Повреждение клеток в патологии. Общая патология клетки. Повреждение клетки

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

В разделе научной медицины, именуемом «общая патология клетки», изучаются как морфологические изменения, происходящие в элементарных единицах строения организма, так и нарушения их функций. К этим нарушениям могут привести регрессивные и прогрессивные процессы. Говоря о формах гибели клеток, различают некроз и апоптоз. Обо всех этих понятиях, а также об основных механизмах повреждения клетки вы узнаете в данном материале.

Основные механизмы повреждения клетки

В основе патологии клетки лежит ее повреждение. Причины повреждения клеток, приводящие к их гибели, подразделяются на физические, химические и биологические. Под физическими понимаются травмы, высокая и низкая температура, радиация. Под химическими – воздействие кислот, щелочи, солей тяжелых металлов, цитотоксических веществ, например, цианидов, а также лекарственных средств при их передозировке.. К биологическим относятся патогенные микроорганизмы, а также факторы системы иммунитета.

Рассматривая характеристику понятия «повреждение» в разделе «патология клетки», особое внимание стоит уделить механизмам этого процесса.

Механизмов повреждения клетки достаточно много. Ниже описаны основные из них.

Расстройство энергетического обеспечения клетки бывает связано с нарушениями процессов окисления глюкозы, что, как известно, является основным источником энергии для «зарядки» (синтеза) главного клеточного «аккумулятора» - АТФ. Очевидно, что следствием недостатка энергии является угнетение большинства жизненных процессов клетки.

Повреждение мембран. Как известно, клеточные мембраны являются структурной основой, как клеточных органелл, так и клетки в целом, поэтому их повреждение неизбежно влечет нарушение клеточной анатомии и физиологии.

Дисбаланс воды и ионов приводит либо к сморщиванию, либо к набуханию клеток вследствие изменения соотношения осмотического давления внутри и вне клетки. Кроме того, процессы передачи сигнальных импульсов основаны на концентрации электролитов по обе стороны клеточной мембраны, что при нарушении ионного баланса приводит к расстройствам передачи нервных импульсов и дискоординации содружественной деятельности групп клеток в тканях и органах.

Повреждение генетического аппарата клеточного ядра приводит к нарушению процессов воспроизводства в клетке, следствием чего, например, может явиться превращение нормальной клетки в опухолевую.

Расстройства регуляции внутриклеточных процессов приводят как к расстройству процессов жизнедеятельности клетки как таковой, так и к нарушению выполнения клеткой своих функций в качестве структурной единицы тканей и органов макроорганизма.

Формы гибели клеток: некроз и апоптоз

Два основных механизма гибели клетки - это некроз и апоптоз.

Основные отличия некроза и апоптоза клетки следующие:

  • некроз происходит из-за внешних и внутренних - повреждающих факторов, апоптоз - обычно из-за естественных (как правило, внутренних) причин;
  • некроз - это гибель как отдельных клеток (группы клеток), так и участка ткани, апоптоз - смерть отдельных клеток;
  • механизм некроза клеток - это бессистемное, случайное поражение различных частей элементарных единиц строения организма и участков ткани, апоптоз - упорядоченный внутренний процесс;
  • при патологии клеток некроз окружающая ткань реагирует воспалением, при апоптозе воспаления не бывает.

Механизм гибели клеток некроз: причины и формы

Некроз - это гибель клетки организма, группы клеток или участка ткани под действием повреждающих факторов, интенсивность которых привела к тому, что изменения в клетке стали необратимыми и некомпенсируемыми. Некроз - это исключительно патологическое явление, которое возникает вследствие заболеваний и травм, т. е. биологически нецелесообразно. Некроз обычно приводит к возникновению другого типового патологического процесса - воспалению. Некроз - омертвение, гибель клеток и тканей в живом организме.

Говоря о некрозе как механизме гибели клетки, соответствии с различными причинами различают:

  • травматический некроз (происходит в связи с прямым повреждающим действием высокой или низкой температуры, кислот, щелочей и т. п. факторов на клетки и ткани);
  • токсический некроз (причиной гибели клеток в этом случае является воздействие на ткани каких-либо - чаше бактериальных - токсинов);
  • трофоневротический некроз (возникает в результате нарушения иннервации определенного участка ткани, что ведет к сосудистым нарушениям и необратимым дистрофическим изменениям);
  • аллергический некроз (является следствием аллергической реакции немедленного типа; чаше всего он развивается по типу фибриноидного некроза;
  • сосудистый некроз (возникает при нарушении кровообращения определенной области вследствие тромбоза, эмболии, сдавления сосуда, он носит название ишемического некроза - инфаркта).

Различают следующие формы некроза:

1. коагуляционный (сухой) некроз (в основе его лежат процессы денатурации тканевых белков и обезвоживание);

2. колликвационный некроз - влажный некроз, характеризуется размягчением и расплавлением погибших тканей;

3. гангрена - некроз тканей , соприкасающихся с внешней средой (различают сухую гангрену, при которой мертвая ткань высыхает, сморщивается, мумифицируется, и влажную гангрену, при которой омертвевшая ткань подвергается разложению гнилостными бактериями; разновидностью гангрены являются трофоневротические некрозы, возникающие у ослабленных лежачих тяжелобольных пролежни на участках поверхности тела в области костных выступов - крестца, лопаток, пяток, локтевых отростков, затылка);

4. секвестр (участок мертвой ткани, свободно располагающейся среди живой - чаще всего это костные секвестры при хроническом остеомиелите);

Исходы некроза. Благоприятным вариантом исхода является возникновение пограничного воспаления с четко обозначенной границей некроза и здоровой ткани - демаркационной линией. Позднее некротические массы постепенно рассасываются; они также могут замешаться соединительной тканью, в этом случае говорят об организации. Если некротический участок обрастает соединительнотканной капсулой, то данный процесс носит название инкапсуляции. В организовавшийся очаг могут выпадать соли кальция (обызвествление, или петрификация); а в некоторых случаях здесь образуется участок костной ткани (оссификация).

Неблагоприятным вариантом исхода некроза является присоединение инфекции и гнойное расплавление некротического участка, что сопровождается тяжелыми осложнениями.

Процесс гибели клеток организма апоптоз

От некроза необходимо отличать процесс гибели клеток апоптоз.

Апоптоз - это запрограммированная смерть клетки. Как правило, апоптоз является естественным биологическим процессом, однако в некоторых случаях апоптоз включается вследствие нарушения нормальных физиологических процессов, т. е. при патологии. В результате апоптоза клетка разделяется на отдельные покрытые клеточной мембраной фрагменты - апоптотические тельца, которые поглощаются макрофагами.

Механизмы апоптоза включаются еще во время внутриутробного периода, когда у эмбриона, например, редуцируется хвост. После рождения механизмы апоптоза в частности отвечают за обновление клеток эндометрия, эпителия кожи и кишечника, клеток крови. Собственные клетки организма умерщвляются благодаря механизму апоптоза, если они заражены вирусами или приобрели характер опухолевых.

Процесс гибели клетки апоптоз состоит из:

  • сигнальной фазы, во время которой включается его механизм под воздействием различных факторов на специальные клеточные рецепторы;
  • эффекторной фазы, во время которой активизируются специальные белки, разрушающие клетку;
  • деградационной фазы (фазы экзекуции, или деструкции), во время которой и происходит вышеупомянутая фрагментация клетки под действием белков-разрушителей. Запуск апоптоза не является необратимым, так как у клетки имеются рецепторы, активизация которых может подавить уже запущенный процесс апоптоза.

В старости у большинства клеток отмечается тенденция к повышению чувствительности к запуску апоптоза (это справедливо, правда, в отношении только определенных клеток - нервной ткани, клеток печени и сердца, хрящевой ткани, Т-лимфоцитов и т. д.).

Патология клетки – типовой патологический процесс, характеризующийся нарушением внутриклеточного гомеостаза, что ограничивает функциональные возможности клетки и может приводить ее к гибели или снижению продолжительности жизни .

Гомеостаз клетки – способность клетки существовать при изменении условий обитания с сохранением устойчивого динамического равновесия со средой.

Понятие «гомеостаз клетки » включает в себя ряд показателей (констант): внутриклеточное постоянство ионов водорода, электронов, кислорода, субстратов для энергетического и пластического обеспечения жизнедеятельности клетки, ферментов, нуклеотидов и еще ряд веществ.

Константы (лат. constantus – постоянная величина) гомеостаза клетки зависят от:

    структурно-функционального состояния ее различных мембран (плазмолемы, митохондрий, лизосом и др.) и органелл, интенсивности течения внутриклеточных биохимических процессов. Это своеобразная «метаболическая составляющая гомеостаза » и определяется работой исполнительного аппарата клетки;

    информационных процессов . Нормальная жизнедеятельность клетки невозможна без информации, поступающей к ней из внешней среды. Очень часто она изменяет параметры внутриклеточного постоянства, что является следствием включения приспособительных (адаптивных) программ, позволяющих клетке оптимально приспосабливаться к конкретной ситуации согласно поступившей информации. «Правильность » изменения констант внутриклеточного гомеостаза и их поддержание в границах нормы в данном случае определяется в первую очередь количеством и качеством информационного обеспечения клетки (наличием сигнальных молекул, рецепторов, пострецепторных связей и др.). Исполнительный аппарат клетки выполняет лишь «полученные указание ».

Следовательно, патология клетки может возникнуть и без первичного «полома » ее исполнительного аппарата, а из-за нарушений в механизмах сигнализации, в так называемой «информационной составляющей » внутриклеточного гомеостаза.

В зависимости от природы этиологического фактора, нарушающего гомеостаз (метаболическое и/или информационное его составляющее) клетки, различают физические, химические и биологические повреждающие агенты.

Физические этиологические факторы – это механические и температурные воздействия (гипо- и гипертермия), энергия электрического тока, ионизирующей радиации и электромагнитных волн, влияние факторов космического полета (ускорение, гипокенезия) и др.

Химические этиологические факторы – воздействие многочисленных неорганических и органических веществ (кислоты, щелочи, соли тяжелых металлов, этиловый и метиловый спирт). Патология может быть обусловлена дефицитом или избытком белков, жиров, углеводов, витаминов, микроэлементов и др. веществ. Немаловажное значение в этой группе факторов имеют и лекарственные препараты.

Все, выше названные патогенные факторы, вызывают различные повреждения клеток.

Тип (вид) повреждения клетки зависит от :

    скорости развития основных проявлений нарушений функции клеток . Выделяют острое и хроническое повреждение клетки. Острое повреждение развивается быстро, и как правило, в результате однократного, но интенсивного повреждающего воздействия. Хроническое повреждение протекает медленно и является следствием многократного влияния, но менее интенсивного по силе повреждения агента;

    жизненного цикла клетки, на период которого приходится воздействие повреждающего фактора. Различают митотические и интерфазные повреждения;

    от степени (глубины) нарушения клеточного гомеостаза – обратимые и необратимые повреждения;

    от характера взаимодействия повреждающего фактора с клеткой . Если патогенный агент действует непосредственно на клетку, то говорят о прямом (первичном) ее повреждении. В условиях целостного организма влияние причины может осуществляться и через формирование цепи вторичных реакций. Например, при механической травме непосредственно в месте воздействия этого агента образуются биологически активные вещества (БАВ) – это продукты распада погибших клеток, гистамин, оксидазы, простогландины и др. соединения, синтезируемые поврежденными клетками. БАВ, в свою очередь, вызывают нарушения функции клеток, ранее не попавших под влияние данного фактора. Такое повреждение получило название опосредованное или вторичное . Воздействие этиологического фактора может проявляться опосредованно и через изменения нервных и эндокринных регуляций (шок, стресс), при отклонениях физико-химического состояния организма (ацидоз, алколоз), при нарушениях системного кровообращения (сердечная недостаточность), гипоксии, гипо- и гипертермия, гипо- и гипегликемия и др.

    от характера повреждений вызванных определенным патогенным фактором . Рассматривают специфические и неспецифические повреждения.

Литвицкий П.Ф. (2002) выделяет и специфические повреждения определенных клеток, возникающее при взаимодействии с самыми различными патогенными факторами. В качестве примера приводит развитие контрактур мышечных клеток при влиянии на них физических, химических и биологических факторов, или, возникновение гемолиза эритроцитов при аналогичных воздействиях.

Неспецифические повреждения – это стандартные, стереотипные изменения в клетках возникающие при их взаимодействии с широким спектром этиологических факторов. В качестве примера можно привести следующие нарушения:

    повышение проницаемости мембран клеток;

    активация свободно-радикальных и перекисных реакций;

    внутриклеточный ацидоз;

    денатурация молекул белков;

    дисбаланс ионов и воды;

    изменение интенсивности окислительного фосфорилирования.

Взаимосвязи между специфическими и неспецифическими повреждениями клеток разнообразны. Они могут возникать одновременно, либо одно из них предшествует другому. Выяснение конкретных видов нарушений, времени их возникновения и соотношении между собой, дает врачу необходимую информацию о характере и интенсивности действия причинного фактора, глубине и распространенности патологического процесса. Это в свою очередь обеспечивает проведение более этиотропной и патогенетической профилактики и терапии. Например, если при гепатитах различного происхождения регистрируется только увеличение в плазме крови концентрации ионов К и аланинаминотрансферазы (АЛТ) то это свидетельствуют о легком течении или начале заболевания. Калий и АЛТ находятся в цитоплазме, возрастание их содержание за пределами клеточной мембраны характерны при нарушении ее проницаемости (неспецифическое повреждение). Появление же в крови довольно специфического для печени фермента – сорбитдегидрогеназы и органеллоспецифичных – глютаматдегидрогеназы (локализация - митохондрии), кислой фосфотазы (локализация лизосомы) говорит об усугублении патологического процесса . Он уже не ограничивается только мембраной клетки, а затрагивает и внутриклеточные структуры.

Как было отмечено выше, патология клетки возникает вследствие нарушения ее гемостаза. Он может изменяться не только при непосредственном воздействии патогенного агента на клетку (тем самым, нарушая в основном работу ее исполнительного аппарата), но и при недостаточности информационных механизмов, инициирующих включение тех или иных адаптогенных программ. В связи с этим, природу заболеваний человека можно рассматривать с двояких позиций – материально-энергетических и информационных (А.Ш. Зайчик, Л.П. Чурилов, 1999). Болезнь развивается, и при повреждении исполнительного аппарата клетки (материально-энергетическая позиция ), и при нарушении ее информационных механизмов (информационная позиция ). Основываясь на последнем положеним, существует даже специальная терминология – «болезни регуляции », «дизрегуляционная патология ».

Данные позиции легче выявляются на начальных этапах патологии клетки. По мере ее развития различия между ними более затруднительны, и тем не менее, этиотропная и патогенетическая терапия будет более адекватной и успешной при установлении истинного механизма (причины) развития того или иного проявления патологии.

Сейчас мы приступаем непосредственно к рассмотрению ответа клетки на патогенный агент. Согласно нашего плана (рис. 1), сюда входят вопросы адаптации и паранекроза. Они между собой тесно связаны, так как любой патологический процесс (болезнь) состоит из двух компонентов: повреждения (альтерации ) и защитно-приспособительных (адаптивных ) механизмов. Альтерация моментально вызывает активацию адаптивных механизмов, направленных на поддержание жизнедеятельности клетки в изменившихся условиях. Параллельное изучение вопросов альтерации и защитно-приспособи-тельных механизмов создает определенные трудности в усвоении учебного материала. Поэтому мы первоначально разберем механизмы повреждения гомеостаза клетки, а затем защитно-приспособительных реакций. При этом будем помнить, что начальный этап альтерации клетки – паранекроз – это не только повреждение, но и наличие защитно-приспособительных механизмов, пусть и не в полной мере выполняющих свое назначение.

Рассмотрение патологии клетки начинаем с нарушений, возникающих при непосредственном воздействии на нее патогенного агента. Взаимодействие этиологического фактора с различными структурными образованиями клетки, ведет к нарушению ее гомеостаза (его метаболической составляющей ), и, следовательно, развитию болезни. Патология может возникнуть при повреждении различных биомембран клетки (особенно часто повреждается плазмолемма) и внутриклеточных образований: ядра, митохондрий, лизосом и др. (рис. 2).

имени профессора В.Ф. Войно-Ясенецкого

Министерства здравоохранения

и социального развития Российской Федерации»

ГОУ ВПО КрасГМУ

им. проф. Войно-Ясенецкого

Факультет ФМО

Кафедра биологии с экологией и курсом фармакогнозии

Ситуационные задачи

по дисциплине «Биология с экологией»

для самоподготовки студентов первого курса

специальность 060101– Лечебное дело

специальность 060103 – Педиатрия

специальность 060105 - Стоматология

Красноярск 2009

полочный индекс

Ситуационные задачи по дисциплине «Биология с экологией»: методические разработки к внеаудиторной работе для студентов 1 курса обучающихся на факультете ФМО по специальностям: 060101- «Лечебное дело», 060103 – «Педиатрия», 060105- «Стоматология»:- Красноярск, типография КрасГМУ.-2009.- 35с.

Составители: зав. каф., доц., д.б.н. Т.Я.Орлянская, доц., к.б.н. М.Н.Максимова, доц., к.б.н. доц., к.б.н. В.А.Чиненков, доц. к.б.н. Л.С. Смирнова, асс. Г.П. Гаевская, асс. Н.Н. Дегерменджи, асс. Т.С.Подгрушная, асс. В.С.Крупкина, асс. Т.И.Устинова, асс. С.В. Чижова.

Под редакцией д-ра биол. наук. Т.Я. Орлянской.

Методическое руководство по предмету «Биология с экологией» для студентов первого курса содержат набор ситуационных задач по основным разделам дисциплины, которые ориентируют обучающихся на контроль знаний программного материала в процессе самоподготовки.

1. Ситуационные задачи по теме «Биология клетки»

1. Постоянный препарат изучен на малом увеличении, однако при переводе на большое увеличение объект не виден, даже при коррекции макро- и микрометрическим винтами и достаточном освещении. Необходимо определить, с чем это может быть связано?

Ответ : Причина может быть связана с тем, что препарат помещен на предметный столик неправильно: покровным стеклом вниз, а при работе на большом увеличении толщина предметного стекла не позволяет добиться точной наводки на фокус.

2. Препарат помещен на предметный столик микроскопа, имеющего в основании лапки штатива зеркало. В аудитории слабый искусственный свет. Объект хорошо виден на малом увеличении, однако при попытке его рассмотреть при увеличении объектива х40, в поле зрения объект не просматривается, видно темное пятно. Необходимо определить, с чем это может быть связано?

Ответ : Причин может быть несколько: 1 – для исследования использована плоская сторона зеркала, а комната недостаточно ярко освещена, поэтому объект при большом увеличении недостаточно освещен и не виден в поле зрения; 2 – возможно, движение револьвера было недостаточным, не доведен до щелчка, поэтому объектив не находится против объекта исследования; 3 – посмотреть как помещен на предметный столик препарат, возможно, он помещен покровным стеклом вниз.

3. Исследуемый препарат оказался поврежден: разбито предметное и покровное стекла. Объясните, как это могло произойти?

Ответ : Причина - неправильное обращение с макрометрическим винтом. Он опускает объектив к препарату. При работе с ним необходимо смотреть не в окуляр, а сбоку, контролируя расстояние от объектива к препарату, которое составляет в среднем 0,5см.

4. Общее увеличение микроскопа составляет при работе в одном случае - 280, а в другом - 900. Объясните, какие использованы объективы и окуляры в первом и во втором случаях и, какие объекты они позволяют изучать?

Ответ: В первом случае используется окуляр х7, а объектив х40, при данном увеличении можно рассмотреть крупные микрообъекты (н-р, клетки кожицы лука, клетки крови лягушки, перекрест волос); во втором случае используется окуляр х10, а объектив х90, при данном увеличении можно рассмотреть самые мелкие микрообъекты, используя при этом иммерсионное масло (органоиды клеток, колонии бактерий, мелкие клетки простейших, клетки крови человека).

5. Как надо расположить препарат, чтобы увидеть объект в нужном виде?

Ответ: Препарат необходимо расположить на предметный столик покровным стеклом вверх, объект должен располагаться в центре отверстия предметного столика, с учетом того, что изображение в микроскопе получаем обратное.

6. При ряде врожденных лизосомных «болезнях накопления» в клетках накапливается значительное количество вакуолей, содержащих нерасщепленные вещества. Например, при болезни Помпе происходит накопление гликогена в лизосомах. Объясните с чем связано данное явление, исходя из функциональной роли данного органоида клеток.

Ответ: Лизосомы в клетке участвуют в процессах внутриклеточного переваривания, они содержат около 40 гидролитических ферментов: протеазы, нуклеазы, гликозидазы, фосфорилазы и др. В данном случае в наборе ферментов отсутствует фермент кислой а-гликозидазы, участвующий в функционировании лизосом.

7. При патологических процессах обычно в клетках значительно увеличивается количество лизосом. На основании этого возникло представление, что лизосомы могут играть активную роль при гибели клеток. Однако известно, что при разрыве мембраны лизосом, выходящие гидролазы теряют свою активность, так как в цитоплазме слабощелочная среда. Объясните, какую роль играют лизосомы в данном случае, исходя из функциональной роли этого органоида в клетке.

Ответ: Одной из функций лизосом является автолиз или аутофагия. В настоящее время склонны считать, что процесс аутофагоцитоза связан с отбором и уничтожением измененных, «сломанных» клеточных компонентов. В данном случае лизосомы выполняют роль внутриклеточных чистильщиков, контролирующих дефектные структуры. В конкретном случае накопление лизосом и связано с выполнением ферментами этой функции - автолиз погибших клеток.

8. Объясните какие последствия могут ожидать животную клетку, у которой в клеточном центре отсутствуют одна центриоль и лучистая сфера (астросфера).

Центросомы обязательны для клеток животных, они принимают участие в формировании веретена деления и располагаются на полюсах, в неделящихся клетках определяют полярность клеток. При отсутствии данного органоида такая клетка не способна к пролиферации.

9. Обычно, если клеточная патология связана с отсутствием в клетках печени и почек пероксисом, то организм с таким заболеванием нежизнеспособен. Дайте объяснение этому факту, исходя из функциональной роли этого органоида в клетке.

Ответ: Микротельца или пероксисомы играют важную роль в метаболизме перекиси водорода, которая является сильнейшим внутриклеточным ядом и разрушает клеточные мембраны. В пероксисомах печени фермент каталаза составляет до 40% всех белков и выполняет защитную функцию. Вероятно, отсутствие данных ферментов, приводит к необратимым изменениям на уровне функционирования клеток, тканей и органов.

10. Объясните, почему у зимних спящих сурков и зимующих летучих мышей число митохондрий в клетках сердечной мышцы резко снижено.

Ответ: Количество митохондрий в клетках сердечной мышцы зависит от функциональной нагрузки на сердце и расхода энергии, которая вырабатывается и накапливается в макроэргических связях АТВ в «энергетических станциях» клеток, которыми являются митохондрии. В период спячки в организме животных процессы метаболизма замедленны и нагрузка на сердце минимальная.

11. Известно, что у позвоночных животных кровь красная, а у некоторых беспозвоночных (головоногих моллюсков) голубая. Объясните с присутствием, каких микроэлементов связан определенный цвет крови у этих животных?

Ответ: Кровь этих животных голубая т.к. в ее состав входит гемоцианин, содержащий медь (Си).

12.Зерна пшеницы и семена подсолнечника богаты органическими веществами. Объясните, почему качество муки связано с содержанием клейковины в ней, какие органические вещества находятся в клейковине пшеничной муки. Какие органические вещества находятся в семенах подсолнечника?

Ответ: Клейковина – это та часть муки, в которой содержится белковый компонент, благодаря которому качество муки ценится выше. В семенах подсолнечника наряду с белками и углеводами в значительном количестве находятся растительные жиры.

13. Восковидные липофусцинозы нейронов могут проявляться в разном возрасте (детском, юношеском и зрелом), относятся к истинным болезням накопления, связанным с нарушением функций органоидов мембранного строения, содержащих большое количество гидролитических ферментов. Симптоматика включает признаки поражения центральной нервной системы с атрофией головного мозга, присоединяются судорожные припадки. Диагноз ставится при электронной микроскопии - в этих органоидах клеток очень многих тканей обнаруживаются патологические включения. Объясните, в каком органоиде в клетках нарушена функция?

Ответ: у людей с данной патологией нарушена функция лизосом, возможно, какие-то ферменты отсутствуют или не включаются, поэтому в лизосомах обнаруживаются недорасщепленные структуры.

14. У больного выявлена редкая болезни накопления гликопротеинов, связанная с недостаточностью гидролаз, расщепляющих полисахаридные связи эти аномалии характеризуются неврологическими нарушениями и разнообразными соматическими проявлениями. Фукозидоз и маннозидоз чаще всего приводят к смерти в детском возрасте, тогда как аспартилглюкозаминурия проявляется как болезнь накопления с поздним началом, выраженной психической отсталостью и более продолжительным течением.

Объясните, в каком органоиде в клетках нарушена функция?

Ответ: у людей с данной патологией нарушена функция лизосом, отсутствуют ферменты, расщепляющие гликопротеины, поэтому в лизосомах обнаруживаются недорасщепленные структуры.

15. Выявлено наследственное заболевание, связанное с дефектами в функционирования органоида клетки приводящее к нарушениям энергетических функций в клетках - нарушению тканевого дыхания, синтеза специфических белков. Данное заболевание передается только по материнской линии к детям обеих полов. Объясните, в каком органоиде произошли изменения. Ответ обоснуйте.

Ответ: произошел дефект митохондриальной ДНК, идет неправильное считывание информации, нарушается синтез специфических белков, проявляются дефекты в различных звеньях цикла Кребса , в дыхательной цепи , что привело к развитию редкого митохондриального заболевания.

16.Ядро яйцеклетки и ядро сперматозоида имеет равное количество хромосом, но у яйцеклетки объём цитоплазмы и количество цитоплазматических органоидов больше, чем у сперматозоида. Одинаково ли содержание в этих клетках ДНК?

Ответ: У яйцеклетки содержание ДНК больше, за счёт наличия митохондриальный ДНК.

17. Гены, которые должны были включиться в работу в периоде G 2 , остались неактивными. Отразится ли это на ходе митоза?

Ответ: В период G 2 синтезируются белки, необходимые для образования нитей веретена деления. При их отсутствии расхождение хроматид в анафазу митоза нарушится или вообще не произойдёт.

18. В митоз вступила двуядерная клетка с диплоидными ядрами (2n=46). Какое количество наследственного материала будет иметь клетка в метафазе при формировании единого веретена деления, а также дочерние ядра по окончании митоза?

Ответ: В каждом из двух ядер, вступивших в митоз, хромосомы диплоидного набора уже содержат удвоенное количество генетического материала. Объем генетической информации в каждом ядре - 2 n 4с. В метафазе при формировании единого веретена деления эти наборы объединятся, и объем генетической информации составит, следовательно - 4 n 8с (тетраплоидный набор самоудвоенных или реплицированных хромосом).

В анафазе митоза этой клетки к полюсам дочерних клеток разойдутся хроматиды. По окончании митоза ядра дочерних клеток будут содержать объем генетической информации = 4 n 4с.

19. После оплодотворения образовалась зигота 46,ХХ, из которой должен сформироваться женский организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды одной из Х-хромосом, отделившись друг от друга, не разошлись по 2-м полюсам, а обе отошли к одному полюсу.

Расхождение хроматид другой Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза, не внося дополнительных изменений, но и не исправляя изменённые наборы хромосом.

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы? Предположите, какими могут быть фенотипические особенности этого организма?

Ответ: Набор неполовых хромосом (аутосом) в обоих бластомерах будет нормальным и представлен диплоидным числом = 44 несамоудвоенных (нереплицированных) хромосом – бывших хроматид метафазных хромосом зиготы.

В результате клетки организма, развившегося из этой зиготы, будут иметь разный набор хромосом, то есть будет иметь место мозаицизм кариотипа: 45,Х / 47,ХХХ примерно в равных пропорциях.

Фенотипически это женщины, у которых наблюдаются признаки синдрома Шерешевского-Тернера с неярким клиническим проявлением.

20. После оплодотворения образовалась зигота 46,ХY, из которой должен сформироваться мужской организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды Y-хромосомы не разделились и вся эта самоудвоенная (реплицированная) метафазная хромосома отошла к одному из полюсов дочерних клеток (бластомеров).

Расхождение хроматид Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза, не внося дополнительных изменений, но и не исправляя изменённые наборы хромосом.

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы? Предположите, какой фенотип может иметь этот индивид?

Ответ: Мозаицизм кариотипа: 45,Х / 46,Х Y (сокращенно – Х0/Х Y ) примерно в равных пропорциях. Фенотипические варианты при этом типе мозаицизма - 45,Х / 46,Х Y разнообразны. Такой индивид внешне может быть как мужского, так и женского пола. Описаны случаи гермафродитизма у лиц с мозаицизмом 45,Х / 46,Х Y , когда внешне организм был женского пола, но с правой стороны обнаруживалось яичко (семенник), над влагалищем – половой член и уретральное отверстие.

Задачи для самоконтроля

1. Постоянный препарат изучен на малом увеличении, однако при переводе на большое увеличение объект не виден, даже при коррекции макро- и микрометрическим винтами и достаточном освещении. Необходимо определить, с чем это может быть связано?

2. Препарат помещен на предметный столик микроскопа, имеющего в основании лапки штатива зеркало. В аудитории слабый искусственный свет. Объект хорошо виден на малом увеличении, однако при попытке его рассмотреть при увеличении объектива х40, в поле зрения объект не просматривается, видно темное пятно. Необходимо определить, с чем это может быть связано?

3. Исследуемый препарат оказался поврежден: разбито предметное и покровное стекла. Объясните, как это могло произойти?

4. Общее увеличение микроскопа составляет при работе в одном случае - 280, а в другом - 900. Объясните, какие использованы объективы и окуляры в первом и во втором случаях и, какие объекты они позволяют изучать?

5. Вам выдан постоянный препарат для исследования объекта при большом увеличении микроскопа. Как надо расположить препарат, чтобы увидеть объект при большом увеличении? Объясните, почему неправильные манипуляции с препаратом можно обнаружить только при большом увеличении.

6. Объясните, какие перспективы могут ожидать клетку эпителиальной ткани, у которой нет центриолей?

7. В диплоидной клетке произошла 7-кратная эндоредупликация.

Какое количество наследственного материала она имеет?

8. Одним из фундаментальных первоначальных выводов классической генетики является представление о равенстве мужского и женского пола в передаче потомству наследственной информации. Подтверждается ли этот вывод при сравнительном анализе всего объема наследственной информации, вносимого в зиготу сперматозоидом и яйцеклеткой?

9. После выхода клетки из митоза произошла мутация гена, несущего программу для синтеза фермента геликазы.

Как это событие отразится на митотическом цикле клетки?

1 0. После оплодотворения образовалась зигота 46,ХХ, из которой должен сформироваться женский организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера одна из двух Х-хромосом не разделилась на две хроматиды и в анафазе целиком отошла к полюсу. Поведение второй Х-хромосомы прошло без отклонений от нормы. Все последующие митотические деления клеток в ходе эмбриогенеза протекали также без нарушений механизма митоза

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы и (предположительно) фенотипические особенности этого организма?

11. Общеизвестно, что однояйцовые (монозиготные) близнецы являются генетически идентичными. По фенотипу они, при нормальном ходе цитологических процессов их формирования и развития в одних и тех же условиях среды, похожи друг на друга «как две капли воды».

Могут ли монозиготные близнецы быть разного пола – мальчиком и девочкой? Если не могут, то почему? А если могут, то в результате, каких нарушений в митотическом цикле делящейся зиготы?

Нарушения в ядре клетки . Они приводят к патологии хранения генетической информации в ДНК и передачи ее при делении клеток, генетического контроля клеточных процессов.

В связи с этим механизмы нарушений в ядре были рассмотрены при описании нарушений функций генетического аппарата и механизмов его реализации.

Восстановление клеток после повреждения, особенно в тканях, где основные популяции клеток не способны к делению (нервная, сердечная мышечная ткани), в зонах опухолевого роста, при патологической гипертрофии и гиперфункции органов может происходить путем образования полиплоидных клеток с многократным увеличением числа хромосом и размеров клеток. Такая полиплоидия сопровождается повышением функциональной активности клетки, однако это может привести к снижению ее резервных возможностей. Например, если гипертрофированный кардиомиоцит достигает очень больших размеров, то его трофическое обеспечение значительно затрудняется и приводит к гибели клетки. При ускорении синтеза белка и нуклеиновых кислот при гиперфункции и регенерации образуются множественные выпячивания и впячивания в связи с увеличением поверхности ядра. Эти явления сопровождаются увеличением количества хроматина и ядерных пор, возрастанием числа и размеров ядрышек.

Выделяют следующие патологии ядерного аппарата.

Уменьшение генетического материала наблюдают в злокачественных опухолевых клетках. Это приводит к уменьшению размеров таких клеток и изменению их свойств. Такие клетки по своим свойствам резко отличаются от нормальных клеток организма, имеют иные антигенные свойства, значительно изменяется их способность к дифференцировке.

Атипичные митозы (в том числе так называемый дегенеративный амитоз) сопровождаются анэуплоидией, хромосомными аберрациями. Это резко изменяет функциональные особенности клетки. В результате цитокинеза формируются две клетки со случайно распределенными наборами хромосом и содержимым цитоплазмы. Эти клетки являются атипичными, нередко опухолевыми. Подобные нарушения характерны для злокачественного опухолевого роста. Встречается неполный амитоз, когда цитотомии не происходит, и формируется многоядерная клетка - такой амитоз в патологии иногда называют дегенеративным.

Патология синтеза субъединиц рибосом и тРНК в ядрышке сопровождается нарушением синтетических процессов в клетке. В эту же группу включают нарушения экспрессии генов, транскрипции и сплайсинга, переноса генетической информации в составе иРНК из ядра в цитоплазму. Все эти изменения связаны с фенотипической изменчивостью.

Изменения генома и/или механизмов его реализации сопровождаются патологией строения ядер (полиморфизм, деформация, формирование инвагинаций цитоплазмы вплоть до включений цитоплазмы в ядре, выпячивания кариоплазмы в цитоплазму).

При нарушениях ядро набухает с вакуолизацией (расширением) перинуклеарной цистерны или сморщивается. Набухшие ядра становятся более светлыми, изменяется ядерно-цитоплазматическое отношение. Это часто предшествует разрушению ядерной оболочки со слиянием содержимого кариоплазмы и цитоплазмы (кариолизис). Кариолизис предшествует паранекрозу и/или некрозу, с последующим самоперевариванием клетки (аутолизом). Увеличение (конденсация) или уменьшение количества хроматина, разрыв ядра могут быть вызваны гипоксией, ионизирующим излучением и др. Данные нарушения сопровождаются снижением синтеза нуклеиновых кислот и белка.

При сморщивании ядро (кариопикноз) уменьшается в размерах, в нем накапливается гетерохроматин, что приводит к усилению окрашивания кариоплазмы (гиперхроматоз). Ядрышки уплотняются, уменьшаются в размерах, нередко распадаются. Синтез РНК и субъединиц рибосом в таком ядре резко снижается. Прогрессируя, эти изменения приводят к сегментации ядра с последующим его распадом на глыбки (кариорексис), которые затем разрушаются. Эти последствия гибельные для клетки. Такая клетка распадается на части, которые подвергаются фагоцитозу макрофагами.

При гибели клетки хроматин коагулируется и собирается в грубые конгломераты.

При подавлении синтеза рРНК ядрышко сжимается и фрагментируется, утрачивает гранулы. В ядрышке появляются «полости» с низкой плотностью.

Нарушение созревания рибосом (ингибиция процессинга рРНК) вызывает увеличение размеров ядрышек, но в них отсутствуют зрелые субъединицы рибосом.

Изменения в цитозоле (гиалоплазме) . Для них характерны патологии циклоза, обеспечения взаимодействия клеточных структур друг с другом, анаэробного гликолиза, обмена углеводов, белков, липидов и других веществ, депонирования гликогена, жиров, пигментов.

Гипоксия, протеолитические процессы, аутолиз, преобладание анаэробно-гликолитических процессов могут приводить к накоплению низкомолекулярных органических соединений, изменять онкотическое давление. Повышение онкотического давления вызывает диффузию воды в гиалоплазму и набухание клетки. Подобные же явления могуг сопровождать гипоосмолярную гипергидрию. При резком набухании разрывается цитомембрана и содержимое гиалоплазмы сливается с межклеточным веществом.

Повышенная проницаемость цитомембраны при различных патологических воздействиях вызывает выход ионов калия из клетки и поступление в нее ионов натрия, хлора и кальция. Повышается осмотическое давление гиалоплазмы. В нее поступает вода, и клетка набухает.

Обезвоживание, гиперосмолярность межклеточного вещества приводят к выходу воды из гиалоплазмы и сморщиванию клетки. Потеря клеткой воды (дегидратация) понижает функциональную активность, замедляет циклоз, происходит накопление продуктов жизнедеятельности (аутоинтоксикация).

При патологии изменяется кислотно-щелочное равновесие в матриксе клетки. Недоокисленные продукты, накапливающиеся в матриксе, вызывают метаболический ацидоз, повышают проницаемость мембран. Нарушение проницаемости активизирует протеолитические ферменты, что вызывает внутриклеточное самопереваривание - аутолиз.

Патофизиология митохондрий . Она связана с нарушением аэробного фосфорилирования и энергетического обеспечения. Изменения в митохондриях возникают при гипоксии, действии токсинов, блокирующих цепи окислительного фосфорилирования.

Нарушение функций митохондрий наблюдают при гипертиреозе за счет трийодтиронина, рецепторы к которому имеются в органелле. α-Динитрофенол, глюкокортикоиды, инсулин, интерлейкин-1, избыток кальция и тиреоидных гормонов вызывают набухание митохондрий и разобщение цепей окислительного фосфорилирования. В результате клетка не может выработать достаточного количества АТФ, и энергозависимые процессы затухают. Эти функциональные нарушения сопровождаются структурными перестройками в виде набухания митохондрий, изменения структуры их крист и плотности матрикса.

При нарушении обмена веществ, гипоксии, интоксикации митохондрии набухают, их матрикс просветляется и вакуолизируется. Все это приводит к снижению образования АТФ и эффективности окислительного фосфорилирования.

Разобщение цепей окислительного фосфорилирования происходит при лихорадке в момент повышения температуры и при гипотермии как механизм, обеспечивающий повышенную теплопродукцию.

Кроме набухания можно наблюдать конденсацию и фрагментацию митохондрий. Формируются органические (белковые, липидные) и минеральные (нерастворимые соли кальция) включения. Все это также снижает эффективность синтеза АТФ за счет полной или частичной блокады окислительных процессов.

Иногда встречаются гигантские митохондрии с соответствующей гипертрофией крист. Эти нарушения имеют место в случае гипертрофии органелл или за счет их слияния. Изменяются также число и форма крист внутренней мембраны. Увеличение числа крист обычно указывает на повышение активности митохондрий. Иногда трансформируется форма крист и появляются не только трабекулярные, но и мультивезикулярные (трубчатые). Динамике подвергается и направлен на крист. Может встречаться продольная и поперечная направленность. Фрагментация крист, нарушение их правильного расположения появляются при гипоксии.

При гиповитаминозах, алкогольной интоксикации, в опухолевых клетках изменяется форма митохондрий и крист.

Количественные изменения содержания митохондрий в клетке могут быть как в виде увеличения, так и уменьшения. Увеличение числа митохондрий в клетке обычно возникает при усилении ее функциональной активности (гиперфункции и гипертрофии), в процессе восстановления нарушенных функций, при апоптозе. Уменьшение абсолютного содержания митохондрий в клетке указывает на снижение ее функциональной активности, деструктивные атрофические процессы.

Высокой динамичностью отличается распределение митохондрий. Так, при различных патологических ситуациях они локализуются вокруг ядра или на одном из полюсов клетки. В результате математического моделирования показано, что эти изменения в числе прочих могут быть обусловлены динамикой диффузии кислорода и глюкозы.

Часть антибиотиков специфически нарушает белковый синтез на рибосомах митохондрий, например левомицетин, эритромицин. Если в выделенные митохондрии добавить подобные антибиотики, то нарушаются синтетические процессы и органеллы гибнут. Подобные явления в целом организме не наблюдаются, так как указанные антибиотики не накапливаются внутри эукариотической клетки, плохо проникая через ее мембрану.

Патологические процессы в рибосомах . Они сопровождаются нарушением трансляции с образованием полипептидных цепочек в цитозоле, гр. ЭПС и митохондриях.

Эти нарушения возникают при влиянии некоторых патологических факторов, например противоопухолевых препаратов, блокирующих синтез белков у эукариот.

Изменения рибонуклеопротеидных комплексов рибосом, а также рецепторов к ним могут сопровождаться снижением связывания рибосом и полисом с гр. ЭПС в ходе образования секреторных белков. Такие вновь образованные полипептидные цепочки быстро разрушаются в матриксе цитоплазмы.

Патология ядрышкового аппарата приводит к снижению содержания рибосом в цитоплазме и подавлению пластических процессов в организме.

Некоторые особенности имеет патология митохондриальных рибосом. Их нарушения вызывают препараты, блокирующие белковый синтез у бактерий, например левомицетин, эритромицин, которые не влияют на активность цитоплазматических рибосом.

Нарушения в ЭПС . Изменения в гр. и глад. ЭПС по проявлениям близки и сводятся к ниже перечисленным.

Расширение цистерн ЭПС с вакуолизацией цитоплазмы клеток . Наблюдается при повышении активности ЭПС с накоплением в ее структуре синтезированных веществ, при нарушении транспорта веществ в комплекс Гольджи, накоплении патологических веществ. При избыточном накоплении нормальных и патологических веществ развивается дистрофия клетки.

Фрагментация ЭПС , накопление в канальцах обрывков мембран, остатков клеточных органелл характерны для большого числа повреждений клетки, в том числе некроза и паранекроза, «шоковой» клетки, и сопровождаются значительным снижением синтетической активности ЭПС.

Гипертрофия ЭПС наблюдается при гиперфункции секреторных клеток, возникающей от избыточных стимулирующих воздействий на клетку. Это дисфункции вегетативной нервной системы, дисгормонозы, раздражающие воздействия на секреторные клетки, опухолевое их перерождение.

Гипотрофия ЭПС сопровождается снижением секреторной активности клеток и скорости замещения мембранных комплексов. Это характерно для гипотрофии, атрофии, апоптоза и может являться следствием подавления вегетативного нервного

контроля, гормонального блокирования секреции, гипоксии и голодания.

Упрощение структуры и изменение распределения ЭПС возникают при гипотрофии и атрофии в зонах хронических воспалительных процессов, дедифференцировке клеток в опухолях.

Нарушения в гранулярной ЭПС проявляются блокадой, избыточным синтезом полипептидов либо синтезом измененных полипептидных цепочек (мембранных, лизосомальных, секреторных).

Гипертрофия гр. ЭПС нередко сопровождается гиперсекрецией того или иного вещества. Это связано с чрезмерной внешней активацией специфической активности клетки при дисгормональных нарушениях и патологии нервной регуляции.

Патология гр. ЭПС с блокадой синтетических и/или транспортных процессов в клетке сопровождается вакуолизацией, фрагментацией органеллы, нарушением связи с рибосомами и др. Это приводит к дистрофиям, нарушению ресинтетических процессов в клетке.

Гипоксия, различного рода интоксикации изменяют форму цистерн и их размеры. Наблюдается фрагментация цистерн, изменяется их распределение в клетке. На цистернах исчезают рибосомы или они распределяются неравномерно. Эти явления значительно снижают эффективность синтетической функции клетки, в первую очередь восстановление мембранных структур, синтез секрета, восполнение лизосомальных ферментов. Это ведет к угнетению пластических (анаболических) процессов в клетке.

Патологические изменения могут возникать в функционировании свободных и связанных рибосом, что обусловлено несколькими механизмами. Свободные и связанные с гр. ЭПС рибосомы не связываются с иРНК, блокируются соединения с тРНК, не объединяются субъединицы рибосом, необходимые для процессов трансляции.

Дезагрегация рибосом и полисом на гр. ЭПС, их исчезновение вызывают нарушения синтеза секреторных и лизосомальных белков, белков клеточной мембраны.

Для гиповитаминоза С характерно неравномерное распределение рибосом на мембранах, что обусловлено нарушением рецепторной функции мембран гр. ЭПС и вызывает снижение синтетической активности клетки.

Нарушения в гладкой ЭПС выражаются патологией регенерации клеточных мембран, синтеза гликогена, липидов, стероидных гормонов, депонирования и высвобождения Са 2+ , детоксикации экзогенных и эндогенных веществ. Эти нарушения проявляются снижением обезвреживающей функции печеночных клеток, а также уменьшением секреторной активности экзокринных и эндокринных желез, уменьшением интенсивности сокращений в мышечной ткани. Может снижаться двигательная активность фагоцитов, нарушаться передача возбуждения в нейронах и т. д.

Нарушения в комплексе Гольджи . Это патологии модификации, сортировки и упаковки белков, которые или секретируются клеткой, или поступают в плазмолемму, изменения в лизосомах, нарушение образования полисахаридов, гликопротеинов, липопротеинов, гликолипидов.

Гиперфункция комплекса Гольджи с его гипертрофией вызывает избыточную секрецию и/или накопление секреторных продуктов внутри клетки. Гипертрофия с гиперфункцией комплекса Гольджи в секреторных клетках наблюдается при избыточной стимуляции секреции вегетативными нервными окончаниями, гиперфункции гормонов, стимулирующих секрецию. Гиперфункция комплекса Гольджи сопровождается набуханием цистерн, увеличением их числа и размеров. Подобным же образом изменяются вакуоли и пузырьки, участвующие в его формировании.

Гипофункция комплекса Гольджи нарушает репарацию мембранных комплексов клетки, снижает ее секреторную активность и переваривающую способность. Гипофункция возникает при гипотрофии и атрофии, денервации, гипофункции гормонов, стимулирующих секреторную активность клеток, и/или при повышенной активности гормонов, блокирующих секрецию, нарушениях питания. При вирусных инфекциях структуры комплекса Гольджи могут исчезнуть или их содержание резко уменьшается.

Парциальные нарушения функций комплекса Гольджи обусловлены врожденными или приобретенными ферментопатиями и сопровождаются блокадой созревания отдельных гликопротеиновых, липопротеиновых и других комплексов.

Патология лизосом . Она сопровождается активацией аутолиза при избыточной и дистрофией при недостаточной активности.

Повышение проницаемости мембран лизосом под действием гипоксии, СПОЛ, канцерогенных веществ и др. приводит к активизации переваривания с самоперевариванием клетки (аутолизом). Запускается аутолиз при гипоксии, кахексии (истощении) организма, травмах клетки, действии чрезмерно высокой или низкой температуры, кислот и щелочей, выраженной интоксикации, ионизирующих излучениях и др. Глюкокортикоиды, холестерин, противовоспалительные препараты поддерживают сохранность мембран, предотвращая самопереваривание.

Противоположное явление - недостаточное внутриклеточное переваривание - сопровождается накоплением в клетке продуктов неполного разрушения, что может приводить к дистрофии. Как вариант нарушения переваривания - невозможность разрушения патогенных микроорганизмов - нарушает защитные реакции организма. Уменьшение числа лизосом, снижение ферментативной активности встречаются при хронической гипоксии, избытке стероидных гормонов, некоторых инфекциях и нарушениях обмена веществ и др.

Патологию в лизосомах наблюдают при следующих явлениях: изменениях в самих лизосомах и реакции лизосом на нарушения в других клеточных компонентах. При генетических изменениях, вызывающих перестройку лизосомальных ферментов и снижающих их ферментативную активность, возникают «болезни накопления», при которых увеличивается количество остаточных телец и изменяются структуры вторичных митохондрий. Отравление клеток каротином при гипервитаминозе повышает проницаемость мембран клетки, в том числе мембран лизосом, лизосомальным ферментам становятся доступны клеточные субстраты, активируется аутолиз.

Нарушение функций пероксисом . Это снижает эффективность обезвреживания кислородных радикалов и активизирует перекисные процессы в клетке, приводит к накоплению недоокисленных продуктов и активизации свободнорадикальных перекисных процессов, что нарушает проницаемость мембран, вызывает мутации и аутолиз. Снижается содержание пероксисом при ионизирующем излучении и в опухолевых клетках.

Увеличение количества пероксисом встречается при патологических процессах и носит защитно-компенсаторный характер, например при лептоспирозе и вирусном гепатите.

Нарушения структуры и функций центриолей . Это нарушает деление, структурирование клетки вне деления, образование ресничек и жгутиков.

Нарушения структуры и функции центриолей, формирующих клеточный центр, тесно взаимосвязаны с процессами полимеризации и деполимеризации микротрубочек. В результате распада центриолей и разрушения центросферы изменяется распределение органелл в гиалоплазме. Комплекс Гольджи локализуется вблизи клеточного центра. При нарушениях в клеточном центре могут быть значительные изменения распределения транспортных процессов как в пределах компартментов комплекса, так и от него в направлении цитомембраны (регулируемая секреция) и в цитозоле (прелизосомы).

Под действием колхицина и его аналогов, разрушающих клеточный центр, блокируются процессы митоза и нормальное распределение генетического и цитоплазматического материала при делении.

Изменения элементов цитоскелета (микротрубочек, микрофиламентов, микротрабекул) . Они изменяют форму и подвижность клеток, нарушают распределение и перемещение компонентов клетки, транспорта веществ в клетку и из нее, возникает дезагрегация в межклеточных соединениях.

Патология полимеризации микротрубочек может привести к нарушению процессов перемещения секреторных пузырьков, лизосом, органелл в клетке, нарушению митоза, затруднению экзоцитоза секреторных включений, изменениям в формировании и подвижности ресничек и жгутиков. Например, изменение активности динеина блокирует движения ресничек дыхательных путей и половых органов, ведет к застою.

Полимеризация тесно связана с содержанием ионов кальция. Она может быть блокирована колхицином. Недостаток АТФ также вызывает снижение подвижности ресничек и жгутиков. Нарушение функции кинезиновых и динеиновых комплексов в нейротубулах (микротрубочках нейронов) сопровождается грубыми нарушениями в транспорте веществ вдоль аксона. Снижается регенерация поврежденных отростков нейронов.

Патология формирования тонких филаментов сопровождается повреждением микроворсинок и стереоцилий, ленточных десмосом. Снижается подвижность клеток, нарушаются процессы фагоцитоза и циклоза, возникает дискинезия выводящих путей экзокринных желез. Деполимеризация тонких микрофиламентов (миофиламентов) мышечной ткани характеризуется блокадой сокращений. Подобные явления наблюдают при невозможности взаимодействия тонких и толстых миофиламентов и микромиозиновых комплексов, например, когда нарушаются кальциевый обмен, образование, транспорт и использование АТФ, изменяется строение тропомиозинов и др.

Нарушения синтеза и распределения промежуточных филаментов сопровождаются деформациями клеток и ядер, значительно снижается механическая прочность клеток и их соединений. Снижение прочности адгезивных соединений связано с десмосомальными и полудесмосомальными контактами.

Кроме изменений в полимеризации самих микротрубочек, промежуточных филаментов и тонких микрофиламентов может возникнуть дезинтеграция их связи со структурными белками цитомембран.

Нарушения функций плазматической мембраны . Под действием патогенных факторов в течение длительного времени может повышаться ионная проницаемость клеточной мембраны. Нарушается функция калий-натриевых, кальций-магниевых и других насосов. В результате происходит перераспределение ионов внутри и вне клетки. Накапливаются ионы натрия, кальция и хлора и уменьшается количество калия в клетке. Процесс нередко сопровождается уменьшением количества АТФ либо блокированием АТФаз. Проникновение ионов Na + и Cl — вызывает повышение внутриклеточного давления и набухание вплоть до разрыва цитомембраны. Изменения проницаемости мембран характерны для многочисленных повреждений, в том числе гипоксии, действия животных и растительных ядов, ионизирующих излучений, блокаторов АТФаз и др.

Кроме повреждения транспорта ионов происходит снижение всасывания глюкозы (при сахарном диабете), отдельных аминокислот и др.

Наряду с блокадой активного транспорта при повреждениях нередко изменяются процессы эндоцитоза и экзоцитоза. Дисфункция эндоцитоза, не связанного с белками-рецепторами, обусловлена повреждением белков слияния. Это приводит к изменению транспортных процессов в эпителиальной ткани, в том числе в эндотелии кровеносных сосудов.

Микроэндоцитоз, опосредуемый через рецепторы, нарушается в связи с изменением рецепторного аппарата мембраны клетки. Это может быть также обусловлено нарушением образования вторых посредников, патологией прикрепления клатринов к внутренней поверхности мембраны клетки.

При фагоцитозе бактерий, крупных частей клетки и др. может нарушаться взаимодействие фагоцитируемой частицы с рецепторами на поверхности клетки, изменяются содержание кальция и полимеризация тонких микрофиламентов и микротрубочек.

Снижение спонтанной секреции вызывает повреждения комплекса Гольджи, что ведет к недостаточному восстановлению цитомембраны. Регулируемая секреция патологически меняется за счет дисфункции гормонального и нервного контроля, патологической деполяризации или гиперполяризации мембраны, избыточной или недостаточной активации клетки через вторые посредники, патологии микротрубочек и уровня внутриклеточного кальция. Изменения сопровождаются нарушением выведения секреторных продуктов, в том числе гормонов, ферментов, слизи, медиаторов при синаптической передаче в нервной ткани и т. д.

Одним из ведущих повреждающих механизмов клеточных мембран является каскад свободно-радикальных перекисных реакций липидов, в конечном итоге сопровождающийся накоплением амфифильных соединений с резким усилением проницаемости цитомембраны и активизацией аутолитических процессов.

При изменении рецепторного аппарата клетки повышается или снижается количество рецепторов к гормонам или другим биологически активным веществам, уменьшается аффинность (специфичность) рецепторов. Причины нарушений могут быть первичными (генетически обусловленными) или вторичными (приобретенными). Примерами причин вторичных нарушений служат аутоиммунный процесс с разрушением рецепторов антителами, компенсаторное уменьшение чувствительности к гормонам при повышении их активности, например увеличение содержания инсулина в сочетании со снижением чувствительности к нему при ожирении и инсулиннезависимом сахарном диабете.

Увеличение количества рецепторов наблюдают при денервации, например, в зонах, лишенных симпатического нервного контроля, повышается содержание рецепторов к адреналину и норадреналину. Уменьшение содержания рецепторов приводит к развитию заболеваний, связанных с относительной недостаточностью гормона, которые не корректируются введением даже повышенных доз этого биологически активного вещества (инсулиннезависимый сахарный диабет, карликовость).

Иногда наблюдаются изменения в передаче сигнала от рецепторов внутрь клетки. Возбуждение, вызванное сигналом, может передаваться в глубь клетки несколькими способами: при взаимодействии рецептора с интегральным G-белком, активирующим образование сигнальных молекул цитоплазмы (вторых посредников) - цАМФ, ионов кальция, цГМФ; во втором случае рецептор связан с тирозинкиназами, которые запускают Ras-каскад, в результате чего образуется инозитол-1,4,5-трифосфат, диацилглицерол. Вторые посредники влияют на цепь каталитических реакций, в том числе транскрипцию. Изменение активности вторых посредников и образующих их белков может привести к снижению или усилению влияния гормональных факторов.

Нарушение аффинности (сродства) рецепторов к молекулам адгезии и агрегации приводит к снижению прилипания клеток к себе подобным и/или межклеточным структурам. Нарушение «узнавания» рецептором гликокаликса родственных клеток сопровождается патологической подвижностью клеток с возможностью их миграции в организме. Такой способностью обладают злокачественные опухолевые клетки, что ведет к формированию метастазов и вызывает инфильтративный рост. В то же время снижение адгезивных свойств селектинов и интегринов лейкоцитов приводит к синдрому так называемых «ленивых» лейкоцитов, когда они не могут проникнуть из сосуда в зону воспаления.

Патология белков цитомембран, выполняющих опорно-каркасную функцию, нарушает форму клеток и их механическую прочность. Например, анемии с нарушением формы эритроцитов обусловлены повреждением связи опорных белков с микротрубочками и тонкими микрофиламентами.

Снижение активности белков-ферментов цитомембраны столбчатых энтероцитов резко затрудняет процессы пристеночного пищеварения в тонкой кишке. Повреждение белков-ферментов гликокаликса тироцитов блокирует образование гормонов щитовидной железой, а у фибробластов подавляет синтез коллагеновых и эластических волокон.

Нарушения образования главных комплексов гистосовместимости первого класса сопровождаются активизацией аутоиммунных процессов. Некоторые патогенные микроорганизмы выделяют фермент нейраминидазу, обнажающий антигенные структуры на мембранах клеток организма, что приводит к уничтожению таких клеток лейкоцитами. Изменяются главные комплексы гистосовместимости и при опухолевом перерождении клеток.

Нарушение функции механических контактов клетки (десмосом, полудесмоеом, ленточных десмосом) приводит к снижению прочности таких соединений, к разрывам контактов клеток с соседними структурами даже при незначительных механических воздействиях.

Патология щелевидных контактов нарушает единство физиологических реакций в тканях. Так, в гладкой и сердечной мышечной тканях подавляется проведение импульса, в эпителиальной ткани происходит десинхронизация процессов регенерации и секреторной активности клеток.

Структурно-функциональные изменения плотных контактов приводят к диффузии веществ из полостей в межклеточное вещество эпителия и далее в соединительную ткань и наоборот, что нарушает гомеостаз.

Патология функции синапсов сопровождается блокадой или усилением синаптической передачи с нарушениями функций нервной системы.

Микроскопически на ранних этапах повреждения чаще происходит округление (выравнивание формы и границ) клеток и потеря числа клеточных выростов и микроворсинок. В дальнейшем, наоборот, появляются на поверхности различные выросты и мелкие пузырьки, в норме не встречающиеся. Часто поверхность клетки как бы вскипает.

Таким образом, в приведенных в разделе материалах рассмотрены только некоторые из узловых моментов возможных нарушений. Они не могут охватить весь спектр подобных явлений, но позволяют наметить те направления изменений, которые происходят в клетке под влиянием повреждающих факторов. Каждое из изменений происходит не отдельно, а тянет за собой цепь структурно-функциональных нарушений во взаимодействующих между собой макромолекулярных комплексах, органеллах, частях клетки.

Расстройство внутриклеточных механизмов регуляции функции клеток. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:

1) на уровне взаимодействия БАВ (гормонов, нейромедиаторов и др.) с рецепторами клетки. Изменение чувствительности, числа и (или) конформации молекул рецептора, его биохимического состава или липидного окружения в мембране может существенно модифицировать характер клеточного ответа на регуляторный стимул. Так, накопление токсичных продуктов СПОЛ в клетках миокарда при ишемии обусловливает изменение физико-химического состава их мембран, в том числе и цитолеммы, что сопровождается на рушением реакции сердца на нейромедиаторы вегетативной нервной системы: норадреналин и ацетилхолин, а также другие БАВ;

2) на уровне клеточных, так называемых вторых посредников (мессенджеров) нервных влияний: циклических нуклеотидов - аденозинмонофосфата (цАМФ), гуанозинмонофосфата (цГМФ), образующихся в ответ на действие «первых посредников» - гормонов и нейромедиаторов.
Примером может служить нарушение формирования мембранного потенциала в кардиомиоцитах при накоплении в них избытка цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

3) на уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.

Виды повреждения клеток:

Повреждение клеток характеризуется развитием разнообразных изменений в них. Однако их можно объединить в несколько групп.
Дистрофии.
Дисплазии.
Типовые нарушения субклеточных структур и компонентов.
Некроз.

Дистрофии:

Дистрофии (от лат.
dys - нарушение, расстройство + греч. trophe - питаю) - это нарушения обмена веществ в клетках, сопровождающиеся расстройствами их функций, пластических процессов и структурными изменениями, ведущими к нарушению их жизнедеятельности.

Основными механизмами дистрофий являются:

1) синтез аномальных веществ в клетке, например, белково-полисахаридного комплекса амилоида;
2) избыточная трансформация одних соединений в другие, например, жиров и углеводов в белки, углеводов в жиры;
3) декомпозиция (фанероз), например, белково-липидных комплексов мембран;
4) инфильтрация клеток (и межклеточного вещества) органическими и неорганическими соединениями, например, холестерином и его эфирами стенок артерий при атеросклерозе.

К числу основных разновидностей клеточных дистрофий в зависимости от преимущественно нарушенного вида обмена веществ относят:
белковые (диспротеинозы);
жировые (липидозы);
углеводные;
пигментные;
минеральные.

Диспротеинозы:

Характеризуются изменением фихико-химических свойств белков клеток и как следствие нарушением их ферментативной и структурной функций.
Наиболее часто диспротеинозы проявляются в виде зернистой, гиалиново-капельной и гидропической дистрофии. Нередко они представляют собой последовательные этапы нарушения обмена цитоплазматических белков, приводящих к некрозу клеток.

При зернистой дистрофии в цитоплазме появляются гранулы (зерна) белка. Они образуются в результате инфильтрации (проникновения) его из межклеточной жидкости, трансформации углеводов и жиров в белки, распада (декомпозиции) липопротеидов цитоплазмы и мембран. Одной из главных общих причин зернистой дистрофии является нарушение энергообеспечения клеток.

Гиалиновая дистрофия характеризуется накоплением в цитоплазме белковых гиалиноподобных ацидофильных включений («капель»). Одновременно с этим выявляются признаки деструкции клеточных органелл. Признаки гиалиновой дистрофии наблюдаются при состояниях, вызывающих повышение проницаемости клеточных мембран.

Липидозы:

К липидозам откосят различные по химическому составу вещества, нерастворимые в воде. Липидозы проявляются либо увеличением содержания внутриклеточных липидов, либо появлением их в клетках, где они в норме отсутствуют, либо образованием липидов аномального химического состава. Липидозы, так же, как и диспротеинозы, наиболее часто наблюдаются в клетках сердца, печени, почек, мозга и носят соответствующие названия (жировая дистрофия сердца, печени, почек, мозга).

Углеводные дистрофии:

Характеризуются нарушением обмена полисахаридов (гликогена, мукополисахаридов) и гликопротеидов (муцина, мукоидов).

«Полисахаридные» дистрофии проявляются:
1) уменьшением их содержания в клетке (например, гликогена при сахарном диабете);
2) их отсутствием или значительным снижением (агликогенозы);
3) накоплением их избытка (гликогенная инфильтрация клеток, гликогенозы).
Причиной углеводных дистрофий чаще всего являются эндокринопатии (например, инсулиновая недостаточность) или ферментопатии (отсутствие или низкая активность ферментов, принимающих участие в процессах синтеза и распада углеводов).
Углеводные дистрофии, связанные с нарушением метаболизма гликопротеидов, характеризуются, как правило, накоплением муцинов и мукоидов, имеющих слизистую консистенцию. В связи с этим их называют слизистыми дистрофиями. Причинами их наиболее часто служат эндокринные расстройства (например, недостаточная продукция или низкая активность гормонов щитовидной железы), а также прямое повреждающее действие на клетки патогенных факторов.

Пигментные дистрофии (диспигментозы):

Пигменты клеток организма человека и животных принимают участие в реализации многих функций: синтез и катаболизм веществ, рецепция различных воздействий, защита от повреждающих факторов.
Клеточные пигменты являются хромопротеидами, т. е. соединениями, состоящими из белка и красящего вещества.

В зависимости от биохимического строения эндогенные клеточные пигменты разделяют следующим образом:
1) гемоглобиногенные (ферритин, гемосидерин, билирубин, гематоидин, гематин, порфирин);
2) протеиногенные, тирозиногенные (меланин, адренохром, пигменты охроноза и энтерохромафинных клеток);
3) липидогенные, липопротеиногенные (липофусцин, гемофусцин, цероид, липохромы).
Все диспигментозы делятся на несколько групп в зависимости от их происхождения, механизма развития, биохимической структуры пигмента, проявлений и распространенности.

Виды диспигментозов

По происхождению:
1. Первичные (наследственные, врожденные).
2. Вторичные, приобретенные (возникающие под действием патогенных агентов в течение постнатального периода жизни организма).

По механизму развития:
1. Обусловленные дефектами ферментов (ферментопатиями) метаболизма пигмента и (или) изменением их активности.
2. Связанные с изменением содержания и (или) активности ферментов транспорта пигментов через мембраны клетки.
3. Вызванные повреждением мембран клеток.
4. Обусловленные накоплением избытка пигментов в клетках, обладающих свойством фагоцитоза.

По биохимической структуре пигмента:
1. Гемоглобиногенные, «железозависимые».
2. Протеиногенные, тирозиногенные.
3. Липидогенные, липопротеиногенные.

По проявлениям:
1. Появление в клетке пигмента, отсутствующего в ней в норме.
2. Накопление избытка пигмента, образующегося в клетке в норме.
3. Уменьшение количества пигмента, образующегося в клетке в норме.

По распространенности:
1. Местные (регионарные).
2. Общие (распространенные).

Гемоглобиногенные диспигментозы включают гемосидероз, гемохроматоз, ге-момеланоз, порфирию, накопление избытка прямого билирубина в гепатоцитах. Большинство гемоглобиногенных пигментов относятся к продуктам катаболизма гемоглобина. Некоторые из них (ферритин, гемосидерин) образуются с участием железа, всасывающегося в кишечнике.

Часть гемоглобиногенных диспигментозов является результатом ферментопатии. К ним относятся, в частности, первичный гемохроматоз и порфирия.

Первичный гемохроматоз - заболевание, обусловленное генетическим дефектом (передается аутосомно-доминантным путем) группы ферментов, участвующих в процессах транспорта железа из полости кишечника. При этом в кровь поступает избыток железа, которое накапливается в виде ферритина и гемосидерина в клетках различных тканей и органов (печени, миокарда, кожи, желез внутренней секреции, слюнных желез и др.). Сходные изменения наблюдаются и при вторичном гемохроматозе. Он является результатом либо приобретенной недостаточности ферментов, обеспечивающих обмен пищевого железа (при алкоголизме, интоксикациях), либо - повышенного поступления железа в организм с продуктами питания или железосодержащими лекарственными препаратами, либо следствием избыточного гемолиза эритроцитов.

Порфирия характеризуется накоплением в клетках уропорфириногена I, порфобилина, порфириногенов. Одной из частых причин порфирии является дефицит или низкая кинетическая активность ферментов метаболизма порфиринов (в частности, уропорфириноген - III - косинтетазы) наследственного или приобретенного характера.

Большинство других разновидностей гемоглобиногенных диспигментозов (гемосидероз, гемомеланоз) являются следствием избыточного накопления пигметов в клетках в связи с повышенным гемолизом эритроцитов различного генеза (при инфекциях, интоксикациях, переливании иногруппной крови, резус-конфликте и др.).

Протеиногенные (тирозиногенные) диспигментозы проявляются усилением или ослаблением пигментации тканей (локального или общего характера) продуктами метаболизма тирозина.
Усиление пигментации нередко является следствием избытка в клетках меланина (меланоз, от греч. melas - темный, черный). Наблюдается при надпочечнико-вой недостаточности, обусловленной уменьшением их массы, например, при туберкулезном или опухолевом поражении, при аденоме гипофиза, гипертиреоидизме, опухолях яичников. Считают, что избыток меланина в клетках является результатом его повышенного синтеза из тирозина вместо адреналина. Процесс мелани-нообразования потенциируется АКТГ, уровень которого повышен в условиях дефицита адреналина в крови.

Накопление пигмента охроноза (от греч. ochros - желтый, желтоватый) в клетках наблюдается при первичной (наследственной) ферментопатии, характеризующейся недостаточнрстью энзимов метаболизма тирозина и фенилаланина. При этом гиперпигментация носит местный или распространенный характер. Пигмент накапливается в клетках тканей носа, ушных раковин, склер, трахеи, бронхов, сухожилий, хрящей и др.

Ослабление пигментации тканей или отсутствие пигмента в их клетках (альбинизм, от лат. albus - белый) также может быть первичного или вторичного происхождения. При альбинизме меланин отсутствует в клетках кожи, радужки глаз, в волосах. Причиной этого чаще всего является наследственно обусловленное отсутствие в клетках фермента тирозиназы. В случае местного уменьшения пигментации, например, кожи (лейкодерма, витилиго) существенное значение имеет вторичное нарушение обмена меланина в связи с нейроэндокринными нарушениями его регуляции (при гипоинсулинизме, снижении уровня гормонов пара-щитовидных желез), вследствие образования антител к меланину либо в результате повышенного разрушения меланоцитов при воспалении или некрозе тканей.

Липидогенные диспигментозы, характеризующиеся чаще всего увеличением в клетках количества пигментов липидного или липопротеидного характера (липофусцина, гемофусцина, липохромов, цероида). Все эти пигменты весьма сходны по основным физическим и биохимическим свойствам. У человека обычно встречаются различные варианты местного липофусциноза наследственного (реже) или приобретенного (чаще) происхождения.

Считается, что основными причинами приобретенного липофусциноза являются гипоксия тканей, дефицит в организме витаминов, белка, отдельных видов липидов. Наиболее часто он развивается в пожилом и старческом возрасте, у людей с хроническими «обменными» заболеваниями.
Наследственные и врожденные липофусцинозы характеризуются накоплением избытка липофусцина в клетках, сочетающимся обычно с ферментопатиями (т. е. эти липофусцинозы являются вариантом болезней накопления - тезаурис-мозов). Примерами этих болезней могут быть нейрональные липофусцинозы (отложение избытка липофусцина в нейронах, что сочетается со снижением интеллекта, зрения, слуха, развитием судорог), печеночные липофусцинозы, сочетающиеся с нарушениями обмена билирубина, обусловленными наследственными дефектами ферментов транспорта глюкоронизации желчных пигментов.

Минеральные дистрофии:

Проявляются значительным уменьшением или увеличением содержания минеральных веществ в клетках. Наибольшее значение имеют нарушения обмена соединений кальция, калия, железа, цинка, меди. Их ионизированные и молекулярные фракции участвуют в процессах регуляции проницаемости мембран клеток, активности ферментов, формирования потенциала покоя и действия, реализации действия гормонов и нейромедиаторов, электромеханического сопряжения в миоцитах и многих других клетках.

Минеральные дистрофии характеризуются накоплением избыточного содержания в клетках молекулярных или ионизированных фракций катионов (например, кальцинозы, сидерозы, отложения меди при гепатоцеребральной дистрофии) или уменьшением их содержания.

Одной из наиболее распространенных у человека разновидностей клеточных минеральных дистрофий является кальциноз - накопление («отложение») избытка солей кальция в клетках. Кальциноз может носить общий или местный характер. На «территории» клетки в наибольшей мере соли кальция накапливаются в митохондриях, лизосомах (фаголизосомах), в канальцах саркоплазматической сети. Основной причиной клеточного кальциноза является изменение физико-химических свойств гиалоплазмы клетки (например, внутриклеточный алкалоз), сочетающееся с абсорбцией кальция. Наиболее часто отмечается кальциноз клеток миокарда, эпителия почечных канальцев, легких, слизистой желудка, стенок артерий.

К числу дистрофий относят также тезаурисмозы (от греч. thesauriso - накопление, поглощение, наполнение). Они характеризуются накоплением избытка различных веществ в клетках, что сопровождается нарушением их структуры и функции, а также - интенсивности и характера метаболических и пластических процессов в них.

Практически все тезаурисмозы - результат наследственной патологии ферментов, передающихся, как правило, по аутосомно-рецессивному типу. Наследуемые изменения в генетической программе обусловливают дефект ферментов (ли-зосомальных, мембраносвязанных, свободных). Следствием этого является нарушение метаболизма в клетке, обусловливающее накопление в ней продуктов неполного или аномального расщепления субстратов.

В зависимости от биохимической структуры накапливающихся в клетках веществ тезаурисмозы разделяют на липидные (липидозы), гликогеновые (гликогенозы), аминокислотные, нуклеопротеидные, мукополисахаридные, муколи-пидные. Наиболее распространенными разновидностями тезаурисмозов являются липидные и гликогеновые.

Дисплазии:

Дисплазии (от лат. dys - нарушение, расстройство + греч. plasis - образую) - это общее название нарушений процесса развития (дифференцировки, специализации) клеток, проявляющихся стойким изменением их структуры и функции, что ведет к расстройству их жизнедеятельности.

Причинами дисплазий являются факторы физического, химического или биологического характера, повреждающие геном клетки. При этом нарушается генетическая программа клеток или механизмы ее реализации. Именно это обусловливает стойкие и, как правило, наследуемые от клетки к клетке изменения в отличие от дистрофий, которые нередко носят временный, обратимый характер и могут устраняться при прекращении действия причинного фактора.

Основным механизмом дисплазий является расстройство процесса дифференцировки, который заключается в формировании структурной и функциональной специализации клетки. Клеточная дифференцировка определяется в основном генетической программой. Однако реализация этой программы в существенной мере зависит от сложных взаимодействий ядра и цитоплазмы, микроокружения клетки, влияния на нее БАВ и многих других факторов. Именно поэтому даже при одном и том же изменении в геноме различных клеток проявления дисплазий могут носить «разноликий характер».

Дисплазий проявляются изменением величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную, причудливую форму («клетки-монстры»), соотношение различных органелл в них диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических процессов.

В качестве примеров клеточных дисплазий можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидных эритроцитов при наличии патологического гемоглобина, крупных нейронов - «монстров» при поражении коры большого мозга (туберкулезный склероз), многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе (болезнь Реклинхаузена). Клеточные дисплазий являются одним из проявлений атипизма опухолевых клеток.

Типовые нарушения субклеточных структур и компонентов:

Клетка представляет собой многокомпонентную систему. Она включает в себя ядро, гиалоплазму, органеллы (митохондрии, пероксиомы, рибосомы, эндоплазматическую сеть, лизосомы, пластинчатый комплекс, или комплекс Гольджи, клеточный центр, микротрубочки, микрофиламенты), метаплазматические специализированные специализированные образования (миофибриллы, нейрофибриллы, тонофибриллы, микроворсинки, десмосомы и др.); включения (трофические, секреторные, а также специфические для отдельных клеток, например, гранулы тучных клеток, или лаброцитов, содержащие серотонин, гистамин, гепарин и другие вещества). Указанные компоненты клетки окружены плазмолеммой (цитолеммой).

Повреждение клетки характеризуется большим или меньшим нарушением структуры функции всех ее компонентов. Однако при действии различных патогенных факторов могут преобладать признаки повреждения отдельных из них.

Ядро является «носителем» генетической программы клетки. Повреждение ядра сочетается с изменением его величины и формы, числа ядрышек в нем, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двухконтурности или разрывами ядерной оболочки, слиянием ее с полоской маргинации хроматина, появлением включений, спутников ядра и др.

Митохондрии. Эти органеллы участвуют во многих внутриклеточных процессах. Главными из них являются окисление, сопряженное с фосфорилированием, ведущее к образованию АТФ и регуляции внутриклеточного содержания кальция (митохондрии обладают высокой кальциевой емкостью), калия, ионов водорода.

При действии патогенных факторов отмечается изменение общего числа митохондрий, а также структуры отдельных органелл. Уменьшение числа митохондрий по отношению к общей массе клетки, в частности в печени, наблюдается при длительном голодании, после облучения организма, при сахарном диабете.

Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий являются уменьшение или увеличение их размеров и изменение формы. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления) сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембран, фрагментации и гомогенизации крист. Нередко отмечаются утрата гранулярной структуры и гомогенизация крист, утрата гранулярной структуры и гомогенизация матрикса органелл, потеря двухконтурности их наружной мембраны, отложения в матриксе органических (миелин, липиды, гликоген) и неорганических (чаще всего соли кальция) соединений. Нарушение структуры митохондрий приводит к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов (Са2+, К+, Н+) внутри клетки.

Лизосомы. В норме ферменты лизосом обеспечивают обновление структур клетки при их старении или повреждении, а также уничтожение чужеродных агентов в процессе фагоцитоза.
При патогенных воздействиях высвобождение и активация ферментов лизосом может привести к «самоперевариванию» (аутолизу) клетки. Повышенный выход лизосомальных гидролаз в цитоплазму может быть обусловлен механическим разрывом их мембраны или значительным повышением проницаемости («лабилизацией») последних.

Это является следствием накопления в клетках ионов водорода (внутриклеточный ацидоз), воздействия продуктов СПОЛ, токсинов и других агентов. У человека и животных нередко выявляются также первичные, наследственные нарушения функций лизосом (так называемые лизосомные болезни). Они характеризуются дефицитом и (или) снижением активности лизосомальных ферментов. Это, как правило, сопровождается накоплением в клетке избытка веществ, которые в норме метаболизируются с участием энзимов лизосом. Указанные формы лизосомальных ферментопатий являются разновидностью тезаурисмозов - болезней накопления, к которым относятся, как уже указывалось, гликогенозы, ганглиозидозы, некоторые гепатозы (сопровождающиеся накоплением в гепатоцитах липофусцина и, как правило, прямого билирубина) и др.

Рибосомы. Эти органеллы необходимы для реализации генетической программы клеток. С их участием происходит синтез белка на основе считывания информации с и-РНК. Поэтому около 40% массы рибосом составляет РНК. При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), состоящих обычно из нескольких рибосом - «мономеров»; уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопрвождаются снижением интенсивности синтеза белка в клетке.

Эндоплазматическая сеть. Выполняет в клетке функции накопления и распределения различных веществ (в частности, ионов кальция в миоцитах), а также участвует в инактивации химических агентов. При повреждении отмечается расширение канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости, очаговая деструкция мембран канальцев сети, их фрагментация. Изменение структуры эндоплазматической сети может сопровождаться развитием клеточных дистрофий, нарушением распространения импульса возбуждения, сократительной функции мышечных клеток, процессов обезвреживания цитотоксических факторов (ядов, метаболитов, свободных радикалов и др.).

Пероксисомы (микротельца). Топографически тесно связаны с эндоплазматической сетью. В микротельцах содержатся различные оксидазы, участвующие в процессах окисления высших жирных кислот, углеводов, аминокислот и других (в том числе цитотоксических) субстратов расщепления перекиси водорода, различных восстановительных компонентов дыхательной цепи. При повреждениях клетки различного генеза может наблюдаться увеличение (в условиях алкогольной интоксикации, вирусной агрессии) или уменьшение (при гипоксии, действии ионизирующей радиации) числа пероксисом. Известны также первичные нарушения функций пероксисом наследственного происхождения («пероксисомные болезни»). Они характеризуются нарушением обмена веществ в результате либо дефицита и (или) дефекта отдельных ферментов пероксисом, чаще всего каталазы, либо отсутствия микротелец в клетке.

Комплекс Гольджи. Играет существенную роль в процессах транспорта веществ в клетках с высокой метаболической и секреторной активностью, особенно в железах внутренней секреции и клетках, продуцирующих слизь. В этом комплексе также синтезируется ряд веществ (полисахариды, белки), активируются ферменты, депонируются различные соединения. С его участием «генерируются» лизосомы. Повреждение комплекса Гольджи сопровождается структурными изменениями, сходными с таковыми в эндоплазматической сети. При этом нарушаются выведение из клетки продуктов жизнедеятельности, инактивация в ней токсичных соединений, что может обусловить расстройство ее функции в целом.

Микротрубочки, микрофиламенты, промежуточные филаменты (цитокератины, нейрофиламенты, глиальные нити). Составляют «скелет» клетки, обеспечивают выполнение ее опорной, транспортной, контрактильной, двигательной функций. Повреждение цитоскелета может обусловить нарушение тока секреторных гранул или жидкостей, реализации фагоцитоза, митотического деления клеток, упорядоченного движения ресничек (например, эпителия дыхательных путей или «хвоста» сперматозоида, являющегося эквивалентом реснички).

Гиалоплазма (цитоплазматический матрикс). Представляет собой жидкую слабовязкую внутреннюю среду клетки. Основными компонентами гиалоплазмы являются внутриклеточная жидкость, различные структуры: органеллы, мета-плазматические образования и включения. Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в гиалоплазме жидкости, протеолиз или коагуляцию белка, образование «включений», не встречающихся в норме.

Изменение состояния гиалоплазмы в свою очередь существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе; на функцию органелл; на процессы восприятия регулирующих и других влияний на клетку.

Прижизненное изучение клеток показало, что в гиалоплазме наблюдаются упорядоченная циркуляция внутриклеточной жидкости, а также ритмические движения органелл. Высказываются допущения, что в различных регионах клетки и ее органеллах может циркулировать разная по составу жидкость. При повреждениях клеток возможно нарушение упорядоченного характера циркуляции ци-топлазматической жидкости. Примером дисциркуляторных расстройств могут быть изменения скорости транспорта нейромедиаторов по аксонам нейронов, замедление миграции фагоцитов (вследствие медленного перемещения гиалоплазмы в псевдоподии), развитие так называемого «парциального» отека в клетках (например, отек ядра, митохондрий, миофибрилл и т. д.).

Плазмолемма. В норме выполняет защитную, барьерную, контактную, информационную, транспортную функции. При повреждении клетки указанные функции плазмолеммы страдают в большей или меньшей мере. Это обусловлено значительными изменениями ее проницаемости (чаще повышением), целостности, числа и чувствительности рецепторных структур, трансмембранных «каналов» и другими отклонениями.

Повреждение отдельной клетки (включая и отдельные ее компоненты) может нарушить межклеточные взаимодействия («общение») и «кооперацию». В основе этого лежит изменение свойств и (или) структуры плазмолеммы, а также находящихся в ней и на ней рецепторных образований, поверхностных антигенов, межклеточных стыков; отклонение от нормы «набора» и свойств метаболитов, в том числе биологически активных (медиаторов и модуляторов «общения»). Это может потенцировать степень и масштаб расстройств в уже поврежденной клетке, а также обусловить альтерацию других, интактных клеток.

Совокупность изменений субклеточных структур и их функций, клеток в целом, а также нарушение их взаимодействия и кооперации лежат в основе развития типовых патологических процессов, типовых форм патологии органов и физиологических систем, конкретных болезней и болезненных состояний.

Некроз и апоптоз:

Повреждение отдельных компонентов клетки влияет на состояние всех ее структур и процессов, поскольку они объединены в одну сбалансированную систему, включенную, в свою очередь, в тканевой ансамбль клеток. Такая интеграция позволяет ликвидировать последствия повреждения в отдельной клетке, если сила и выраженность его сравнительно малы (обратимое повреждение). Если взаимодействие субклеточных структур и координация внутриклеточных процессов под влиянием патогенного фактора нарушены, то нарушается и гомеостаз клетки, она погибает - некротизируется или подвергается апоптозу (необратимое повреждение).

Некроз (от греч. necros - мертвый) - это гибель клеток, сопровождающаяся необратимым прекращением их жизнедеятельности. Некроз нередко является завершающим этапом дистрофий, дисплазий, а также следствием прямого действия повреждающих факторов значительной силы. Изменения, предшествующие некрозу, называют некробиозом или патобиозом.

Большинство погибших клеток подвергаются аутолизу, т. е. саморазрушению структур. Основным механизмом аутолиза является гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом. Этому способствует развитие ацидоза в поврежденных клетках. В процессе аутолиза принимают участие также свободные радикалы. Одним из аргументов является факт интенсификации свободнорадикальных и липопероксидных реакций в поврежденных тканях при воспалении, на определенных этапах инфаркта, опухолевого роста и при других патологических процессах.

В процессе лизиса поврежденных клеток могут принимать участие и другие клетки - фагоциты, а также микроорганизмы. В связи с этим в отличие от аутолитического механизма последний называют гетеролитическим. Таким образом, лизис некротизированных клеток (некролиз) может обеспечиваться ауто- и гетеролитическими процессами, в которых принимают участие ферменты и другие факторы как погибших, так и контактирующих с ними живых клеток.

Апоптоз (от греч. аро - отсутствие, отрицание чего-либо, ptosis - падение) -это генетически программируемый процесс прекращения жизнедеятельности и смерть клетки или группы клеток в живом организме. При этом погибшая клетка не подвергается аутолизу, а обычно поглощается и разрушается фагоцитом. Процесс апоптоза наблюдается при патологической гипертрофии тканей, воспалении, опухолевом росте; частота его нарастает по мере старения организма.

Проявления повреждения клеток:

Любое повреждение клетки вызывает в ней комплекс специфических и неспецифических изменений, выявляемых различными методами: биохимическими, физикохимическими, морфологическими и др.
Под специфическими понимают изменения свойств клеток, характерные для данного фактора при действии его на различные клетки, либо свойственные лишь данному виду клеток при воздействии на них повреждающих агентов различного характера. Так, повышение в любой клетке осмотического давления сопровождается ее гипергидратацией, растяжением мембран, нарушением их целостности.

Под влиянием разобщителей процесса окисления и фосфорилирования снижается или блокируется сопряжение этих процессов и уменьшается эффективность биологического окисления. Высокая концентрация в крови одного из гормонов коры надпочечников - альдостерона - обусловливает накопление в различных клетках избытка ионов натрия. С другой стороны, действие повреждающих агентов на определенные виды клеток вызывает специфическое для них (клеток) из менение. Например, влияние различных (химических, биологически, физических) патогенных факторов на мышечные клетки сопровождается развитием контрактуры их миофибрилл, на нейроны - формированием ими так называемого потенциала повреждения, на эритроциты - гемолизом и выходом из них гемоглобина.

Повреждение клетки всегда сопровождается комплексом и неспецифических, стереотипных, стандартных изменений в них. Они выявляются при действии разнообразных агентов. К числу часто встречающихся неспецифических проявлений альтерации клеток относятся ацидоз, чрезмерная активация свободнорадикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, дисбаланс ионов и жидкости, изменение параметров мембранного потенциала, повышение сорбционных свойств клеток.

Выявление комплекса специфических и неспецифических изменений в клетках органов и тканей дает возможность судить о характере и силе действия патогенного фактора, о степени повреждения, в также об эффективности применяемых с целью лечения медикаментозных и немедикаментозных средств. Например, по изменению активности в плазме крови специфического для клеток миокардита МВ-изофермента креатинфосфокиназы и содержания миоглобина в сопоставлении с динамикой уровня ионов калия (выходящего из поврежденных кардиоцитов), изменений на ЭКГ, показателей сократительной функции различных участков миокарда можно судить о степени и масштабе повреждения сердца при его инфаркте.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии