменяться величина их просвета или просвет полностью закрывается (выключение из лимфооттока). Тонус мышечной оболочки лимфатических сосудов, так же как деятельность кровеносных сосудов, регулируется ЦНС.

Лимфатические узлы - органы лимфоцитопоэза и образования антител, расположенные по ходу лимфатических сосудов и составляющие вместе с ними лимфатическую систему. Лимфатические узлы располагаются группами.

Из многочисленных лимфатических узлов головы и шеи отметим поверхностные лимфатические узлы, расположенные на затылке (затылочные узлы); под нижней челюстью - подчелюстные лимфатические узлы и по боковым поверхностям шеи - шейные лимфатические узлы. Через эти узлы проходят лимфатические сосуды, берущие начало от щелей в тканях головы и шеи.

В брыжейках кишечника расположены густые скопления брыжеечных лимфатических узлов; через них проходят все лимфатические сосуды кишечника, берущие начало в кишечных ворсинках.

Из лимфатических сосудов нижних конечностей следует отметить поверхностные паховые лимфатические узлы, расположенные в паховой области, и бедренные лимфатические узлы, расположенные немного ниже паховых узлов - на передневнутренней поверхности бедер, а также подколенные лимфатические узлы.

Из лимфатических узлов грудной клетки и верхних конечностей необходимо обратить внимание на подмышечные лимфатические узлы, расположенные довольно поверхностно в подмышечной области, и локтевые лимфатические узлы, расположенные в локтевых ямках - у внутреннего сухожилия двуглавой мышцы. Через все эти узлы проходят лимфатические сосуды, берущие начало в щелях и тканях верхних конечностей, груди и верхней части спины.

Движение лимфы по тканям и сосудам совершается крайне медленно. Даже в крупных лимфатических сосудах скорость лимфатического тока едва достигает 4 мм в секунду.

Лимфатические сосуды сливаются в несколько крупных сосудов - сосуды нижних конечностей и нижней части туловища образуют два поясничных ствола, а лимфатические сосуды кишечника образуют кишечный ствол. Слиянием этих стволов образуется крупнейший лимфатический сосуд тела - левый, или грудной, проток, в который впадает ствол, собирающий лимфу с левой верхней половины тела.

Лимфа с правой половины верхней части тела собирается в другой крупный сосуд - правый лимфатический проток. Каждый из протоков впадает в общий ток крови у места слияния яремной и подключичной вен.

Внутри лимфатических сосудов, как и венах, имеются клапаны, облегчающие движение лимфы.

Ускорение лимфотока при мышечной работе является следствием увеличения площади капиллярной фильтрации, фильтрационного давления и объема интерстициальной жидкости. В этих условиях лимфатическая система, отводя избыток капиллярного фильтрата, непосредственно участвует в нормализации гидростатического давления в интерстициальном пространстве. Повышение транспортной функции лимфатической системы одновременно сопровождается стимуляцией и резорбционной функции. Увеличивается резорбция жидкости и плазменных белков из межклеточного пространства в корни лимфатической системы. Перемещение жидкости в направлении кровь - интерстициальная жидкость - лимфа наступает вследствие изменений в гемодинамике и повышения транспортной функции (способности) лимфатического русла. Выводя из тканей избыток жидкости, при перераспределении ее в пределах внеклеточного пространства, лимфатическая система создает условия для нормального осуществления транскапиллярного обмена и ослабляет действие быстрого увеличения объема интерстициальной жидкости на клетки, выступая в качестве своеобразного демпфера. Способность лимфатического русла как удалять, так и частично депонировать жидкость и белки, покидающие кровеносные капилляры, является важным механизмом ее участия в регуляции объема плазмы в условиях физических нагрузок.

К числу центральных механизмов, играющих большую роль в фазовых изменениях лимфотока при дозированной мышечной работе и в восстановительный период, относятся изменения в нейрогуморальном обеспечении мышечной деятельности и процессов лимфообращения, изменения функционального состояния органов, двигательной активности скелетной мускулатуры, параметров внешнего дыхания.

В настоящее время существует реальная возможность активного влияния на функциональное состояние лимфатической системы (Микусев Ю. Е.). К физическим лимфостимуляторам относятся:

Местные раздражающие средства (компрессы, горчичники, банки);

Средства лечебной физкультуры;

Методы восточной рефлексотерапии;

Электромагнитные поля;

Гипербарическая оксигенация.

Методы стимуляции лимфообразования и лимфообращения:

1. Лимфостимулирующие вещества. Вещества, оказывающие действие на гемодинамику:

A. Повышающие гидродинамическое давление крови и снижающие осмолярность плазмы (создающие водную нагрузку).

В. Способствующие в силу своей молярности притоку жидкости в сосудистую систему и этим самым повышению гидродинамического давления крови.

С. Оказывающие влияние на реологические свойства крови и лимфы.

2. Средства, оказывающие влияние на систему микролимфогемоциркулии:

А. Изменяющие проницаемость клеточных мембран.

В. Воздействующие на рецепторные структуры микрососудистого русла (? - миметики, ?-адреноблокаторы).

3. Препараты, воздействующие на центральное и промежуточное звенья регуляции общей и местной гемодинамики (вазомоторный центр и сердце).

4. Вещества, оказывающие воздействие на механизмы, производящие движение лимфы или ему способствующие.

Биологические методы лимфостимуляции:

Внутривенное капельное вливание аутокрови;

Внутривенное капельное вливание центральной аутолимфы;

Применение класса биоорганических соединений, выполняющих роль нейромедиаторов.

На верхней конечности лимфатические сосуды начинаются на тыльной и ладонной поверхностях пальцев поперечно лежащими стволиками. Последние, достигнув боковых поверхностей пальцев, собираются в более крупные стволы, поднимающиеся вертикально к ладони (рис. 5).

Рис. 5. Расположение лимфатической сети на верхних конечностях

Такое расположение лимфатических путей определяет методику поглаживания и растирания пальцев. Приемы массажа следует проводить следующим образом:

Под воздействием массажа происходит ускорение движения всех жидких сред организма, особенно крови и лимфы, причем происходит это не только на массируемом участке тела, но и в отдаленных венах и артериях. Так, например, массаж ног может вызвать покраснение кожных покровов головы.

Массажисту необходимо подробно ознакомиться с расположением сети лимфатических путей и с теми направлениями, по которым должен производиться массаж.

На ладонной и тыльной поверхностях - в поперечном направлении;

По боковой поверхности - прямо кверху.

Далее сосуды тыльной поверхности кисти идут главным образом по межкостным промежуткам и поднимаются на предплечье, а сосуды ладони направляются по радиусу от центра ладони к возвышениям большого пальца и мизинца. С ладони сосуды переходят на предплечье и плечо почти отвесно и достигают подмышечных узлов. С тыльной поверхности кисти лимфатические сосуды, огибая плечо, направляются также к этим узлам; при этом часть их огибает плечо спереди, а другая часть - сзади. В конечном итоге все сосуды верхней конечности проходят через один из подмышечных узлов и часть из них - также через локтевые узлы.

Следовательно, при массаже предплечья рука массажиста должна двигаться по направлению узлов, расположенных в локтевом сгибе, а при массаже плеча - по направлению узлов, расположенных в подмышечной впадине, и узлов, лежащих выше внутреннего мыщелка.

На нижней конечности, собираясь с тыльной и подошвенной сторон стопы, лимфатические сосуды поднимаются по обеим сторонам лодыжек; при этом во внутренней стороне бедра и голени сосуды идут прямо вверх к паховым узлам; сосуды, идущие по передней и наружной поверхности конечностей, достигают паховой складки, огибая бедро спереди; сосуды же, идущие по задней и внутренней поверхности, огибая бедро сзади, также достигают той же группы паховых узлов. Часть лимфатических сосудов проходит через два-три узла, расположенных в подколенной ямке (рис. 6)

Рис. 6. Расположение лимфатической сети на нижней конечности

В связи с указанным расположением лимфатических путей рука массажиста при проведении приемов массажа на мышцах голени направляется к узлам, расположенным в подколенной ямке, а на мышцах бедра - к узлам, лежащим под пупартовой связкой.

Две большие группы подмышечных и паховых узлов играют роль центров, в них впадают не только все лимфатические сосуды конечностей, но и сосуды общих покровов туловища.

Таким образом, на уровне поясничного отдела позвоночника имеется как бы лимфораздел: лимфа покровов верхней части туловища и вся лимфа верхних конечностей проходит через подмышечные узлы, а лимфа нижних конечностей и покровов, находящихся ниже поясничной линии, - через паховые узлы (рис. 7)

Рис. 7. Лимфатическая сеть на: а) передней поверхности туловища; б) задней поверхности туловища и направление массажных движений

Следовательно, направление движения рук массажиста при массаже мышц груди, верхней и средней частей спины - к подмышечным узлам соответствующей стороны. При массаже мышц пояснично-крестцовой области руки двигаются по направлению к паховым узлам.

На шее лимфатические сосуды лежат поверх грудино-ключично-сосцевидной мышцы и глубоко под ней. Из них образуется сплетение, которое сопровождает сонную артерию и яремную вену и вблизи нижнего конца этой вены образует один общий ствол, впадающий в верхний конец грудного протока.

При массаже головы и шеи движения руки массажиста направляются книзу (рис. 8).

Рис. 8. Лимфатическая сеть: а) боковой и задней поверхностей головы и шеи; б) лицевой области и волосистой части головы

1. Все движения при выполнении различных приемов массажа совершаются по ходу лимфатического тока по направлению к ближайшим лимфатическим узлам.

2. Верхние конечности массируют по направлению к локтевым и подмышечным узлам; нижние - по направлению к подколенным и паховым; грудь массируют от грудины в стороны, к подмышечным впадинам; спину - от позвоночного столба в стороны: к подмышечным впадинам при массаже верхней и средней области спины, к паховым - при массаже пояснично-крестцовой области; мышцы шеи массируют в направлении рук массажиста книзу, к подключичным узлам.

3. Массаж лимфатических узлов не производят.

Из книги Стоматология собак автора В. В. Фролов

Из книги Диабет. Мифы и реальность автора Иван Павлович Неумывакин

ЛИМФАТИЧЕСКАЯ СИСТЕМА Основной функцией лимфатической системы является всасывание вышедших из кровяного русла белков и других веществ, неспособных вновь вернуться в кровяное русло из-за их большой величины. От состояния лимфообращения во многом зависит поддержание

Из книги Варикозное расширение вен. Лечение и профилактика традиционными и нетрадиционными методами автора Светлана Филатова

Кровеносная и лимфатическая системы Позволим себе напомнить читателям об известных со школьной скамьи подробностях. Сосудистую систему нашего организма представляют разветвленные кровеносная и лимфатическая системы. Особое значение для жизнедеятельности организма

Из книги Странности нашего тела – 2 автора Стивен Джуан

Из книги Су Джок для всех автора Пак Чжэ Ву

Глава IV. Двойная система соответствия голове. Система "насекомого". Минисистема Двойная система соответствия головеНа пальцах кистей и стоп располагаются две системы соответствия голове: система "типа человека" и система "типа животного".Система "типа человека".Граница

автора Ирина Николаевна Макарова

Из книги Всё будет хорошо! автора Луиза Хей

Первый эмоциональный центр - костная система, суставы, кровообращение, иммунная система, кожа Здоровое состояние органов, связанных с первым эмоциональным центром, зависит от ощущения безопасности в этом мире. Если вы лишены поддержки семьи и друзей, которая вам

Из книги Латинская терминология в курсе анатомии человека автора Б. Г. Плитниченко

Лимфатическая система Грудной лимфатический проток - ductus thoracicusПоднижнечелюстные лимфатические узлы - nodi lymphatici submandibularesБронхолегочные лимфатические узлы - nodi lymphatici bronchopulmonalesПоясничные лимфатические узлы - nodi lymphatici lumbalesЛевые желудочные лимфатические узлы - nodi lymphatici

Из книги Массаж и лечебная физкультура автора Ирина Николаевна Макарова

Лимфатическая система Лимфатическая система тесно связана с кровообращением и включает в себя пути, проводящие лимфу (лимфатические сосуды) и органы, которые играют важнейшую роль в обеспечении иммунитета. Центральными органами лимфатической системы являются тимус и

Из книги Нормальная физиология автора Николай Александрович Агаджанян

Лимфатическая система Лимфатические сосуды – это дренажная система, по которой тканевая жидкость оттекает в кровеносное русло. Лимфатическая система человека начинается с замкнутых, в отличие от кровеносных, лимфатических капилляров, пронизывающих все ткани, за

Из книги Атлас профессионального массажа автора Виталий Александрович Епифанов

Лимфатическая система Лимфатическая система - сеть сосудов, пронизывающих органы и ткани, содержащие бесцветную жидкость - лимфу.Лишь структуры мозга, эпителиальный покров кожи и слизистые оболочки, хрящи, паренхима селезенки, глазного яблока и плаценты не содержат

Из книги Атлас: анатомия и физиология человека. Полное практическое пособие автора Елена Юрьевна Зигалова

Лимфатическая система Лимфатические капилляры, которые выполняют функцию всасывания из тканей коллоидных растворов белков, осуществляют вместе с венами дренаж тканей всасывание воды и растворенных в ней кристаллоидов, а также удаляют из тканей инородные частицы

Из книги Код Женщины автора Алиса Витти

Зона Женского кода № 4: отвечающая за выведение, – печень, толстый кишечник, лимфатическая система и кожа Хотя эти органы не производят гормоны, они необходимы для вывода гормонов, циркулирующих в вашем теле. Можете себе представить, что было бы, если бы гормоны,

Из книги Живые капилляры: Важнейший фактор здоровья! Методики Залманова, Ниши, Гогулан автора Иван Лапин

Система Ниши – еще одна система восстановления капилляров Залманов – не единственный человек, который пришел к мысли о важности капилляров. Японский инженер Кацудзо Ниши, последовав вслед за Залмановым, создал свою методику здоровья, основанную на работе с

Из книги Здоровый мужчина в вашем доме автора Елена Юрьевна Зигалова

Лимфатическая система Лимфатическая система – комплекс сосудов, которые переносят с лимфой из тканевой жидкости в кровеносное русло электролиты, воду, белки и т. д. Лимфатическая система состоит из разветвленных в органах и тканях лимфатических капилляров

Из книги Массаж. Уроки великого мастера автора Владимир Иванович Васичкин

Лимфатическая система Тесно связана с кровеносной. Снабжение тканей питательными веществами и кислородом из крови происходит через тканевую жидкость. 1/4 всей массы тела составляют тканевая жидкость и лимфа. Проникая в просвет лимфатических капилляров, тканевая

Кровообращение условно разделяют на центральное и периферическое.

Центральное кровообращение , осуществляясь на уровне сердца и крупных сосудов, обеспечивает:

  • поддержание системного давления крови;
  • направление движения крови из артериального русла в венозное и далее - в сердце;
  • демпфирование (амортизацию) систолических и диастолических колебаний артериального давления при выбросе крови из желудочков сердца для обеспечения равномерного кровотока.

Периферическое (регионарное) кровообращение осуществляется в сосудах органов и тканей. К нему относится кровообращение в сосудах микроциркуляторного русла, которое включает:

  • артериолы;
  • прекапилляры;
  • капилляры;
  • посткапилляры;
  • венулы:
  • артериоловенулярные шунты.

Микроциркуляторное русло обеспечивает доставку крови к тканям, транскапиллярный обмен субстратами метаболизма, кислородом. углекислым газом, а также транспорт крови от тканей. Артериоловенозные шунты определяют объем крови, притекающей к капиллярам. При закрытии этих шунтов кровь из артериол поступает в капилляры, а при открытии - в венулы, минуя капилляры.

Лимфатическая система структурно и функционально объединена с системой кровообращения и обеспечивает лимфообразующую, дренажную, барьерную, дезинтоксикационную, кровообразующую функции и включает:

  • лимфатические органы - лимфатические узлы, лимфатические фолликулы, миндалины, селезенку;
  • лимфатические транспортные пути - капилляры, микро- и макрососуды, синусы, которые имеют адренергическую иннервацию. общую с кровеносными сосудами.

Все компоненты системы кровообращения тесно связаны между собой , и расстройство деятельности одного из них, например центрального, приводит к изменениям и периферического, и микроциркуляторного кровообращения. С другой стороны, расстройства системы микроциркуляции могут стать причиной или усугублять нарушения функции сердца или крупных сосудов. При этом большую роль в патологии играет тесная интеграция кровеносной системы с лимфатической, которая по существу также составляет систему микроциркуляции. Лимфа образуется в лимфатических капиллярах из тканевой жидкости и по лимфатическим сосудам транспортируется в венозную систему. При этом 80-90 % тканевого фильтрата оттекает в венозное, а 10-20 % - в лимфатическое русло. Отток лимфы и венозной крови обеспечивается одними и теми же механизмами - присасывающим действием сердца, грудной клетки, диафрагмы и работой мышц.

ВИДЫ РАССТРОЙСТВ КРОВООБРАЩЕНИЯ

Выделяют нарушения центрального и периферического кровообращения.

Патология центрального кровообращения обусловлена главным образом нарушениями функций сердца или тока крови в крупных сосудах - аорте, нижней и верхней полых венах, легочном стволе, легочных венах. При этом возникает недостаточность кровообращения, которая сопровождается изменениями периферического кровообращения, в том числе и микроциркуляции. В результате органы и ткани не получают достаточного количества кислорода и других метаболитов, из них не удаляются токсичные продукты метаболизма. Причиной этих нарушений может быть либо нарушение функции сердца, либо снижение сосудистого тонуса-гипотония.

Патология периферического (регионарного) кровообращения, включая нарушения микроциркуляции, проявляются в трех основных формах:

  1. нарушения кровонаполнения (артериальное полнокровие и малокровие, венозное полнокровие);
  2. нарушения реологических свойств крови (тромбоз, эмболия, стаз, ДВС-синдром);
  3. нарушения проницаемости стенок сосудов (кровотечения, кровоизлияния, плазморрагия).

Полнокровие сосудов (гиперемия) может быть артериальным и венозным. Каждое из них в свою очередь может быть:

  • по течению - острым и хроническим;
  • по распространенности - местным и общим.

ПОЛНОКРОВИЕ

Артериальное полнокровие (гиперемия) обусловлено увеличением притока крови в систему микроциркуляции при нормальном ее оттоке по венам, что проявляется расширением артериол, повышением внутрисосудистого давления и местной температуры тканей.

Причиной общей артериальной гиперемии может быть увеличение объема циркулирующей крови (плетора) или количества эритроцитов (эритремия); местной артериальной гиперемии - различные физические (температурные), химические (щелочи, кислоты), биологические (инфекционной и неинфекционной природы) факторы, воспаление, а также нарушение иннервации (ангионевротическая гиперемия) и психогенные воздействия: например, слово может привести к артериальной гиперемии лица и шеи, проявляющейся «краской стыда или гнева».

Механизмы развития артериального полнокровия:

  • нейрогенный механизм связан с преобладанием парасимпатических эффектов на артериолы и капилляры над симпатическими влияниями, что наблюдается, например, при травме, сдавлении опухолью или воспалении регионарных парасимпатических ганглиев, а также симпатических ганглиев или нервных окончаний;
  • гуморальный механизм обусловлен увеличением либо уровня биологически активных веществ с сосудорасширяющим действием (кининов, простагландинов, серотонина), либо повышением чувствительности к ним стенок артериол (в частности, к ионам внеклеточного калия);
  • нейромиопаралитический механизм заключается в истощении запасов катехоламинов в симпатических нервных окончаниях или в снижении тонуса мышечных волокон в стенках артериол, что может быть вызвано длительным физическим воздействием (например, при применении грелок, горчичников, медицинских банок), изменениями барометрического давления и др.

Виды артериального полнокровия.

Физиологическая артериальная гиперемия возникает при интенсивном функционировании органа, например в работающих мышцах, беременной матке, в стенке желудка после приема пищи. Она обеспечивает усиленное поступление в ткани кислорода и питательных веществ и способствует удалению продуктов их распада.

Патологическая артериальная гиперемия не связана с усилением функции органа, развивается при воспалении, нарушениях иннервации органов, травмах тканей, эндокринных заболеваниях, значительном повышении артериального давления и др.

Рис. 14. Полнокровие сосудов. а - артериальная гиперемия; б - венозная гиперемия; расширение и переполнение кровью вен бедра и голени.

При этом стенки артериол могут разрываться и возникает кровотечение или кровоизлияние в ткани.

Признаки артериального полнокровии

При артериальной гиперемии увеличивается пульсация артерий, меняется микроциркуляторное русло - расширяются артериолы, раскрываются резервные капилляры, в них увеличивается скорость кровотока, повышается кровяное давление. Гиперемия хорошо видна на поверхности кожи (рис. 14, а).

При артериальной гиперемии отмечаются:

  • увеличение числа и диаметра артериальных сосудов;
  • покраснение органа ткани или их участков;
  • повышение температуры тканей в области их гиперемии;
  • увеличение объема и напряжения (тургора) органа или ткани в связи с увеличением их кровонаполнения;
  • увеличение лимфообразования и лимфооттока, что обусловлено повышением перфузионного давления в сосудах микроциркуляции.

Венозное полнокровие (гиперемия) обусловлено затруднением оттока крови по венам при нормальном ее притоке по артериям , что приводит к увеличению кровонаполнения органа или ткани. Причиной венозного полнокровия является препятствие оттоку

крови в результате закрытия просвета вены тромбом или эмболом. при сдавлении вен опухолью, рубцом, жгутом, при врожденном недоразвитии эластического каркаса стенок вен или их клапанного аппарата, а также при развитии сердечной недостаточности.

Признаки венозного полнокровия:

  • цианоз, т. е. синюшный оттенок слизистых оболочек, кожи, ногтей и органов из-за увеличения в них количества венозной крови, бедной кислородом;
  • снижение температуры тканей вследствие падения вних интенсивности обмена веществ;
  • отек тканей, развивающийся в результате гипоксии (кислородного голодания) тканей стенок сосудов микроциркуля-торного русла, повышения их проницаемости и выхода в окружающую ткань плазмы крови;
  • увеличение объема органов и тканей из-за скопления в них венозной крови и отека.

Местное венозное полнокровие имеет значение в патологии главным образом в связи с развивающимся при этом острым отеком тканей в том или ином регионе тела, а также с возможностью возникновения инфаркта селезенки при тромбозе селезеночной вены. При хроническом местном венозном (застойном) полнокровии в органе активизируется образование фибробласта-ми коллагена и в строме разрастается соединительная ткань - развивается органа.

Общее венозное полнокровие имеет большое значение в патологии, возникает при различных заболеваниях и может иметь тяжелые последствия.

Острое общее венозное полнокровие чаще развивается при острой сердечной недостаточности (острый инфаркт миокарда, острый миокардит), а также в атмосфере с низким содержанием кислорода (например, при разгерметизации кабины самолета, высоко в горах, при недостаточном поступлении кислорода из акваланга при подводных работах и т. п.). При этом в тканях быстро нарастают гипоксия и ацидоз (закисление). повышается сосудистая проницаемость, появляется и прогрессирует отек, часто сопровождающийся периваскулярными кровоизлияниями.

Хроническое общее венозное полнокровие обычно развивается при хронических заболеваниях сердца, заканчивающихся хронической сердечной недостаточностью (хроническая ишемическая болезнь сердца, пороки сердца, кардиомиопатии). Помимо всех тех изменений, которые характеризуют острую венозную гиперемию, при хроническом венозном полнокровии постепенно развиваются атрофия паренхимы органов и их стромы, в результате чего происходит уплотнение (индурация ) органов и тканей. Кроме того, хронический отек и плазморрагия вызывают перегрузку лимфатической системы и развитие ее недостаточности. Формируется капиллярнотрофическая недостаточность , которая характеризуется:

  • ом микрососудов, уменьшением их просветов и уменьшением количества капилляров , что обусловливает уменьшение кровотока по капиллярам, транскапиллярный обмен веществ и нарастание кислородного голодания;
  • преобразованием истинных капилляров в емкостные (депонирующие), в которых эритроциты располагаются не в один, а в несколько рядов, капилляры резко расширяются и превращаются в венулы, стенки их теряют тонус, что приводит к еще большему расширению капилляров и венул и усиливает венозную гиперемию. При этом количество истинных капилляров снижается, артериальная кровь попадает в венозную систему по коляатералям (обходным сосудам), что способствует нарастанию гипоксических и метаболических изменений в тканях.

Характерные изменения в органах и тканях, которые развиваются при хроническом общем венозном полнокровии.

  • В коже и подкожной клетчатке, особенно нижних конечностей, происходит расширение венозных сосудов, отек кожи и подкожной клетчатки (анасарка), атрофия кожи, застой лимфы в лимфатических сосудах (лимфостаз). На фоне хронического венозного полнокровия часто развиваются трофические язвы голеней и стоп (рис. 14, б).
  • В легких длительный венозный застой имеет особое значение в связи с тем, что он развивается при хронической сердечной недостаточности (см. главу 13). При этом в легочных венах, впадающих в левое предсердие, развивается застой крови, что способствует прогрессирующей гипоксии. При этом повышается проницаемость стенок сосудов и из венул и капилляров в окружающую ткань выходит сначала плазма крови, а затем и эритроциты. Последние захватываются макрофагами, в которых гемоглобин превращается в гемосидерин и ферритин, а макрофаги получают название сидерофагов. Часть макрофагов альвеол, загруженных гемосидерином, попадает в бронхи и вместе с мокротой выводится из организма. В мокроте они называются « клетками сердечных пороков «. Часть сидерофагов распадается в строме легких, чему способствует нарастающая недостаточность лимфатических сосудов, перегруженных отечной жидкостью, сидерофагами и гемосидерином. Постепенно развивается застой лимфы. Прогрессирующие гипоксия и застой лимфы являются стимулами для активизации системы фибробластов в ткани легких и интенсивного образования ими коллагена. Нарастает склероз легких, они становятся плотными, развивается их индурация (от лат. durum - плотный). При этом гемосидерин, образующий скопления в строме и в альвеолах и характеризующий местный гемосидероз, придает легким бурый цвет и развивается бурая индурация легких - необратимое состояние, значительно ухудшающее течение хронической сердечной недостаточности и общее состояние больного (рис. 15).

    Рис. 15. Хроническое венозное полнокровие легких (бурая индурация легких). Сосуды межальвеолярных перегородок расширены (а); в строме легкого и в просвете альвеол - сидерофаги (б); часть альвеол заполнена отечной жидкостью (в); межальвеолярные перегородки утолщены и склерозированы (г).

  • В печени хроническая венозная обычно также является следствием хронической сердечной недостаточности и декомпенсации сердца. При этом застой крови вначале происходит в нижней полой вене, затем в венах печени и в центральных венах печеночных долек. Центральные вены расширяются, через их стенки выходит плазма крови и эритроциты и в центре долек атрофируются гепатоциты. На периферии дольки гепатоциты подвергаются жировой дистрофии и ткань печени на разрезе становится пестрой, напоминающей мускатный орех - на желто-коричневом фоне отчетливо видны красные точки в центрах долек. Такая картина носит название « мускатной печени » (рис. 16).
  • Селезенка при венозном застое увеличивается в размерах (застойная спленомегалия), становится синюшной и плотной (цианотическая индурация селезенки ), на разрезе не дает соскоба пульпы, ее фолликулы атрофичны, а красная пульпа склерозирована.

МАЛОКРОВИЕ

Артериальное малокровие, или ишемия, - уменьшение кровенаполнения органа или ткани, обусловленное либо снижением притока к ним крови по артериям, либо значительным увеличением потребности тканей в кислороде и субстратах метаболизма, что приводит к несоответствию между потребностями тканей в кровоснабжении и возможностями артериального кровотока. В зависимости от причин и механизмов развития ишемии выделяют пять разновидностей артериального малокровия: ангиоспастическое, обтурационное, компрессионное, в результате острого перераспределения крови и дисфункциональное.

Рис. 16. Хроническое венозное полнокровие печени (мускатная печень). В центре долек центральные вены и синусоиды резко расширены, полнокровны (а), печеночные клетки атрофичны (б), в области кровоизлиянии (в) разрушены. По периферии долек печеночные балки сохранены (г), перисинусоидальные пространства расширены (д).

Ангиоспастическое малокровие обусловлено спазмом артерий вследствие увеличения содержания в тканях веществ, вызывающих спазм сосудов (например, ангиотензин, вазопрессин, катехоламины и т. п.), или повышением чувствительности к ним стенок артериол (при увеличении содержания в них ионов кальция или натрия), а также при преобладании симпатико-адреналовых влияний над парасимпатическими (стресс, стенокардия, аппендикулярная колика).

Обтурационное малокровие развивается при полном или частичном закрытии просвета артерии тромбом, эмболом (при остром малокровии) или атеросклеротической бляшкой (при хронической ишемии).

Компрессионное малокровие возникает при остром или хроническом сдавлении сосуда извне - жгутом, опухолью, отечной тканью и т. п.

Малокровие в результате острого перераспределения крови наблюдается при быстром притоке крови в ранее ишемизированные ткани. Например, при быстром удалении асцитической жидкости, сдавливавшей сосуды брюшной полости, в эту область устремляется кровь и возникает ишемия сосудов головного мозга.

Дисфункциональное малокровие является следствием значительного повышения тканями расхода кислорода и субстратов метаболизма при резкой интенсификации функции органа, например ишемия миокарда при внезапной интенсивной нагрузке на сердце (бег, поднятие тяжестей, тяжелая физическая работа), ишемия мышц голени у пожилых людей при быстрой ходьбе и т. п. Обычно этот вид ишемии возникает при сужении просвета снабжающей артерии атеросклеротической бляшкой.

По характеру течения ишемия может быть острой и хронической.

Признаки ишемии:

  • побледнение ткани и органа из-за снижения их кровенаполнения и числа функционирующих капилляров;
  • снижение пульсации артерий и уменьшение их диаметра в результате уменьшения их диастолического наполнения кровью и падения артериального давления:
  • понижение температуры ишемизированной ткани вследствие уменьшения притока теплой артериальной крови и снижения интенсивности метаболизма в ишемизированном регионе;
  • замедление тока крови по микрососудам вплоть до ее остановки;
  • снижение лимфообразования в результате падения перфузионного давления в сосудах микроциркуляции.

Последствия и значение ишемии.

Кислородное голодание тканей (гипоксия) является главным патогенным фактором ишемии. Развивающиеся при этом изменения связаны с продолжительностью и тяжестью гипоксии, чувствительностью к ней органов и наличием коллатерального кровообращения в ишемизированной ткани. Наиболее чувствительны к гипоксии головной мозг, почки и миокард, в меньшей степени - легкие и печень, в то время как соединительная, костная и хрящевая ткани отличаются максимальной устойчивостью к недостатку кислорода.

Ишемия способствует распаду в клетках макроэргических соединений - креатинфосфата и АТФ, что компенсаторно активизирует бескислородный (анаэробный) путь окисления и образования энергии - анаэробный гликолю. Следствием этого является накопление в тканях недоокисленных продуктов метаболизма, что приводит к ацидозу тканей, усилению перекисного окисления липидов, стимуляции гидролитических ферментов лизосом и в итоге - к распаду мембран клеток и внутриклеточных структур. Возникающий энергетический дефицит способствует, кроме того, накоплению в клетках ионов кальция, активизирующих ряд ферментов, которые также приводят клетки к гибели.

Функциональное состояние органа имеет большое значение при ишемии: чем интенсивнее он функционирует, тем больше нуждается в притоке артериальной крови и тем чувствительнее к малокровию.

Рис. 17. Схема развития коллатерального кровообращения и образования инфарктов (по Я. Л. Рапопорту). а - схема достаточных коллатералей: артерия (1) разделялся на три ветви, из которых одна (2) закупорена; питаемая ею область получает достаточное количество крови по коллатералям (3 и 4); б - схема концевых артфии: артерия (1) разделяется на три ветви, не имеющие артериальных соединении, а только капиллярные; закупорка одной ветви (2) лишает соответствующую часть капилляров (3) снабжения кровью (белый инфаркт); в - схема недостаточных коллатералей при геморрагическом инфаркте: Г - артерия, разделяющая на три ветви; Z - просвет средней артерии закупорен; 3 - окольный артериальный сосуд, по которому протекает кровь, заливающая участок, снабжаемый артерией (1), но недостаточный для питания тканей; 4 - вена.

Скорость развития ишемии играет решающую роль: если артериальное малокровие возникает остро, в тканях развиваются дистрофические и некротические изменения; если же ишемия носит хронический, медленно прогрессирующий характер, то в ишемизированных органах и тканях нарастают атрофические и склеротические процессы. При этом в тканях обычно успевают сформироваться коллатерали, снижающие степень гипоксии.

Коллатеральное кровообращение иногда приобретает определяющее значение в возможных исходах ишемии. Коллатеральное, или обходное, кровообращение представлено сетью мелких сосудов, соединяющих более крупные артерии и вены. Коллатеральные сосуды имеются в норме, но они находятся в спавшемся состоянии, так как потребности тканей в кровоснабжении обеспечиваются магистральными сосудами. Коллатерали начинают проводить кровь либо в условиях резко возросшей функции органа, либо при возникновении препятствия току крови по магистральному сосуду. В этих случаях раскрываются имеющиеся капилляры и начинают образовываться новые, от скорости их образования зависит уровень компенсации ишемии и ее исход. Однако в некоторых органах, таких как сердце, головной мозг, почки, коллатерали развиты слабо, поэтому при закрытии просвета магистральной артерии коллатеральное кровообращение часто не способно компенсировать ишемию и развивается некроз тканей этих органов. Вместе с тем в подкожной клетчатке, кишечнике и сальнике сеть коллатеральных сосудов в норме развита хорошо, что нередко позволяет этим органам и тканям справиться с ишемией. В остальных органах имеются коллатерали промежуточного типа, которые лишь частично позволяют компенсировать артериальное малокровие (рис. 17).

Значение ишемии заключается в снижении функций ишемизированных органов, которое, однако, может быть обратимым, если ишемия продолжалась относительно недолго и в тканях развились лишь обратимые дистрофические изменения. В случаях медленно нарастающей ишемии в организме успевают развиться компенсаторные иприспособительные процессы, позволяющие в какой-то степени восполнить функцию ишемизированного органа. Если же в ишемизированных органах развиваются некротические изменения с утратой их функций, то это может приводить к тяжелой инвалидности и смерти.

НАРУШЕНИЯ РЕОЛОГИЧЕСКИХ СВОЙСТВ КРОВИ

Эти нарушения проявляются такими патологическими процессами. как тромбоз, эмболия, стаз, сладж. ДВС-синдром.

Тромбоз - процесс прижизненного свертывания крови в просвете сосуда или в полостях сердца.

Свертывание крови является важнейшей физиологической реакцией, препятствующей смертельной потере крови при повреждениях сосудов, и если эта реакция отсутствует, развивается опасное для жизни заболевание - гемофилия. Вместе с тем при повышении свертываемости крови в просвете сосуда образуются свертки крови - тромбы, препятствующие кровотоку, что становится причиной тяжелых патологических процессов в организме, вплоть до наступления смерти. Наиболее часто тромбы развиваются у больных в послеоперационном периоде, у людей, находящихся на длительном постельном режиме, при хронической сердечно-сосудистой недостаточности, сопровождающейся общим венозным застоем, при атеросклерозе, злокачественных опухолях, у беременных, у старых людей.

Причины тромбоза делят на местные и общие:

  • Местные причины - повреждение стенки сосуда, начиная от слущивания эндотелия и заканчивая ее разрывом; замедление и нарушения кровотока в виде возникающих завихрений крови при наличии препятствия ее току, например атеросклеротической бляшки, варикозного расширения или аневризмы стенки сосуда.
  • Общие причины - нарушение соотношения между свертывающей и противосвертывающей системами крови в результате увеличения концентрации или активности свертывающих факторов - прокоагулянтов (тромбопластинов, тромбина, фибриногена и др.) либо снижения концентрации или активности антикоагулянтов (например, гепарина, фибринолитических веществ), а также повышения вязкости крови, например, всвязи с увеличением количества ее форменных элементов, особенно тромбоцитов и эритроцитов (при некоторых системных заболеваниях крови).

Стадии образования тромба.

Выделяют 4 стадии тромбообразования .

  • 1-я - стадия агглютинации тромбоцитов (сосудисто-тромбоцитарная), начинается уже при повреждении эндотелиоцитов интимы и характеризуется адгезией (прилипанием) тромбоцитов к обнаженной базальной мембране сосуда, чему способствует появление определенных факторов свертывания - фибронектина, фактора Виллебрандта и др. Из разрушающихся тромбоцитов выделяется тромбоксан А2 - фактор, суживающий просвет сосуда, замедляющий кровоток и способствующий выбросу тромбоцитами серотонина, гистамина и тромбоцитарного фактора роста. Под влиянием этих факторов запускается каскад свертывающих реакций, в том числе и образование тромбина , который вызывает развитие следующей стадии.
  • 2-я - стадия коагуляции (фибриногена (плазменная), характеризуется трансформацией фибриногена в нити фибрина, которые образуют рыхлый сверток и в нем (как в сети) задерживаются форменные элементы и компоненты плазмы крови с развитием последующих стадий.
  • 3-я - стадия агглютинации эритроцитов. Она связана с тем, что эритроциты должны передвигаться в потоке крови, а если они останавливаются, то склеиваются (агглютинируют ). При этом выделяются факторы, вызывающие ретракцию (сжатие) образовавшегося рыхлого тромба.
  • 4-я - стадия преципитации плазменных белков. В результате ретракции из образовавшегося сгустка отжимается жидкость, белки плазмы и белки из распавшихся форменных элементов крови подвергаются преципитации, сверток уплотняется и превращается в тромб, который закрывает дефект стенки сосуда или сердца, но может закрыть и весь просвет сосуда, прекратив тем самым кровоток.

Морфология тромба.

Взависимости от особенностей и скорости образования тромбы могут иметь различный состав, строение и внешний вид. Выделяют следующие виды тромбов:

  • белый mpoмб, состоящий из тромбоцитов, фибрина и лейкоцитов, образуется медленно при быстром кровотоке, обычно в артериях, между трабекулами эндокарда, на створках клапанов сердца;
  • красный тромб, в состав которого входят эритроциты, тромбоциты и фибрин, возникает быстро в сосудах с медленным током крови, обычно в венах;
  • смешанный mpoмб включает в себя тромбоциты, эритроциты, фибрин, лейкоциты и встречается в любых отделах кровеносного русла, в том числе в полостях сердца и в аневризмах артерий;
  • гиалиновые тромбы, состоящие из преципитированных белков плазмы и агглютинированных форменных элементов крови, образующих гомогенную, бесструктурную массу; они обычно множественные, формируются только в сосудах микроциркуляции при шоке, ожоговой болезни, ДВГ-синдроме, тяжелой интоксикации и т. п.

Структура тромба.

Макроскопически в тромбе определяется небольшая, тесно связанная со стенкой сосуда головка тромба , по строению соответствующая белому тромбу, тело — обычно смешанный тромб и рыхло прикрепленный к интиме хвост тромба, как правило, красный тромб. В области хвоста тромб может отрываться, что служит причиной тромбоэмболии.

По отношению к просвету сосуда выделяют:

  • пристеночные тромбы, обычно белые или смешанные, не закрывают целиком просвет сосуда, хвост их растет против тока крови;
  • обтурирующие тромбы, как правило, красные, полностью закрывающие просвет сосуда, хвост их чаще растет по току крови.

По течению выделяют:

  • локализованный (стационарный) тромб, который не увеличивается в размерах и подвергается замещению соединительной тканью — организации
  • прогрессирующий тромб, который увеличивается в размерах с различной скоростью, его длина иногда может достигать нескольких десятков сантиметров.

Исходы тромбоза принято подразделять на благоприятные и неблагоприятные.

К благоприятным исходам относят организацию тромба, которая начинается уже на 5-6-й день после его образования и заканчивается замещением тромботических масс соединительной тканью. В ряде случаев организация тромба сопровождается его канали зацией, т. е. образованием щелей, через которые в какой-то степени осуществляется кровоток, и васкуляризацией, когда образовавшиеся каналы покрываются эндотелием, превращаясь в сосуды, через которые частично восстанавливается кровоток, обычно через 5-6 нед после тромбоза. Возможно обызвествление тромбов (образование флеболипов).

Неблагоприятные исходы: тромбоэмболия , возникающая при отрыве тромба или его части, и септическое (гнойное) расплавление тромба при попадании в тромботические массы гноеродных бактерий.

Значение тромбоза определяется быстротой образования тромба, его локализацией и степенью сужения сосуда. Так, мелкие тромбы в венах малого таза сами по себе не вызывают каких-либо патологических изменений в тканях, но, оторвавшись, могут превратиться в тромбоэмболы. Пристеночные тромбы, незначительно суживающие просветы даже крупных сосудов, могут не нарушать в них гемодинамику и способствовать развитию коллатерального кровообращения. Обтурирующие тромбы артерий являются причиной ишемии, заканчивающейся инфарктом или гангреной органов. Тромбоз вен (флеботромбоз) нижних конечностей способствует развитию трофических язв голеней, кроме того, тромбы могут стать источником эмболии. Шаровидный тромб, образующийся при отрыве от эндокарда левого предсердия, периодически закрывая атриовентрикулярное отверстие, нарушает центральную гемодинамику, в связи с чем больной теряет сознание. Прогрессирующие септические тромбы, подвергающиеся гнойному расплавлению, могут способствовать генерализации гнойного процесса.

Эмболия - циркуляция в крови или лимфе не встречающихся в норме частиц (эмболов) и закупорка ими просвета сосудов (рис. 18).

По происхождению выделяют экзо- и эндогенные эмболии.

При экзогенных эмболиях эмболы попадают в сосудистое руло из окружающей среды. Различают воздушную, газовую эмболию и эмболию инородными телами.

Воздушная эмболия происходит при попадании воздуха через поврежденные крупные вены шеи (имеющие отрицательное давление по отношению к атмосферному), через зияющие после отторжения плаценты вены матки, при введении воздуха с лекарственными препаратами с помощью шприца или капельницы, при пневмотораксе (попадании воздуха в плевральные полости). Воздушные эмболы обтурируют капилляры легких, головного мозга; воздушные пузыри, скапливающиеся в правых отделах сердца, придают имеющейся в них крови пенистый вид.

Газовая эмболия развивается при быстрой декомпрессии (у водолазов при быстром подъеме с глубины, при разгерметизации кабины самолета, барокамеры), приводящей к высвобождению из крови азота. Газовые эмболы поражают различные органы, в том числе головной и спинной мозг, вызывая кессонную болезнь.

Эмболия инородными телами возникает при попадании в травмированные крупные сосуды частиц инородных предметов - медицинских катетеров, осколков ампул, кусочков одежды или осколков пуль и снарядов при огнестрельных ранениях.

При эндогенных эмболиях эмболами являются собственные ткани организма: тромбоэмболия, жировая, тканевая и микробная эмболия.

Тромбоэмболия развивается при отрыве тромба или его части и является наиболее частой эмболией. Ее источником могут быть тромбы любой локализации - артерий, вен. полостей и створок клапанов сердца. Самой распространенной является тромбоэмболия легочной артерии, возникающая обычно у больных в послеоперационном периоде, при варикозном расширении вен нижних конечностей, тромбофлебите или флеботромбозе у больных, страдающих сердечно-сосудистой недостаточностью, онкологическими заболеваниями.

Рис. 18. Схема направления движения эмболов (по Я. Л. Рапопорту). Из венозной системы эмболы заносятся в правую половину сердца, а оттуда в легочный ствол и легкие (область распространения эмболов из венозной сети заштрихована). Из левых отделов сердца эмболы заносятся по артериям в разные органы (указано стрелками).

При этом тромбоэмболы попадают в легочный ствол илилегочные артерии из вен нижних конечностей, жировой клетчатки малого таза, иногда из печеночных вен, нижней и верхней полых вен илиправых отделов сердца с пристеночными тромбами, что, как правило, заканчивается смертью. Механизм смерти связан с пульмоно-коронарным рефлексом который возникает при ударе тромбоэмбола в рефлексогенную зону, расположенную в интиме области разветвления легочного ствола. При этом остро возникает спазм сосудов сердца, легких, а также бронхов и наступает остановка сердца. Определенную роль играет и закрытие тромбоэмболом просвета легочного ствола. Мелкие тромбоэмболы могут проходить легочный ствол и обтурировать мелкие ветви легочной артерии, вызывая инфаркты легких. В случае массивной тромбоэмболии мелких ветвей легочных артерий может развиться острое падение артериального давления - коллапс. Оторвавшиеся тромбы створок клапанов или пристеночные тромбы эндокарда, образующиеся при эндокардитах, инфаркте миокарда, в хронической аневризме сердца, с током крови попадают по большому кругу кровообращения в различные органы, вызывая тромбоэмболический синдром.

Жировая эмболия возникает при переломах трубчатых костей, размозжении подкожной жировой клетчатки при травмах, при ошибочном введении в кровяное русло масляных лекарственных растворов. Жировые эмболы закупоривают мелкие ветви легочных артерий, причем если обтурировано больше 2 / 3 этих сосудов, то может развиться острая правожелудочковая недостаточность, что, однако, бывает очень редко. Чаще жировая эмболия легких вызывает пневмонию в пораженных участках.

Тканевая эмболия является результатом разрушения тканей при заболеваниях и травмах, например эмболия опухолевыми клетками, лежащая в основе формирования метастазов опухоли, эмболия околоплодными водами у родильниц, разрушенными тканями у новорожденных с тяжелыми родовыми травмами.

По механизму распространения выделяют эмболии большого ималого круга кровообращения, орто- и ретроградную, парадоксальную (рис. 18).

Эмболии большого круга кровообращения - эмбол из левых отделов сердца, аорты или других крупных артерий, перемещаясь по току крови, обтурирует органные артерии, в результате чего в этих органах возникают инфаркты или гангрена. Эмболы, образующиеся в венах большого круга кровообращения, по току крови обтурируют либо воротную вену, либо попадают в правые отделы сердца и оттуда - в малый круг кровообращения.

При эмболии малого круга кровообращения эмбол из правых отделов сердца проходит в малый круг кровообращения, вызывая либо эмболию легочного ствола, ведущую к остановке сердца, либо инфаркты легких.

При ортоградной эмболии эмбол перемещается по току крови или лимфы - наиболее частый вид эмболии.

Ретроградная эмболт характеризуется движением эмбола против тока или лимфы и возникает обычно при эмболии тяжелыми инородными телами или при ретроградном лимфогенном метастазировании рака желудка.

Парадоксальная эмболия развивается при проникновении эмбола из венозного отдела большого круга кровообращения в артериальный отдел, минуя легкие. Это редкий вид эмболии, которая наблюдается при незаращении межжелудочковой или межпредсердной перегородки в сердце (например, при незаращении овального окна), при артериовенозных анастомозах, прежде всего при открытом артериальном (боталловом) протоке или при травматическом образовании артериовенозного соустья.

Значение эмболии определяется ее видом, распространенностью и локализацией. Особенно опасны эмболии головного мозга, сердца, легочного ствола, часто заканчивающиеся смертью больного, тогда как поражение почек, печени, селезенки, скелетных мышц имеет меньшее значение. Однако в любом случае эмболия кровеносных сосудов приводит к нарушению кровообращения в тканях, вызывает их ишемию и некроз. Эмболия лимфатических сосудов, особенно нижних конечностей, может приводить к лимфатическому отеку тканей, их склерозу и снижению функции органа, например значительное увеличение размеров нижней конечности при слоновости.

НАРУШЕНИЯ МИКРОЦИРКУЛЯЦИИ

Причины расстройств микроциркуляции:

  • нарушения центрального и регионарного кровообращения -
  • развиваются при сердечной недостаточности, артериальной и венозной гиперемии, при ишемии;
  • изменения вязкости и объема крови (лимфы) - наблюдаются при уменьшении объема жидкости в плазме (гипогидратация), увеличении количества форменных элементов (полицитемия) или белков плазмы, агрегации и агглютинации клеток крови;
  • гемодилюция, или разжижение крови, - возникает в результате значительного поступления тканевой жидкости в кровь (гипергидратация), снижения общего числа форменных элементов крови (панцитопения), уменьшения содержания белков плазмы (гипопротеинемия).

По локализации первично возникающих нарушений расстройства микроциркуляции разделяют на внутрисосудистые, трансмуральные ивнесосудистые.

Внутрисосудистые нарушения ликроциркуляции проявляются следующим образом:

  • замедление, вплоть до прекращения (стаза), тока крови или лимфы наиболее часто возникает при сердечной недостаточности, ишемии, венозной гиперемии, сгущении крови (при профузном поносе, неукротимой рвоте, ожоговой болезни и т. п.):
  • чрезмерное ускорение кровотока наблюдается при артерио-ловенулярных шунтах, гемодилюции, почечной недостаточности;
  • нарушение ламинарности (турбулентность) тока крови или лимфы возникает при образовании препятствия микроциркуляции в виде образования агрегатов из клеток крови (при по-лицитемии), формировании микротромбов, атипичном строении микрососудистого русла (капиллярная гемангиома).

Транс муральные нарушения микроциркуляции связаны с изменениями в самой стенке микрососудов, через которую в норме проходит плазма крови и ее форменные элементы, поступают продукты метаболизма и регулирующие обмен веществ биологически активные вещества. В патологии наиболее существенную роль играют две группы нарушений трансмуральной микроциркуляции:

  • изменение объема транспорта плазмы (лимфы), который может возрастать (при артериальной гиперемии, аллергических реакциях, лимфостазе) или уменьшаться (при спазме артериол, кальцификации стенок микрососудов);
  • увеличение транспорта клеток крови через стенки микрососудов, что может быть при значительном повышении их проницаемости (например, при гипоксии) или при нарушении целостности (эритроцитов).

Внесосудистые нарушения микроциркуляции заключаются в замедлении вплоть до прекращения тока межклеточной жидкости и обусловлены изменениями влияний на микроциркуляцию внесосудистых факторов, например нервно-трофической регуляции метаболизма, появлением в окружающих тканях медиаторов воспаления (гистамин, серотонин и др.), которые резко усиливают микровезикулярный транспорт, но могут и способствовать тромбированию сосудов микроциркуляции; при скоплении в интерстициальной ткани жидкости, например, транссудата при отеках или экссудата при воспалении, повышается давление тканевой жидкости и она сдавливает сосуды микроциркуляции.

НАРУШЕНИЯ МИКРОЦИРКУЛЯЦИИ

Нарушения микроциркуляции, имеющие нередко самостоятельное клиническое значение и возникающие при многих заболеваниях, - сладж-феномен, стаз, ДВС-синдром.

СЛАДЖ-ФЕНОМЕН

Сладж-феномен (от англ. sludge - тина, густая грязь) характеризуется адгезией и агрегацией форменных элементов крови, прежде всего эритроцитов, что вызывает значительные гемодинамические нарушения. Клетки в состоянии сладжа имеют вид «монетных столбиков», сохраняя при этом свои цитомембраны (рис. 19).

Рис. 19. Агрегация эритроцитов как проявление сладж-феномена. В просвете капилляра несклеиваюшиеся эритроциты (Эр) в виде монетного столбика.

Причишит сладжа являются нарушения центральной и регионарной гемодинамики, повышение вязкости крови и повреждение стенок микрососудов (см. выше). В основе сладж-феномена лежат следующие механизмы:

  • активация клеток крови и выделение ими веществ, способствующих агрегации эритроцитов. - АДФ. тромбоксана А2. кининов, гистамина, простагландинов и др.;
  • смена поверхностного заряда клеток крови с отрицательного на положительный в результате избытка катионов, поступающих из поврежденных клеток;
  • уменьшение величины поверхностного заряда мембран клеток крови при избытке макромолекул белка (гиперпротеинемии), особенно за счет увеличения концентрации иммуноглобулинов, фибриногена, аномальных белков.

Рис. 20. Стаз в капиллярах мозга (при малярии). Капилляры резко расширены, в их просветах склеившиеся эритроциты и пигмент гемомеланин. Ткань мозга отечна.

Последствия сладжа

  • замедление кровотока в микроциркуляторном русле, вплоть до его остановки;
  • нарушения транскапиллярного обмена;
  • гипоксия, ацидоз и нарушение метаболизма окружающих тканей.

Значение сладжа.

Изменения, сопровождающие сладж-феномен, приводят к повышению проницаемости стенок капилляров и венул, пропитыванию их плазмой крови (плазморрагия), отеку и нарастающей ишемии окружающих тканей. В целом, совокупность указанных изменений обозначается как синдром капилляро-трофической недостаточности. Сладж может быть обратимым, и тогда постепенно восстанавливается микроциркуляция, но сладж может предшествовать полной остановке крови (стазу), а также агглютинации и распаду форменных элементов крови в «монетных столбиках» с образованием в капиллярах гиалиновых тромбов.

СТАЗ

Стаз - остановка кровотока в сосудах микроциркуляторного русла, прежде всего в капиллярах, реже - в венулах (рис. 20). Остановке крови предшествует ее замедление - престаз,вплоть до развития сладж-феномена.

Причинами стаза являются инфекции, интоксикации, шок, длительное искусственное кровообращение, воздействие физических, в том числе температурных, факторов (например, «холодовый стаз» при отморожениях).

Механизмы стаза во многом схожи с механизмами сладж-феномена:

  • утрата эритроцитами способности находиться во взвешенном состоянии и образование их агрегатов, что затрудняет ток крови по микрососудам и вызывает остановку кровотока в капиллярах:
  • изменения реологических свойств крови, аналогичных тем, которые возникают при сладж-феномене;
  • гипоксия, ацидоз, нарушения и прекращение метаболизма;
  • дистрофические или некротические изменения окружающих тканей в зависимости от длительности стаза крови.

Исход стаза. После устранения причины, вызвавшей стаз, кровоток в сосудах микроциркуляторного русла может восстановиться. а в окружающих тканях какое-то время сохраняются дистрофические изменения, которые, однако, в этих условиях также обратимы. Если же стаз капилляров устойчив, то гипоксия в окружающих тканях приводит к их некрозу.

Значение стаза определяется его локализацией и продолжительностью. Острый стаз в большинстве случаев приводит к обратимым изменениям в тканях, но в головном мозге он может способствовать развитию тяжелого, иногда смертельного отека ткани мозга с дислокацией его стволовой части в большое затылочное отверстие, что наблюдается, например, при коме. В случаях длительного стаза возникают множественные микронекрозы и иные кровоизлияния.

СИНДРОМ ДИССЕМИНИРОВАННОГО ВНУТРИСОСУДИСТОГО СВЕРТЫВАНИЯ КРОВИ (ДВС-СИНДРОМ)

Синдром диссеминированного внутрисосудистого свертывания крови (ДВС-синдром) характеризуется образованием множественных тромбов в сосудах микроциркуляторного русла различных органов и тканей вследствие активации факторов свертывания крови и развивающимся в связи с этим их дефицитом, что приводит к усилению фибринолиза. падению свертываемости крови и многочисленным кровоизлияниям. ДВС-синдром часто развивается при шоке любого происхождения (травматическом, анафилактическом, геморрагическом, кардиальном и др.), при переливании несовместимой крови, злокачественных опухолях, после хирургических вмешательств, при тяжелой интоксикации и инфекции, в акушерской патологии, при трансплантации органов, использовании аппаратов искусственной почки и искусственного кровообращения и др.

В своем развитии ДВС-синдром проходит 4 стадии.

  • 1-я стадия - гиперкоагуляции и тромбообразования - характеризуется внутрисосудистой агрегацией форменных элементов, диссеминированным (т. е. во многих микрососудах одновременно) свертыванием крови и формированием множественных тромбов в микрососудах разных органов и тканей. Эта стадия длится всего 8-10 мин.
  • 2-я стадия - нарастающая коагулопатия потребления , особенностью которой является значительное снижение числа тромбоцитов и уровня фибриногена, израсходованных на образование тромбов в предыдущей стадии. Поэтому свертываемость крови снижается и в результате развивается геморрагический диатез, т. е. множественные мелкие кровоизлияния.
  • 3-я стадия - глубокой гипокоагуляции и активации фибринолиза , которая наступает через 2-8 ч от начала ДВС-синдрома. Название стадии говорит о том, что в этом периоде практически прекращаются процессы свертывания крови вследствие истощения всех свертывающих факторов и одновременно резко активизируются процессы фибринолиза (т. е. растворения фибрина, тромбов). Поэтому возникает полная несвертываемость крови, развиваются кровотечения и множественные кровоизлияния.
  • 4-я стадия - восстановительная, или остаточных проявлений , заключается в дистрофических, некротических и геморрагических изменениях тканей многих органов. При этом примерно в 50 % случаев может наступить полиорганная недостаточность (почечная, печеночная, надпочечниковая, легочная, сердечная), приводящая больных к смерти. При благоприятном исходе заболевания наступает восстановление поврежденных тканей и восстанавливаются функции органов.

В зависимости от распространенности выделяют варианты ДВС-синдрома: генерализованный и местный.

В зависимости от продолжительности ДВС-синдрома выделяют следующие формы:

  • острую (от нескольких часов до нескольких суток), протекающую наиболее тяжело, развивается при шоке, характеризуется генерализованным некротическим и геморрагическим поражением органов с развитием полиорганной недостаточности;
  • подострую (от нескольких дней до недели), развивается чаще при поздних гестозах, лейкозах, злокачественных опухолях. характеризуется локальными или мозаичными тромбогеморрагическими повреждениями тканей;
  • хроническую (несколько недель и даже месяцев), которая чаще развивается при аутоиммунных заболеваниях, длительной интоксикации, при злокачественных опухолях: у больных отмечаются обычно локальные или мигрирующие изменения в органах с развитием их медленно прогрессирующей недостаточности.

Патологическая анатомия ДВС-синдрома заключается в образовании в капиллярах и венулах множественных микротромбов, как правило, состоящих из фибрина, стаза в капиллярах, кровоизлияний, дистрофических и некротических изменений в различных органах.

НАРУШЕНИЯ ПРОНИЦАЕМОСТИ СТЕНОК СОСУДОВ

При повреждении стенок сосудов или полостей сердца, а также при повышении сосудистой проницаемости вытекает содержащаяся в сосудах или в сердце кровь. Исходя из особенностей и последствий кровопотери выделяют кровотечение и кровоизлияние.

Кровотечение (haemorrhagia) - выход крови за пределы сосудистого русла или сердца в окружающую среду (наружное кровотечение) ,а также в полости тела или в просвет полого органа (внутреннее кровотечение) . Примером наружного кровотечения являются кровотечение из полости матки (метроррагия ), из кишечника (мелена) , кровотечения при травмах конечностей или тканей поверхности тела. Внутренними являются кровотечения в полость перикарда (гемоперикард) , в полости грудной клетки (гемоторакс) , в брюшную полость (гемоперитонеум) .

По источнику кровотечения выделяют:

  • артериальное;
  • венозное;
  • артериально-венозное (смешанное);
  • капиллярное;
  • паренхиматозное кровотечение (капиллярное из паренхиматозных органов);
  • сердечное кровотечение.

Кровоизлияние - частный вид кровотечения, при котором вышедшая из сосудов кровь накапливается в окружающих тканях. Выделяют 4 разновидности кровоизлияния:


Механизмы развития кровотечений и кровоизлияний:

  • разрыв сосуда или стенки сердца (haemorrhagia per rexin) при травме, некрозе (инфаркте), аневризме;
  • разъедание стенки сосуда (haemorrhagia per diabrosin), что происходит при воспалении ткани или при злокачественном росте, например в дне язвы желудка или в опухоли, при прорастании ворсинами хориона сосудов маточной трубы при внематочной беременности и др.;
  • диапедез (haemorrhagia per diapedesin, от греч. dia - через, pedao - скачу) характеризуется выходом крови из сосуда в результате повышения проницаемости его стенки без нарушения ее целостности. Это один из наиболее частых механизмов кровоизлияния наблюдается при гипоксии, интоксикациях, инфекциях, различных коагулопатиях, геморрагических диатезах, при гипертоническом кризе, гемофилии и др. (рис. 21).

Исход кровоизлияния может быть благоприятным когда излившаяся кровь рассасывается, как, например, при кровоподтеке, или организовывается, что бывает при гематомах, но может быть и неблагоприятным, если кровоизлияние происходит в жизненно важные органы - головной мозг, надпочечники. В этом случае больной может погибнуть или становится инвалидом.

Значение кровотечения обусловлено его видом, выраженностью и продолжительностью. Так, больной может погибнуть при небольшом кровоизлиянии в область ствола головного мозга и при острой массивной артериальной кровопотере. Вместе с тем повторяющиеся в течение длительного времени, но небольшие кровотечения, например при геморрое или из язвы желудка, обусловливают лишь развитие постгеморрагической анемии, сопровождающейся жировой дистрофией паренхиматозных органов. Большое значение имеет скорость кровотечения - быстрая кровопотеря даже относительно небольших объемов крови (300- 350 мл) приводит больного к смерти, в то время как потеря значительно больших объемов крови, но на протяжении длительного времени (маточные или геморроидальные кровотечения) не вызывает тяжелых осложнений, так как в организме успевают развиться компенсаторные процессы.

НАРУШЕНИЯ ЛИМФООБРАЩЕНИЯ

Патологические изменения функций лимфатической системы тесно связаны с нарушениями кровообращения и усугубляют возникающие при этом изменения в тканях. Среди нарушений лимфообращения основную роль играют лимфатическая недостаточность и лимфостаз.

ЛИМФАТИЧЕСКАЯ НЕДОСТАТОЧНОСТЬ

Лимфатическая недостаточность - состояние при котором интенсивность образования лимфы превышает способность лимфатических сосудов транспортировать ее в венозную систему. Выделяют следующие виды недостаточности лимфатической системы: механическую, динамическую и резорбционную.

При механической недостаточности возникает органическое или функциональное препятствие току лимфы, что происходит при закупорке лимфатических сосудов опухолевыми клетками, сидерофагами, сдавлении лимфатических путей опухолью, а также при венозном застое.

Динамическая недостаточность наблюдается при несоответствии между количеством тканевой жидкости и возможностями лимфатических путей для ее отведения, что имеет место при значительном повышении проницаемости кровеносных сосудов в связи с воспалением, аллергическими реакциями, при выраженных отеках тканей.

Резорбционная недостаточность обусловлена уменьшением проницаемости стенок лимфатических капилляров или изменением дисперсных свойств тканевых белков.

Лимфостаз - остановка тока лимфы, что происходит при недостаточности лимфатической системы вне зависимости от механизма ее развития. Выделяют общий и регионарный лимфостаз.

Общий лимфостаз возникает при общем венозном застое, так как при этом уменьшается перепад давления между кровью и лимфой - один из главных факторов, определяющих отток лимфы из лимфатических сосудов в венозную систему.

Регионарный лимфостаз развивается при местной венозной гиперемии, при закупорке регионарных лимфатических сосудов или при сдавлении их опухолью.

Последствием лимфостаза является лимфатический отек - лимфедема. Длительный застой лимфы способствует активации фибробластов и разрастанию соединительной ткани, что приводит к склерозу органов. Лимфатический отек и склероз тканей вызывают стойкое увеличение объема органа либо той или иной части тела - нижних конечностей, половых органов и др., и развивается заболевание, которое называется слоновостью.

Лимфатическая система, которая на латыни называется systema lymphatica , в организме человека выполняет важные функции и отвечает за поддержание иммунитета. Эта важнейшая часть сосудистой системы людей имеет четкую структуру. Главной функцией systema lymphatica является очищение клеток и тканей организма. Каждый лимфоузел выполняет функции биологического фильтра.

Что такое лимфатическая система

Весь человеческий организм охватывает система лимфоузлов и сосудов, которая обеспечивает работу иммунитета. Лимфосистема уносит из межклеточного пространства тканевую жидкость.Такая структура является не менее значимой частью сосудистого кровообращения, чем венозная, артериальная системы. Работа systema lymphatica явно не видна.


Очень редко встречается истечение лимфы через кожу, но люди всегда замечают результаты работы лимфосистемы. Однако немногие понимают сущность такого процесса. Это комплексная незамкнутая структура. Она не имеет центрального насоса, поэтому отличается от кровеносной системы. Лимфосистема представляет собой целый комплекс маленьких и больших лимфатических сосудов — стволов и протоков, которыми пронизан весь организм человека.

По ним лимфа оттекает от областей тела в конечные участки вен. Около 460 сгруппированных либо одиночных лимфоузлов в разных участках организма по ходу лимфатических сосудов имеется в человеческом организме. Группы лимфоузлов работают постоянно. Они находятся рядом с венами и артериями. Такое количество лимфоузлов достаточно для того, чтобы человеческий организм мог чувствовать себя здоровым. Эти сосуды связаны между собой лимфоузлами.


Мелкие и крупные сосуды сгруппированы. Это группы с различными лимфоузлами. Они направляются к лимфатическим узлам (лат. nodi lymphatici), имеющим размеры от крупного семени фасоли до просяного зернышка. Выделяют 150 региональных групп лимфоузлов, связанных между собой сосудами. Каждый узел отвечает за определенный участок тела. Вес всех лимфоузлов составляет 1% от веса тела, достигает 1 кг. Лимфоциты, необходимые для борьбы с инфекцией, вырабатываются в лимфоузлах.

Лимфатические капилляры составляют основу этой системы. Они находятся везде. Эти тонкие капилляры собирают в организме жидкость, которая там находится. В такой биологической жидкости содержатся различные полезные и вредные токсические вещества. Эти токсины (лат.Toxicum) отравляют наш организм, поэтому лимфатическая система собирает в организме эти вещества.

Лимфа — жидкая ткань организма

Лимфа, которая постоянно отфильтровывается в лимфоузлах, содержит очень много лейкоцитов. Это активные белые кровяные клетки: макрофаги, В-лимфоциты, Т-клетки (лат. Thymus). Такие лейкоциты имеют свойство поглощать различных микробов. Они должны найти возбудителей инфекции, уничтожить их токсины.

Тромбоциты и эритроциты отсутствуют в лимфе. Она постоянно образуется путем фильтрации плазмы крови. Такая бесцветная жидкость всегда циркулирует в этой системе. В организме взрослого циркулирует до 2 л этой прозрачной биологической жидкости. Lympha медленно движется под небольшим давлением. Лимфа всегда течет снизу вверх. Эта биологическая жидкость медленно несет тканевую жидкость от пальцев нижних конечностей до грудного лимфатического протока. Только в таком направлении lympha может собирать все лишнее в организме и выводить наружу.

Лимфатические капилляры имеют специальные клапаны, которые препятствуют обратному току лимфы. Lympha занимается очищением крови в организме людей. Однако иногда эти клапаны у человека разрушаются, и ток лимфы замедляется. При инфекционном процессе на кисти воспаляются локтевые лимфоузлы. В этих ситуациях возникает отечность конечностей.

Это свидетельствует о повреждении лимфатических сосудов. Как происходит движение лимфы? Процессы микроциркуляции определяют объем и скорость лимфообразования. Когда имеется ожирение, или человек долго сидит, движение лимфы является минимальным, поскольку практически отсутствуют активные физические движения. Если человек энергично двигается, мышцы активно сокращаются. Лимфа перекачивается в следующий лимфангион.

Значение лимфатической системы

Структура лимфосистемы

Каково расположение лимфоузлов? Структуры systema lymphatica не способны выводить шлаки, яды через кожный покров. В нашем организме имеются такие органы со слизистой оболочкой. Группа лимфоузлов выбрасывает эти токсины в определенный участок, чтобы вывести яды через слизистые. Поскольку systema lymphatica работает снизу вверх, первой областью лимфатической эвакуации являются слизистые оболочки мужчин и женщин.

Функционирование

Лимфоузлы в брюшной полости


Пациенты обращаются с жалобами на появление каких-то патологических выделений. Лимфоциты очищают влагалище, уретру, мужские гениталии. Бедренный треугольник состоит из . Уничтожение микробов сопровождается воспалением. Сдавливаются глубокие лимфоузлы, болит бедро. Когда токсины выйдут наружу, организм будет чистым.

Вторая область эвакуации ядов — кишечник. В животе во множестве находятся лимфоузлы. Если при неправильном питании организм отравляется, лимфоузлы выводят токсины через лимфоузлы, расположенные в кишечнике. В грудной клетке и полости живота расположена группа парааортального лимфоузла. Если при диарее начать пить закрепляющие препараты, эти токсины останутся в пораженном организме.


потовые железы

Потовые железы — другая зона эвакуации токсинов. Особенно много их в подмышечных впадинах. Человек должен потеть. Однако многие люди для борьбы с обильной потливостью активно используют антиперспиранты, которые закрывают потовые железы. Все яды остаются в этой зоне. В тяжелых случаях приходится обращаться к хирургу. Если увеличиваются лимфоузлы на ключице, это может быть признаком опухоли.

Носоглотка, ротовая полость

Нос, носовая полость — важная область эвакуации toxicum. Через нос выводятся возбудители, которые проникли воздушно-капельным путем. Если человек лечится самостоятельно, зачастую используются сосудосуживающие капли. Вместо того, чтобы удалить патологическое содержимое, больной оставляет микробов в организме. Признаком поражения системы являются симптомы гайморита.

В носоглотке есть специальная лимфоидная ткань, которая захватывает микробов. Стафилококковая инфекция всегда выходит через носовую полость. Если не удается быстро справиться с воздушно-капельной инфекцией, аденоиды увеличиваются. Лимфатические узлы носа набухают. Если удаляются эти необходимые органы, возможности организма бороться с инфекцией уменьшаются.

Сбор лимфы в области рта, зубов, языка осуществляется подбородочными лимфоузлами. Лимфаденит — это воспаление лимфоузлов лица. Частью systema lymphatica являются слюнные железы. Вместе с ротовой жидкостью в пищеварительный тракт выносятся токсины и яды для удаления из организма. При поражении челюстных лимфоузлов сильно болит нижняя челюсть. Важно делать глотательные движения. Это стимулирует выработку слюны.


воспаление небных миндалин

Небные миндалины стоят на страже, защищая организм. Это место, через которое организм может вывести все плохое. Через миндалины всегда выводится стрептококк. Организм ведет борьбу, поэтому возникают ангина, ревматизм. Но если человек нарушает законы здоровой жизни, небные миндалины постоянно воспалены.

При поражении лимфоузлов на лице болит подбородок. Развивается тонзиллит, небные миндалины не справляются со своей работой. Воспаленные подчелюстные лимфоузлы получают инфекцию от лимфоузла лица. В случае тонзиллэктомии без крайней надобности исчезает еще один барьер, который охранял здоровье человека.


Гортань — следующий барьер на пути инфекции. Если лимфосистема нашла микробов и выводит их через гортань, развивается ларингит. В районе уха зачастую воспаляются лимфоузлы лица. Следующий плацдарм для эвакуации ядов и микробов — трахея. С обеих сторон трахеи расположены лимфоузлы. Лимфоциты выходят из лимфоузлов. Когда организм пытается таким путем вывести токсины, развивается трахеит. Из брюшной полости по грудному протоку получает лимфу надключичный лимфоузел Вирхова.

Бронхи и легкие

Следующий выводной путь systema lymphatica — бронхи. Это значимый компонент иммунной системы. Прохождение инфекции дальше блокируют лимфоузлы с помощью лимфы трахеи. Через ближайшие органы выделяется грибок. Грибковые бронхиты начинаются, если возбудителем поражено все тело. Если при бронхите принимать таблетки от кашля, из бронхов не выходит слизь. Болезнь затягивается, состояние больного ухудшается. В результате оседания микобактерий нередко развивается воспаление ВГЛУ — внутригрудных лимфатических узлов.


Легкие — важнейшая область эвакуации различного мусора из организма. Лимфатические капилляры в легких зачастую принимают на себя первый удар инфекции. Их называют бронхопульмональными лимфоузлами. Через глубокое и пoвeрxнoстнoe сплeтeния легких происходит очищение органа дыхания. Опасная бактерия попадает в зону лимфоузлов. Здесь происходит ее уничтожение. При туберкулезе внутригрудные лимфатические узлы вовлекаются в патологический процесс.

Шейная группа лимфоузлов нейтрализует микробов, поступающих в организм через верхние дыхательные пути и рот. Увеличение лимфоузлов шеи может свидетельствовать о напряженной работе systema lymphatica. Неработающие лимфоузлы лица нередко вызывают сильные мышечные блоки, поскольку затруднен ток лимфы. На любые изменения в организме чутко реагирует подъязычный лимфоузел.

Лимфатическая система. Видео

Осложнения работы лимфы

Если лимфосистема перегружена, а в организм попадает новая инфекция, возникают проблемы. Systema lymphatica отдает мусор в кожу, потому что система забита другими токсинами. Рак молочной железы может спровоцировать метастазы в подключичные лимфоузлы. Через кожу организм пытается вывести грибок. Однако плотный эпидермис не пропускает наружу вредные вещества. Возникают экзема, псориаз, нейродермит. Это не болезни, а болезненное состояние, проявление проблем с перегруженной лимфатической системой. Необходимо чистить организм.


очищение организма

Плохая экология, неправильный образ жизни, некачественная пища вредят здоровью каждого человека. После 30- летнего рубежа жидкости организма многих людей сильно загрязнены. В жировых клетках, тканях может находиться множество всевозможных токсинов, микроорганизмов, вредных веществ, которые ослабляют иммунитет.

И в заключение

Одной из самых важных и сложных систем в человеческом организме является systema lymphatica. Лимфатическая система работает независимо от нашего мышления. Движение лимфы обеспечивается посредством различных мышц. Lympha способна полноценно функционировать только при условии физической активности человека. После долгого сидячего положения важно активно двигаться. При этом запускается нормальный лимфоток. В результате лимфа выполняет в системе свои функции. Ее задача — поймать вредные вещества в организме с помощью лейкоцитов и нейтрализовать их.

Лейкоциты находят микробов и поедают их, погибая при этом. Лимфа спасает пациента ценой своей собственной жизни. Больной человек должен не мешать этому процессу, а грамотно помогать своему организму. Сделать это можно только под руководством квалифицированного медицинского специалиста.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии