Наследственные нарушения. Патогенез наследственных заболеваний

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Наследственность – свойство клеток и организмов передавать свои анатомо-физиологические признаки (особенности) потомкам. Процесс передачи этих признаков – наследование. Передача осуществляется с помощью генов – материальных единиц наследственности. От родителей потомкам передаются не признаки в готовом виде, и информация (код) о синтезе белка (фермента), детерминирующего этот признак. Гены – участки молекулы ДНК. Они состоят из кодонов. Каждый кодон представляет собой группу из 3 нуклеидов и, ≥, явл-ся нуклеотидным триплетом. Каждый кодон кодирует инфор-ию о стр-ре аминокислот и местоположение ее в белковой молекуле. Гены собираются в блоки, а последние в ДНК-нити, которые образуют хромосому . Общее число хромосом у человека в соматической кл-ке 46, в гамете – 23.

Причины наследственных болезней : Стартовое звено патогенеза наследственных заболеваний - мутации - нарушения структуры генов, хромосом или изменение их числа. В зависимости от уровня организации генетического материала (ген, хромосома, геном) говорят о мутациях генных, хромосомных и геномных.

Причинами мутаций могут быть различные факторы. Их обозначают как мутагены, а изменения, приводящие к возникновению мутаций, называют мутационным процессом. В результате мутационного процесса возникают разные виды мутаций. Изменения генетического материала разнообразны (делеции, вставки и т.д.), что позволяет подразделить мутации по механизму дефекта генетического материала (типы мутаций).

Мутагены (равно и вызываемые ими мутации) классифицируют по происхождению (источнику) на эндогенные и экзогенные , а по природе на физические, химические и биологические .

1)Экзогенные мутагены. Их большинство, к ним относятся различные и многочисленные факторы внешней среды (радиационное излучение, алкилирующие агенты, окислители, многие вирусы).

2)Эндогенные мутагены образуются в процессе жизнедеятельности организма (мутации могут возникать под влиянием свободных радикалов, продуктов липопероксидации).

1)Физические мутагены - ионизирующее излучение и температурный фактор.

2)Химические мутагены - самая многочисленная группа мутагенов. К химическим мутагенам относятся: сильные окислители или восстановители (нитраты, нитриты, активные формы кислорода); алкилирующие агенты (йодацетамид); пестициды (гербициды, фунгициды); некоторые пищевые добавки (ароматические углеводороды, цикламаты); продукты переработки нефти; органические растворители; JIC (цитостатики, содержащие ртуть средства, иммунодеп-рессанты); другие химические соединения.

3)Биологические мутагены: вирусы (например, кори, краснухи, гриппа); Аг некоторых микроорганизмов.

В результате мутаций образуется аномальный ген с измененным кодом. Реализация действия аномального гена – завершающее звено патогенеза наследственных болезней. Различают несколько путей реализации аномального гена, образовавшегося вследствие мутаций:

1-й путь реализации действия аномального гена: аномальный ген, утративший код нормальной программы синтеза структурного или функционально важного белка > прекращение синтеза иРНК > прекращение синтеза белка > нарушение ж/д > наследственная болезнь (гипоальбуминемия, гемофилия А);

2-й путь реализации действия аномального гена: аномальный ген, утративший код нормальной программы синтеза фермента > прекращение синтеза иРНК > прекращение синтеза белка-фермента > нарушение ж/д > наследственная болезнь (энзимопатическая метгемоглобинемия, гипотиреоз, альбинизм, алкаптонурия);

3-й путь реализации действия аномального гена: аномальный ген с патологическим кодом > синтез патологической иРНК > синтез патологического белка > нарушение ж/д > наследственная болезнь (серповидно - клеточная анемия).

Причинами возникновения наследственных болезней и аномалий развития являются факторы, способные изменить качественную или количественную характеристику генотипа (структуру отдельных генов, хромосом, их число), то есть вызвать мутации. Такого рода факторы называют мутагенами. Мутагены классифицируют на экзогенные и эндогенные. Экзогенные мутагены могут быть химической, физической и биологической природы. Кхимическим экзогенным мутагенам относятся многие вещества промышленного производства (бензпирен, альдегиды, кетоны, эпоксид, бензол, асбест, фенол, формалин, ксилол и др.), пестициды. Выраженной мутагенной активностью обладает алкоголь. В клетках крови алкоголиков число дефектов в генетическом аппарате встречаются в 12-16 раз чаще, чем у непьющихили мало пьющих людей. Намного чаще в семьях алкоголиков рождаются дети с синдромами Дауна, Клайнфельтера, Патау, Эдвардса и другими хромосомными болезнями. Мутагенные свойства присущи и некоторым лекарственным препаратам (цитостатикам, акрихину, клофелину, соединениям ртути и др.), веществам, применяемым с пищей (сильный мутаген гидразин содержится в больших количествах в съедобных грибах, эстрагон и пиперин в черном перце; множество веществ, обладающих генотоксическими свойствами, образуется при кулинарной обработке жира и т.д.). Значительный генетический риск возникает при длительном употреблении человеком молока и мяса животных, в кормах которых преобладают травы, содержащие много мутагенов (например, люпин). Группу экзогенных физических мутагенов составляют все виды ионизирующей радиации (α-, β-, γ-, рентгеновские лучи), ультрафиолетовое излучение. Продуцентами биологических экзогенных мутагенов являются вирусыкори, краснухи, гепатита.

Эндогенные мутагены также могут быть химической (Н 2 О 2 , перекиси липидов, свободные радикалы) и физической (К 40 , С 14 , родон) природы.

Различают также истинные и косвенные мутагены. К числу последних относятся соединения, которыесами в обычном состоянии не оказывают повреждающего действия на генетический аппарат, однако, попав в организм, в процессе метаболизма приобретают мутагенные свойства. Например, некоторые широко распространенные азотсодержащие вещества, (нитраты азотистых удобрений), преобразуются в организме в весьма активные мутагены и канцерогены (нитриты).

Роль дополнительных условий в этиологии наследственных заболеваний в одних случаях весьма существенна (если развитие наследственной болезни, клиническое ее проявление сопряжено с действием определенных «проявляющих» факторов среды), в других менее значима, ограничивается лишь влиянием на экспрессивность болезни, не связанной с действием каких-либо специфических факторов среды.

6. Общие закономерности патогенеза наследственных болезней

Инициальным звеном патогенеза наследственных болезней являются мутации – внезапное скачкообразное изменение наследственности, обусловленное изменением структуры гена, хромосом или их числа, то есть характера или объема наследственной информации.

С учетом различных критериев предложено несколько классификаций мутаций. Согласно одной из них различают спонтанные и индуцированные мутации. Первые возникают в условиях естественного фона окружающей и внутренней среды организма, без каких-либо специальных воздействий. Причиной их может быть внешняя и внутренняя естественная радиация, действие эндогенных химических мутагенов и т.п. Индуцированные мутации вызываются специальным целенаправленным воздействием, например, в условиях эксперимента.

По другой классификации выделяют специфические и неспецифические мутации. Оговоримся, что большинство генотипов не признаетналичия специфических мутаций, полагая, что характер мутаций не зависит от качества мутагена, что одинаковые мутации могут быть вызваны разными мутагенами, а один и тот же мутаген может индуцировать разные мутации. Сторонниками существования специфических мутаций являются И.П. Дубинин, Е.Ф. Давыденкова, Н.П. Бочков.

По виду клеток, поврежденных мутацией, различают соматические, возникающие в клетках тела, и гаметные мутации – в половых клетках организма. Последствия тех и других неоднозначны. При соматических мутациях болезнь развивается у носителя мутаций, потомство от такого рода мутации не страдает. Например, точечная мутацияили амплификация (умножение) протоонкогена в соматической клетке может послужить началом опухолевого роста у данного организма, но не у его детей. При гаметных мутациях, наоборот, организм-носитель мутации не болеет. Страдает от такой мутации потомство.

По объему, затронутого мутацией, генетического материала мутации делят на генные иди точечные (изменения в пределах одного гена, нарушается последовательность или состав нуклеотидов), хромосомные абберации или перестройки, изменяющие структуру отдельных хромосом, и геномные мутации, характеризующиеся изменением числа хромосом.

Хромосомные абберации, в свою очередь подразделяются на следующие виды:

Делеция (нехватка) – вид хромосомной перестройки, при которой выпадают отдельные участки и соответствующиеим гены хромосомы. Если последовательность генов в хромосоме изобразить рядом цифр 1, 2, 3, 4, 5, 6, 7, 8....... 10000, то при делеции участка 3-6 хромосома укорачивается, а последовательность в ней генов меняется (1, 2, 7, 8...... 10000). Примерами врожденной патологии, связанной с делецией является синдром «кошачьего крика», в основе которого лежит делеция сегмента р1 – p-eг (короткого плеча) 5-ой хромосомы. Болезнь проявляется рядом дефектов развития: лунообразное лицо, антимонголоидный разрез глаз, микроцефалия, вялый надгортанник, своеобразное расположение голосовых связок, в результате чего плач ребенка напоминает крик кошки. С делецией от одной до четырех копий Н в – генов связано развитие одной из форм наследственных гемоглобинопатий – α-талассемии (см. раздел «Патофизиология системы крови»);

Дупликация – вид хромосомной перестройки, при которой участок хромосомы и соответствующий блок генов удваивается. При принятой выше нумерации генов в хромосоме и дупликации на уровне 3-6 генов последовательность генов в такой хромосоме будет выглядеть следующим образом – 1, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 8 - 10000. Сегодня известны различные варианты дупликаций (частичные трисомии) практически для всех аутосом. Встречаются они сравнительно редко.

Инверсия – вид хромосомной перестройки, при которой участок хромосомы (например, на уровне генов 3-6) поворачивается на 180° – 1, 2, 6, 5, 4,3, 7, 8 .... 10000;

Транслокация – вид хромосомной перестройки, характеризующийся перемещением участка хромосомы на другое место той же или другой хромосомы. В последнем случае гены транслоцированного участка попадают в другую группу сцепления, другое окружение, что может способствовать активации «молчавших» генов или, наоборот, подавлять активность в норме «работающих» генов. Примерами серьезной патологии, в основе которой лежат явления транслокации в соматических клетках, могут быть лимфома Беркитта (реципрокная транслокация между 8-й и 14-ой хромосомами), миелоцитарный лейкоз – реципрокная транслокация между 9-й и 22-ой хромосомами (подробнее см. в разделе «Опухоли»).

Заключительным звеном патогенеза наследственных болезней является реализация действия аномального гена (генов). Различают 3 основных ее варианта:

1. Если аномальный ген утратил код программы синтеза структурного или функционально важного белка нарушается синтез соответствующих информационной РНК и белка. В отсутствии или при недостаточном количестве такого белка нарушаются процессы, в осуществлении которых на определенном этапе данному белку принадлежит ключевая роль. Так, нарушение синтеза антигемофильного глобулина А (фактора VIII), В (фактора IX), плазменного предшественника тромбопластина (фактора XI), которым принадлежит исключительно важное значение в осуществлении различных этапов внутреннего механизма I фазы свертывания крови, ведет к развитию гемофилии (соответственно: А, В и С). Клинически болезнь проявляется гематомным типом кровоточивости с поражением опорно-двигательного аппарата. Преобладают кровоизлияния в крупные суставы конечностей, обильные кровотечения даже при легких травмах, гематурия. Гемофилия А и В наследуются сцеплено с Х хромосомой, рецессивно. Гемофилия С наследуется по доминантному или полудоминантному типу, аутосомно.

В основе развития гепато-церебральной дистрофии лежит дефицит белка – церрулоплазмина, что сопряжено с увеличением всасывания, нарушением метаболизма и выведения меди, избыточным ее накоплением в тканях. Токсическое действие меди сказывается особенно сильно на состоянии и функции нервной системы и печени (процесс который завершается циррозом). Первые симптомы болезни проявляются в возрасте 10-20 лет, быстро прогрессируют и заканчиваются смертельным исходом. Наследование аутосомно-рецессивное.

2. Утрата мутантным геном кода программы синтеза того или иного фермента завершается уменьшением или прекращением его синтеза, дефицитом его в крови и тканях и нарушением катализируемых им процессов. В качестве примеров развития по такому пути наследственных форм патологии можно назвать ряд болезней аминокислотного, углеводного обмена и др. Фенилпировиноградная олигофрения, например, связана с нарушением синтеза фенилаланингидроксилазы, катализирующей в норме превращение потребляемого с пищей фенилаланина в тирозин. Дефицит фермента ведет к избыточному содержанию в крови фенилаланина, многообразным изменениям в обмене тирозина, продукции значительных количеств фенилпировиноградной кислоты, повреждению мозга с развитием микроцефалии и умственной отсталости. Заболевание наследуется аутосомно-рецессивно. Диагноз его может быть поставлен в первые дни после рождения ребенка, еще до проявления выраженных симптомов болезни по обнаружению в моче фенилпировиноградной кислоты и фенил-аланинемии. Ранняя диагностика и своевременно начатое лечение (диета с низким содержанием фенилаланина) позволяет избежать развития болезни, наиболее тяжелого ее проявления – умственной неполноценности.

Отсутствие оксидазы гомогентизиновой кислоты, участвующей в обмене тирозина, ведет к накоплению промежуточного продукта тирозинового обмена – гомогентизиновой кислоты, которая не окисляется в малеилацетоуксусную кислоту, а откладывается в суставах, хрящах, соединительной ткани, вызывая с возрастом (обычно уже после 40 лет) развитие тяжелых артритов. Диагноз и в этом случае может быть поставлен очень рано: на воздухе моча таких детей из-за наличия в ней гомогентизиновой кислоты чернеет. Наследуется аутосомно-рецессивно.

3. Нередко в результате мутации формируется ген с патологическим кодом, вследствие чего синтезируется аномальная РНК и аномальный белок с измененными свойствами. Наиболее ярким примером патологии такого типа является серповидно-клеточная анемия, при которой в 6-ом положении β-цепи гемоглобина глутаниновая аминокислота заменена на валин, образуется нестабильный Н в S. В восстановленном состоянии растворимость его резко уменьшается, повышается его способность к полимеризации. Образуются кристаллы, нарушающие форму эритроцитов, которые легко гемолизируются, особенно в условиях гипоксии и ацидоза, приводя к развитию анемии. Наследование аутосомно-рециссивное или полудоминантное (более подробные сведения в разделе «Патология системы крови»).

Важным условием для возникновения и реализации действия мутаций является несостоятельность системы репарации ДНК, что может быть детерминировано генетически или развиться в процессе жизни, под влиянием неблагоприятных факторов внешнейили внутренней среды организма.

Так, в генотипе здоровых людей есть ген с кодом программы синтеза фермента экзонуклеазы, обеспечивающей «вырезание» пиримидиновых димеров, которые образуются под влиянием ультрафиолетового излучения. Аномалия данного гена, выражающаяся в утрате кода программы синтеза экзонуклеазы, повышает чувствительность кожи к солнечному свету. Под влиянием даже непродолжительной инголяции возникает сухость кожи, хроническое ее воспаление, патологическая пигментация, позже появляются новообразования, подвергающиеся злокачественному перерождению. Две трети больных умирают в возрасте до 15 лет. Заболевание – пигментная ксеродерма – наследуется аутосомно-рецессивно.

Функциональные потенции системы репарации ДНК ослабевают с возрастом.

Определенная роль в патогенезе наследственных форм патологии может принадлежать, по-видимому, стойким нарушениям регуляции генной активности, что, как уже отмечалось, может быть одной из возможных причин проявления наследственной болезни лишь спустя много лет после рождения.

Итак, основные механизмы развития наследственной патологии связаны с:

1) мутациями, в результате которых возникает

а) выпадение нормальной наследственной информации,

б) увеличение объема нормальной наследственной информации,

в) замена нормальной наследственной информации на патологическую;

2) нарушением репарации поврежденной ДНК;

3) стойкими изменениями регуляции генной активности.

Мутация - начальное звено патогенеза. Под мутацией (от лат. mutatio - изменение) в широком смысле слова понимают изменение структуры гена, хромосомы или их числа. В результате мутаций образуется аномальный ген с измененным кодом.
Мутации могут быть благоприятными и неблагоприятными (патогенными). Патогенные мутации подразделяются по причине возникновения, по «масштабу» изменений генетического материала, по механизму его изменения.
По причине возникновения мутации делятся на спонтанные и индуцированные.
По «масштабу» изменений генетического материала мутации делятся на генные («точечные»), хромосомные, геномные.
По механизму изменения генетического материала (гена или хромосомы) мутации делятся на делеции - выпадение какого либо участка гена или хромосомы; транслокации - перемещения участка; инверсии - поворота участка на 180 градусов и др.
Необходимым условием для возникновения мутации является недостаточная активность систем обнаружения и устранения повреждения ДНК, называемых системами репарации.

Мутации как источник наследственных болезней

Мутация - устойчивое наследуемое изменение дезоксирибонуклеино-вой кислоты (ДНК). Мутацию характеризует изменение первичной нуклеотидной последовательности ДНК.
Дети наследуют мутации в половых клетках родителей, то есть гаметические мутации.
Мутации могут быть масштабными изменениями структуры хромосом, которые затрагивают миллионы нуклеотидов. К таким мутациям относятся дупликация (удвоение), делеция (удаление, потеря) и транслокация (перемещение из одного участка хромосомы в другой или другую хромосому) фрагментов хромосом.

Мутации в одном или нескольких нуклеотидах называют точечными.
Делеция или вставка одного или двух нуклеотидов в кодирующей части гена вызывают мутацию со сдвигом рамки считывания. В результате информационная рибонуклеиновая кислота (мРНК) разбивается на кодоны таким образом, что каждый следующий кодон мутантного гена считывается неправильно. Такие мутации меняют аминокислотную последовательность белка, что может обусловить потерю протеином функциональных свойств или извращение физиологической активности белка. Кроме того, сдвиг рамки может вызвать патологическое кодирование мутантным геном белка с абортивной (неполной) структурой. Такое происходит вследствие преждевременного формирования в последовательности кодонов гена терминирующего кодона, который кодирует сигнал к прекращению транскрипции.
При мутации, не меняющей смысла, изменение ДНК не меняет информацию об аминокислотной последовательности и структуру белка, кодируемую геном.
Пример - замена кодона УУУ на кодон УУЦ.
Оба этих кодона кодируют одну и ту же аминокислоту фенилаланин.
При мутации, искажающей смысл, появление одного кодона вместо другого последовательности ДНК приводит к замене одной из аминокислот в аминокислотной последовательности белка. Пример - появление кодона УУА лейцина вместо кодона УУУ фенилаланина.
При мутации, не затрагивающей смысл, замена нуклеотида превращает один из кодонов в терминирующий кодон, кодирующий сигнал к прекращению транскрипции. Такая мутация может быть причиной экспрессии геном абортивной аминокислотной последовательности белка. Пример - появление терминирующего кодона УУА вместо кодона УАУ тирозина.

Сплайсинг - это процесс удаления интронных последовательностей инфор мационной РНК. Интрон - участок ДНК между двумя экзонами (кодирующим последовательностями), который транскрибируется, но не кодирует аминокис лотную последовательность белка.
Иногда замена нуклеотида в экзоне меняет сплайсинг транскрипта, или образуя скрытый сайт сплайсинга, или нарушая функцию нормального сайта. Сай сплайсинга - участок ДНК, кодирующий сигнал к сплайсингу. В результате об разования скрытого сайта сплайсинга образуется белок с аномальной аминокис лотной последовательностью, лишенный какого-либо своего фрагмента. При на рушении функции нормального сайта сплайсинг не происходит, аминокислотная последовательность начинает содержать продукт трансляции интрона.

Крупная деления захватывает часть гена, весь ген или группу соседних генов В результате кодирующая часть гена теряется в такой степени, что синтеза белк: не происходит. Крупная делеция может быть причиной болезни Дюшенна (про грессирующего бульбарного паралича). Болезнь встречается в позднем возраст как прогрессирующие атрофия и паралич мышц языка, губ, нёба, глотки и горта ни. Заболевание связано с атрофической дегенерацией нейронов, иннервирую щих данные мышцы.

Атрофическая дегенерация в данном случае вторична относительно патологи ческих изменений мышц. Причиной миопатии Дюшенна является дефект дистро фина, то есть белка с молекулярной массой 427 000, который находится на внут ренней поверхности сарколеммы. Ген дистрофина - один из самых крупны генов человека; его длина - 2 млн нуклеотидов. Делеция захватывает ген неравномерно, чаще в его начале и середине. Недостаточность дистрофина ослабляет сарколемму, вызывает разрыв мембраны и причинно-следственный ряд, который завершается некрозом мышечных волокон.

Делеция может также привести к слиянию кодирующих последовательносте двух генов и образованию химерного белка. Такие мутации являются весьма нередкими при неравномерном кроссинговере между парными повторами гомологичных генов. Напомним, что кроссинговер - это реципрокный обмен между двумя парными хромосомами в мейозе, приводящий к переносу кластеру генов от каждой хромосомы к ее гомологу. Известен «ген-химера» альдостеронсинтетазы и 11-В-гидролазы. Обычно альдостеронсинтетазу содержат клетки поверхностной клубочковой зоны коры надпочечников. В результате мутации альдостерон-синтетаза появляется в их средней пучковой зоне. Клетки пучковой зоны под влиянием кортикотропина начинают усиленно секретировать не только корти-зол, но и альдостерон. Это обуславливает альдостеронизм как причину артериальной гипертензии.

При определяемом полом наследовании болезни она проявляется специфическим фенотипом только у субъектов определенного пола. Следует отличать данный вид наследования моногенных заболеваний от наследования болезней, кодируемых генами Х-хромосом. Во многом данный вид наследственной патологии определяется действием половых гормонов и другими отличиями мужского и женского организмов. Например, облысение до полового созревания наследуется по аутосомно-доминантному типу и редко составляет фенотип мужчины.

Рецессивное наследование, связанное с Х-хромосомой

При данном виде наследования:
1) почти все больные являются мужчинами;
2) если носителем патогенного аллеля является мать, то она, как правило, здорова;
3) фенотип болезни может быть следствием новой мутации в сегменте Х-хро-мосомы матери, не имеющей гомолога в Y-хромосоме;
4) больной мужчина никогда не передает свою болезнь по наследству сыновьям;
5) все дочери больного мужчины являются носителями патогенного аллеля (переносчиками болезни);
6) женщина-переносчик болезни передает ее 50% процентам своих сыновей;
7) никто из дочерей женщины-переносчика не страдает от моногенной болезни.

Для того, чтобы при рецессивном, связанном с Х-хромосомой наследовании моногенной болезни родилась больная девочка, необходимы следующие условия:
1) больной отец;
2) мать гетерозиготная или гомозиготная по мутантному аллелю.

У мужчин все гены на сегменте Х-хромосоме, не имеющем гомолога на Y-хромосоме, экспрессируются в фенотипе дискретным наследственным признаком. Так как моногенные болезни, наследуемые в связи с Х-хромосомой и по рецессивному типу, - это редкие заболевания, то женщина с такой моногенной болезнью - это большая редкость. Примерно половина братьев матери пробанда больны моногенной болезнью, передаваемой в связи с Х-хромосомой и по рецессивному типу.

Мозаицизм - это присутствие в организме не менее двух клеточных линий, которые отличаются по генотипу и кариотипу, но происходят из одной зиготы.
Деление клеток в многоклеточном организме всегда сопровождается рядом мутаций (одно деление клетки - 4-5 соматических мутаций). Соматические мутации такого генеза обычно устраняются действием многих механизмов коррекции ошибок воспроизведения генетического материала при репликации. Можно считать, что в организме вследствие мутаций при репликации на ранних стадиях формирования многоклеточного организма всегда существует вероятность возникновения новых клеточных линий, отличных по строению своего генетического материала от исходной клеточной линии. При реализации такой возможности органы начинают отчасти составляться клетками новой линии, отличающейся от основной линии своим генетическим материалом.

Клетки новой линии разбросаны в различных органах в виде скоплений, островков. Если бы все регуляторные и исполнительные аппараты состояли из клеток новой линии, то организм был бы обречен на гибель. Например, при синдроме Мак-Куна-Альбрихта скопления клеток новой линии мозаично составляют костную ткань, многие эндокринные железы формируют пигментные пятна кожи, обуславливают аномалии сердца и печени.

Если мутация, лежащая в основе мозаицизма, характеризует генотип гамет, то наследственная патология у детей больного с мозаицизмом всегда тяжелее наследственных аномалий без мозаицизма. Дело в том, что все клетки организма больного ребенка содержат болезнетворный аллель. Иными словами, весь многоклеточный организм больного состоит из клеток одной линии с аномальным генотипом. Иногда мозаицизм обуславливает внутриутробную гибель плода. Иногда репликация клеток нормальных линий компенсирует последствия мозаицизма, и рождается ребенок с патологией, обусловленной существованием в организме клеток патологических линий.

Импринтинг (запечатление) - это различие в экспрессии генетического материала в зависимости от того, кто передал его потомству, отец или мать. Выделяют тканеспецифичный импринтинг и импринтинг, зависящий от времени развития (периода онтогенеза). В одних тканях при тканеспецифичном импринтинге происходит экспрессия двух родительских аллелей, а в других только одной альтернативной формы гена.
В основе синдрома Прадера-Вилли лежит делеция части хромосомы 15. На данной хромосоме локализованы в тесной близости друг к другу определенные гены, которые экспрессируются только при условии, если их наследуют от матери или от отца. В зависимости от того, кто передает хромосому, подвергшуюся делеции, вследствие импринтинга развиваются разные фенотипы наследственных синдромов.
На нескольких хромосомах есть участки, которые содержат гены, экспрессия которых зависит от того, кто передал их по наследству, отец или мать. Некоторые из таких генов определяют процессы роста тела и формирование поведенческих навыков в ранние периоды онтогенеза. Другие гены такого рода вовлечены в канцерогенез. Импринтинг следует заподозрить в том случае, если наследственная болезнь возникает в ряду поколений через раз.

Доминантные мутации. Наследственная патология

Явление отбора имеет место и среди соматических клеток. Мутировавшие соматические клетки, в том числе раковые, устраняются с помощью механизмов иммунного надзора, поэтому применение иммунодепрессантов иногда способствует образованию опухолей.

В старческом возрасте (иммунодефицит) возникает понижение устойчивости организма к мутагенным воздействиям, что обусловливает появление мутаций, способствующих развитию опухолей.

Консерватизм наследственности индивида поддерживается не только механизмами стабилизирующего отбора, но и антимутационными механизмами. Антимутационные механизмы защищают генетический аппарат клетки; на уровне генов действуют обратные мутации, восстанавливающие считывание мутировавших участков, мутировавшиеся участки устраняются с помощью особых ферментов, восстанавливающих исходное состояние по комплементарной нити ДНК, и др.

На клеточном уровне функционируют анти-перекисные и антирадикальные механизмы (каталаза, пероксидаза, система глутатиона, супероксиддисмугаза).

Экспериментально показано, что блокирование каталазы цианистым калием увеличивает частоту мутаций. В организме происходит разрушение мутагенных продуктов, попадающих в него, неспецифическими оксидазами печени; гидроксилируются и окисляются пестициды, алкилирующие соединения и др..

Наследственная патология - это расстройства жизнедеятельности организма, возникающие в результате нарушений генотипа (наследственной информации) и, как правило, передающиеся по наследству. В основе данной патологии лежат генеративные мутации; так как мутации могут приводить к внутриутробной гибели плода (летальные мутации), смерти индивида до полового созревания (сублетальные мутации) или бесплодию (гипогенитальные мутации), не все патологические гены, имеющиеся в генотипе индивида, могут быть переданы в последующие поколения.

Наследственная патология у индивида проявляется в форме наследственных заболеваний и предрасположенности к тем или другим болезням. Поскольку наследственная патология обычно проявляется в относительно ранний период после рождения, с практической точки зрения крайне важно различать наследственную и врожденную патологию.

Наследственная патология как часть общей патологии изучает наиболее существенные закономерности, которые лежат в основе наследственных болезней и их групп. При изучении наследственных болезней общая патология базируется и на данных биологии, генетики и клинической генетики, рассматривая роль наследственных факторов в возникновении, развитии и исходе болезней человека, т. е. в нозологии.

Причины наследственной патологии. Условия возникновения наследственной патологии

Наследственная патология возникает под влиянием мутагенных воздействий (мутагенов), т.е. таких экзогенных и эндогенных факторов, которые вызывают изменения генотипа. Выделяют спонтанные и индуцированные мутации. Спонтанные мутации возникают под влиянием обычных, фоновых, воздействий, а индуцированные мутации появляются при действии патогенных агентов. По своей природе мутагены могут быть физическими, химическими и биологическими.

Физическими мутагенами являются коротковолновые излучения (рентгеновские лучи, ультрафиолетовые лучи), продукты радиоактивного распада. Наиболее активными химическими мутагенами являются алкилирующие соединения (иприт, формальдегид, противоопухолевые цитостатики), вызывающие "сшивание" нитей ДНК и нерасхождение хромосом при клеточном делении.

Мутагенами являются свободные радикалы, образующиеся под влиянием ионизирующего излучения, ультрафиолета и других воздействий, метаболиты-аналоги пуриновых и пиримидиновых оснований, включающиеся в структуру ДНК или РНК вместо обычных компонентов, например бромурацил и др. Мутагенными свойствами обладают и многие другие химические соединения, такие как нитрозосоединения, полициклические аминоуглероды, яды митотического веретена клетки (типа колхамина), соли тяжелых металлов.

Свойствами биологических мутагенов обладают ДНК- и РНК-содержащие вирусы, которые являются переносчиками онкогенов. При трансфекции онкогенов в соматические клетки возникает их опухолевая трансформация.

Не всякая мутация проявляется в фенотипе; это связано с тремя главными обстоятельствами. Во-первых, большинство мутаций приводят к появлению рецессивного патологического аллеля, который подавляется соответствующим доминантным аллельным геном; во-вторых, существует репа-ративная система, обнаруживающая аномальные гены, устраняющая их из ДНК и восстанавливающая структуру на основе второй ее спирали; в-третьих, имеются обратные мутации, возвращающие мутированные гены в нормальное состояние. Нарушение работы этих механизмов ингибирования и восстановления свойств генов становится важным условием возникновения наследственной патологии.

Среди патогенных условий, способствующих возникновению наследственных болезней, наиболее важное значение имеют следующие. Прежде всего это браки между близкими родственниками; в связи с тем что такие браки значительно увеличивают вероятность появления гомозиготных пар патологических рецессивных аллельных генов, частота рецессивных аутосомных болезней возрастает в несколько десятков раз. Большое значение в возникновении наследственной патологии, связанной с нарушением расхождения хромосом при мейозе (хромосомная патология), имеет возраст родителей. У матерей в возрасте после 35-40 лет частота спонтанных выкидышей и хромосомных болезней детей возрастает.

Определенное значение в увеличении частоты мутаций и их проявлений в дочерних соматических клетках имеет ослабление механизмов антимутационной защиты. Указанные патогенные условия определяют важные пути профилактики наследственных и опухолевых заболеваний.

Механизмы возникновения наследственной патологии. Генные и хромосомные изменения

По характеру и распространенности изменения генетического материала выделяют три формы мутационных изменений - генные (точечные), хромосомные и геномные.

Генные изменения характеризуются трансформацией структуры гена, т.е. молекулярной организации участка ДНК, включающего азотистые основания. Это может быть, например, замена одного основания на другое или изменение их последовательности. Генные мутации могут возникать также вследствие нарастания числа триплетных повторов нуклеотидов до предела, свыше того уровня, который протекает без изменения фенотипа.

Такая экспансия определенных триплетов приводит к нарушению работы генов ("динамические" мутации). Определение подобных молекулярных изменений генов связано с применением специальных методов исследования ДНК (метод молекулярной гибридизации) или же анализом проявлений в форме определения белковых (ферментных, рецепторных) трансформаций.

Наследственные заболевания, связанные с генными мутациями, весьма распространены: например, существует большая группа ферментопатий, обычно наследуемых как аутосомный рецессивный признак.

Хромосомные изменения характеризуются трансформацией структуры хромосом, что нередко обнаруживается при раздельном их морфологическом анализе. Хромосомные аберрации (от лат. aberatio - отклонение) проявляются делецией (отрыв участка хромосомы), инверсией (поворот участка хромосомы), транслокацией (перемещением участка в другое место той же или другой хромосомы), фрагментацией хромосомы и другими явлениями.

Геномные изменения характеризуются отклонением от нормы числа хромосом, что проявляется уменьшением или увеличением их количества. Хромосомные и геномные мутации лежат в основе большой группы наследственных заболеваний, получивших название "хромосомные болезни".

В соответствии с закономерностями передачи информации в клетке (ДНК- РНК - белок) появление мутированного гена может приводить к снижению (утрате) синтеза белка, появлению патологического белка, неспособного выполнять ту или иную функцию, или дерепрессии гена и появлению эмбрионального белка.

Так, при афибриногенемии (аутосомное рецессивное наследование) утрачивается способность гепатоцитов синтезировать фибриноген, а при гемофилии А (рецессивное, сцепленное с полом наследование) - полноценного антигемофильного глобулина (фактор VIII свертывания крови). При серповидно-клеточной анемии (S-гемоглобиноз) в 6-й позиции глобина глутаминовая кислота заменяется на валин, что влечет за собой изменение свойств гемоглобина и эритроцитов (аутосомное рецессивное наследование). В случае талассемии (доминантное или рецессивное аутосомное наследование) образуются эмбриональные гемоглобин и эритроциты; последние приобретают мишеневидную форму и быстро гемолизируются.

Мутированный ген. Доминантные формы патологии

Мутированный ген может находиться в аутосомах или в половых хромосомах, в связи с чем выделяют аутосомную патологию и патологию, сцепленную с половыми хромосомами (или сцепленную с полом). Каждая из них отличается своими особенностями наследования признаков.

По активности гена, т. е. его способности реализоваться в фенотипе, выделяют доминантные и рецессивные мутации. Доминантным является аллельный ген, который проявляется в фенотипе у гомозиготных и гетерозиготных особей по данному признаку, а рецессивным- ген, который проявляется в фенотипе только у гомозиготных. Однако аллели могут проявлять не только крайние свойства. Существуют мутации, приводящие к появлению аллельных генов с полудоминантными и кодоминант-ными свойствами. Полудоминантные аллели проявляются и в гомозиготе, и в гетерозиготе, но экспрессивность признака, его выраженность - наибольшая в гомозиготе. Кодоминантные аллели у гетерозиготных особей определяют появление признаков обоих свойств.

С практической точки зрения важное значение имеет разделение наследственной патологии на три основные группы. К первой группе относятся моногенные заболевания, которые наследуются как аутосомно-доминантные или аутосомно-рецессивные признаки, а также как признаки, сцепленные с половыми хромосомами. Вторую группу составляют хромосомные болезни, определяющиеся нарушением структуры или числа хромосом. К третьей группе относятся полигенные заболевания или болезни с наследственной предрасположенностью.

Моногенные аутосомные заболевания следуют законам (правилам) Менделя. В соответствии с законом единообразия потомков первого поколения, у гомозиготных родителей, один из которых имеет доминантный ген, все потомки одинаковы по доминирующему признаку и похожи на родителя, имеющего этот ген (первый закон Менделя: АА х аа = Аа, где А - доминантный ген). В соответствии с законом расщепления признаков, у гетерозиготных родителей в следующем поколении признаки расщепляются в соотношении 3:1 (второй закон Менделя: Аа х Аа = 1АА + 2Аа + 1аа, где а - рецессивный признак). Хотя законы Менделя имеют определенные ограничения (необходимость учета явления пенетрантности генов, эпистаза и др.), они отражают реальные процессы и служат целям прогнозирования появления в потомстве моногенных аутосомных заболеваний.

При доминантно-аутосомном наследовании, если у одного из больных родителей имеется доминантный ген, вероятность появления больных детей вне зависимости от пола составляет 50 % (Аа х аа = 2Аа + 2аа). Этот тип наследования лежит в основе ряда заболеваний, сопровождающихся нарушением синтеза структурных белков и белков, несущих специфические функции, например гемоглобина. К таким заболеваниям относятся хорея Гентингтона, при которой возникает поражение подкорковых ядер с развитием гиперкинезов, расстройств психики, деменции; нейрофиброматоз, для которого характерны множественные невриномы по ходу периферических нервов с расстройствами чувствительности и движений; метгемоглобиноз, при котором образуется окисленная форма гемоглобина и возникает гемическая гипоксия; множественные дефекты скелета и внутренних органов.

Дефекты развития скелета - ахондроплазия, синфалангия (сращения фаланг пальцев), полидактилия (многопалость), а также некоторые болезни глаз - глаукома (повышение внутриглазного давления), астигматизм (искривление светопроводящих структур хрусталика глаза) передаются по аутосомно-доминантному типу.

Ахондроплазия характеризуется недоразвитием хрящевой части скелета, обусловленным наследственной ферментопатией. При этом наблюдаются низкий рост, искривление нижних конечностей, деформация лица и др. Заболевание весьма редкое, и большая часть случаев возникает вследствие мутаций половых клеток здоровых родителей. Еще одним примером аутосомно-доминантной патологии может быть синдром Холта - Орама (синдром сердца и руки I), проявляющийся незаращением межпредсердной и/или межжелудочковой перегородки и разного вида дефектами развития костей руки и кисти.

Аутосомно-рецессивная форма патологии. Сцепленные с полом формы патологии

При аутосомно-рецессивном наследовании мутированный ген проявляется фенотипическими признаками только в гомозиготе; у гетерозиготных родителей такой ген не проявляется, но они становятся носителями мутированного гена. В подобном случае у ближайших потомков вероятность появления патологического признака (болезни) составляет 25 % (второй закон Менделя) вне зависимости от их пола. Частота аутосомно-рецессивных заболеваний особенно высока среди жителей-изолянтов, где существуют браки между близкими родственниками.

Аутосомно-рецессивные болезни являются наиболее распространенными среди всей наследственной патологии и включают большую группу ферментопатий, приводящих к болезням обмена веществ, крови, в том числе гемостаза, иммунной системы, почек (тубулопатии) и др. Широко распространены наследственные дефекты аминокислотного обмена. Во многих странах проводят массовое обследование новорожденных на предмет выявления в моче оксифенилуксусной кислоты, являющейся продуктом нарушенного обмена аминокислоты фенилаланина, вызванного дефектом одного фермента - фенилаланингидроксилазы. При этом возникает блок превращения фенилаланина в тирозин; концентрация фенилаланина в тканях повышается.

В результате нарушается работа нервных клеток с развитием у ребенка умственной отсталости - "фенилпировиноградного слабоумия". При мутационном дефекте фермента тирозиназы нарушается синтез пигмента меланина из аминокислоты тирозина - возникает альбинизм, проявляющийся в обесцвечивании кожи, волос, радужки глаза. К наследственным ферментопатиям относятся также болезни обмена веществ, называемые болезнями накопления: гликогенозы и липидозы.

Данные заболевания имеют особенности наследования признаков патологии в связи с тем, что мутированный ген обычно находится в Х-хромосоме и является чаще всего рецессивным, т.е. проявляется в фенотипе только в гомозиготном состоянии. Таким образом, женщина (XX) может быть либо гомозиготной, т.е. больной, либо гетерозиготной, т.е. носителем мутированного гена.

Напротив, мужчина (XY) при наличии патологического гена в Х-хромосоме будет больным, так как он гемизиготен (нет аллеля гена из-за отсутствия второй Х-хромосомы). Часты ситуации, когда женщина является носителем (Х"Х), а мужчина здоров (XY); в браке вероятность рождения больного мальчика составляет 50 %, но все девочки должны быть здоровы, хотя половина из них является носителем мутированного гена (ХnХ х XY = ХnХ + ХnY + XY).

Характерным для данной формы патологии является то, что носителями мутированного гена обычно являются женщины, а страдают соответствующими заболеваниями мужчины.

Формы сцепленной с полом патологии. Хромосомные формы патологии

Доминантные формы патологии, сцепленные с Х-хромосомой, очень редки, хотя принципиально существуют, например фосфат-диабет. В этом случае ген проявляется в фенотипе при любом сочетании половых хромосом (XX, XY, X0, XXY и др.), и у отца, больного данным заболеванием, все мальчики будут здоровыми, а девочки - больными. Наличие патологии, сцепленной с Y-хромосомой, - также крайне редкое явление.

Наследственные заболевания, сцепленные с Х-хромосомой, имеют широкое распространение; таким образом наследуется цветовая слепота (дальтонизм), гемофилии А и В (дефицит VIII и ЕХ факторов свертывания крови), некоторые формы агаммаглобулинемий, мышечная дистрофия Дюшенна, некоторые формы подагры (синдром Леша - Найхмана), гаргоилизм (от франц. gargoilla - человек с отталкивающим лицом) и др. При гаргоилизме (форма болезней Гунтера) обнаруживаются макроцефалия, горб, карликовый рост, глухота и умственная отсталость.

Существуют заболевания, не сцепленные с полом, но зависимые от пола. Зависимые от пола признаки кодируются генами, локализованными в ауто-сомах, однако их проявление связано с полом. Так, например, ген, определяющий признак плешивости, является доминантным только у особей мужского пола, в то время как в женском организме для облысения необходима гомозиготность по этой доминантной аллели, в связи с тем что женские половые гормоны (эстрогены) препятствуют проявлению этого гена, а мужской половой гормон (тестостерон) способствует его проявлению.

Хромосомные формы патологии

Хромосомные болезни возникают вследствие нарушения структуры или числа хромосом и имеют особенности возникновения, механизмов развития и проявлений. Хромосомные болезни обычно возникают у детей здоровых родителей и не передаются по наследству. Они развиваются в результате хромосомных мутаций половых клеток и нарушения их мейоза, т.е. редукционного деления хромосом при образовании гамет (зрелых половых клеток). В возникновении таких аномалий имеют важное значение мутагены разной природы и возраст матери.

Нерасхождение хромосом в мейозе. Частичные трисомии и моносомии

Хромосомная патология может возникать вследствие нарушения расхождения всего набора хромосом в мейозе. Образуются гаметы с нередуцированным числом хромосом, которые имеют не по одному набору хромосом, а по два. При оплодотворении такой яйцеклетки гаметами с гаплоидным или диплоидным набором хромосом образуются полиплоидные зиготы.

Полиплоидные организмы обычно имеют грубые пороки развития и погибают в раннем эмбриональном периоде. Возможно нарушение расхождения отдельных хромосом в наборе; образуются гаметы, в которых отсутствует или имеется лишняя хромосома. Поэтому возникающая при оплодотворении зигота характеризуется моно-, три- или тетрасомией. Чаще всего такие расстройства несовместимы с жизнью организма и приводят к спонтанным выкидышам.
Нарушения структуры или числа хромосом в половых клетках могут касаться аутосом или половых хромосом.

Из всех синдромов, возникающих вследствие нерасхождения аутосом, наиболее распространенной патологией является болезнь Дауна (95 % от числа всех трисомий по аутосомам). При болезни Дауна наблюдается трисомия 21-й хромосомы. Клиническими признаками болезни являются низкий рост, широкое круглое лицо, близко расположенные глаза с узкими глазными щелями, полуоткрытый рот.

Для болезни характерны также идиотия и дефекты сердечно-сосудистой системы (пороки сердца и крупных сосудов). При синдроме Эдвардса, характеризующемся трисомией по 18-й хромосоме, имеются множественные физические пороки развития: общая гипотрофия новорожденного, задержка психомоторного развития, крипторхизм, порок сердца, грыжи и многие другие. Синдром Патау, трисомия по 13-й хромосоме, характеризуется микроцефалией, полидактилией, наличием расщелины верхней губы и неба.

Частичные трисомии и частичные моносомии выявляются при анализе причин врожденных дефектов развития новорожденных детей. Несбалансированность по генам каждой из хромосом проявляется у новорожденных в виде специфических признаков. Так, например, частичная моносомия короткого плеча 5-й хромосомы дает патологию, описанную как синдром "кошачьего крика" при котором имеются аномалии развития нижней челюсти и гортани, что сопровождается характерным изменением голоса, а также микроцефалия, пороки сердца, четырехпалость и др.

При нерасхождении половых хромосом формируется группа синдромов, для которых с клинической точки зрения наиболее характерны интеллектуальное и половое недоразвитие наряду с физическими дефектами. Так, при синдроме Тернера - Шерешевского у пациента женского пола (генотип ОХ) обнаруживаются отставание в развитии (низкий рост), половой инфантилизм, бесплодие, иногда умственная отсталость, пороки сердца и др.

У женщины при трисомий X (генотип XXX) имеются умственная отсталость и нарушения физического развития. При синдроме Клайнфелтера (генотип XXY) или сверх Клайнфелтера - (XXXY) наблюдается высокий рост с непропорционально длинными конечностями, гипоплазия яичек, недоразвитие вторичных половых признаков, бесплодие, склонность к асоциальному поведению.

Причиной нерасхождения одной из пар хромосом (аутосом или половых хромосом) при образовании гамет могут быть дистрофические процессы, возникающие с возрастом. Имеются данные, что суммарный риск иметь ребенка с трисомией по 13-й, 18-й, 21-й хромосоме для женщин после 45 лет увеличивается в 60 раз. В хромосомной патологии выделяют синдромы, связанные с несбалансированными хромосомными перестройками, т.е. с избытком или недостатком генетического материала одной из парных хромосом (Н.П.Бочков).

Появление несбалансированных хромосомных перестроек генотипа потомков возникает у фенотипически нормальных родителей, имеющих сбалансированные хромосомные нарушения (например, транслокацию участка одной хромосомы на другую непарную ей хромосому). При оплодотворении яйцеклетки гаметами, содержащими транслоцированные участки, после образования диплоидного набора хромосом дополнительный, транслоцированный, участок дает эффект частичной трисомии по содержащимся в нем генам. Вместе с тем в одной из мужских гамет возникает дефицит соответствующего участка хромосомы, и при образовании зиготы возникает эффект частичной моносомии по этому участку хромосомы у потомка.

Наследование предрасположенности к болезням. Наследственность и реактивность

Существует большое число заболеваний, в возникновении которых существенное значение имеют не только патогенные факторы окружающей среды, но и генетическая предрасположенность. Предрасположенность к заболеванию является сложной формой взаимодействия организма с окружающей средой, и эта предрасположенность наследуется полигенно. В системе генов, влияющих на наследование признака, выделяют основные гены и гены модификаторы, усиливающие или ослабляющие действие основных генов, что отражается на степени их проявления в фенотипе - экспрессивности.

В связи с тем что предрасположенность зависит от системы генов и действие основных генов регулируется влиянием генов-модификаторов, соответствия законам Менделя в передаче признаков потомству в этих случаях не наблюдается. Предрасположенность может носить градуальный характер, определяя степень чувствительности организма к болезнетворным факторам окружающей среды. Особенностью подобных заболеваний является большое количество факторов, влияющих на их возникновение и развитие. Поэтому такие заболевания называют мультифакториальными.

К таким заболеваниям с наследственной предрасположенностью относятся многие аллергические болезни, атеросклероз, язвенная болезнь, ишемическая болезнь сердца, различные кожные заболевания (псориаз и др.), эндогенные психозы. Роль наследственных факторов в этиологии таких болезней доказывается их семейным характером и высокой степенью конкордантности (совпадения) у однояйцевых близнецов.

Наследственность и реактивность. Реактивность организма формируется под влиянием генотипа и внешней среды, поэтому реакции организма на внешние воздействия, в том числе лекарственные, в значительной степени являются наследственно обусловленными. Некоторые виды изменений реактивности организма могут способствовать развитию тяжелых заболеваний, формируя преморбидные состояния.

Так, генетически обусловленные нарушения способности к репарации ДНК, связанные с низкой активностью соответствующих ферментов (эндонуклеазы, ДНК-полимеразы), резко повышают частоту точечных мутаций и хромосомных аберраций. Увеличивается риск возникновения злокачественных опухолей и лейкозов. Все такие состояния, предшествующие болезням, передаются по аутосомно-рецессивному типу и называются болезнями репарации ДНК.

К ним относятся пигментная ксеродерма, миелодиспластический синдром и др. При пигментной ксеродерме наблюдаются повышенная чувствительность к ультрафиолетовым лучам, нарушения кожной пигментации, поражения роговицы, атрофические и рубцовые изменения кожи, вызванные облучением. На измененных слизистых оболочках и коже часто развиваются опухоли; риск развития кожного рака увеличен в 1000 раз. Миелодиспластический синдром в 40-50 % случаев переходит в острый лейкоз.

Наследование синтеза ферментов. Врожденная патология

Синтез ферментов определяется соответствующими генами, но эти гены активируются субстратами обменной реакции и подавляются продуктами распада образующихся белков. С индукцией микросомальных белков - ферментов печени, разрушающих токсические и лекарственные препараты, связано повышение толерантности к некоторым веществам, применяемым при лечении (барбитураты, кофеин, этанол, бутадион и др.), и возрастание терапевтических доз при длительном применении лекарственных препаратов.

При наследственных дефектах ферментных систем, вызванных мутациями соответствующих генов или обусловленных полигенно изменениями реактивности, метаболизм лекарственных препаратов и других веществ нарушается, может прекращаться их обезвреживание и выведение. Изменения реакции на препарат проявляются различными симптомами непереносимости или передозировки. Некоторые лица не переносят самые обычные пищевые продукты: молоко (мальтозу), изделия из злаков, содержащие белок плотен, из-за отсутствия или дефицита тех или иных ферментов желудка и кишечника.

Известно также, что алкоголь обостряет течение заболевания при наследственных нарушениях пуринового обмена (подагре), а применение салицилатов может спровоцировать кровотечение при гемофилиях. Некоторые северные народности подвержены действию алкоголя в большей степени, чем жители средней полосы. К развитию инфекционных заболеваний и опухолей предрасполагают наследственные иммунодефициты. Необычная реакция на лекарства, профессиональные вредности, вещества, загрязняющие среду обитания, может быть связана с единичными мутациями или наследоваться полигенно.

Врожденная патология

Врожденная патология - это расстройства жизнедеятельности, возникающие в результате воздействия патогенных факторов внутриутробно на плод или при прохождении ребенка через родовые пути и выявляемые к моменту рождения. Особенно важное значение среди них имеют фенокопии - врожденные формы патологии, сходные по клинической картине с наследственными формами патологии.

Так, известен наследственный гипотиреоз, являющийся аутосомным рецессивным заболеванием, и врожденный гипотиреоз (врожденная микседема, спорадический кретинизм), обнаруживаемый у новорожденных от матерей, подвергнутых облучению во время беременности, получавших в этот период тиреостатические препараты или имевших в пище дефицит йода. Проявления синдрома Марфана (порок сердца, смещение глазного яблока, арахнодактилия и др.) могут быть следствием аутосомного доминантного наследственного заболевания или инфицирования плода во время беременности вирусом краснухи.

Среди врожденных форм патологии часто встречаются уродства, или тератогенные расстройства (от греч. teras - урод), и нарушения формирования пола, которые возникают вследствие изменения морфогенеза тканей и органов в процессе внутриутробного развития. Тератогенные нарушения развиваются под влиянием многих факторов, например при действии на организм ребенка во время беременности алкоголя, дефицита йода и витаминов, ионизирующего излучения, ряда вирусов (кори, краснухи и др.), лекарственных препаратов при неправильном использовании.

Морфогенез. Эмбриогенез и его генетика

Морфогенез - развитие тканей и органов из соответствующей закладки, представляет собой реализацию генетической программы, заложенной в геноме оплодотворенной яйцеклетки. Эта поэтапная реализация определяется взаимодействием генов с цитоплазмой яйцеклетки, а впоследствии с окружающими тканями и материнским организмом. Влияние внутренней среды на морфогенез называется эмбриональной индукцией.

Стойкая репрессия и активация генов в процессе эмбриональной индукции осуществляется с помощью индукторов (эвокаторов), в качестве которых могут выступать белки, нуклеопротеиды, гормоны. В экспериментальных условиях, если ткани-мишени отделить от тканей-индукторов (окружающих тканевые закладки) непроницаемым для макромолекул экраном, то дифференцировка экранированных тканей приостанавливается. Индукторы воздействуют на гены через регуляторные элементы - эксхансеры и промоторы.

В эмбриогенезе существуют периоды, в течение которых происходит наиболее интенсивное развитие органов и систем. Эти периоды являются критическими для формирования соответствующих структур, так как в это время повышается чувствительность тканей к тератогенным факторам среды (радиации, лекарственным препаратам, вирусам и др.). Наибольший риск тератогенных эффектов наблюдается в конце 1-й недели беременности (I критический период), 3-8-й недели (II критический период), 18-22-й недели (III критический период).
Кроме того, во время интенсивного развития половой системы (12-14-я неделя) повышается риск возникновения аномалий половых органов.

Вследствие локального нарушения морфогенеза могут формироваться тератомы, состоящие из дистопически расположенных закладок зародышевых тканей. Эти ткани могут образовывать опухоли, включающие производные разных эмбриональных тканей (волосы, зубы, мышцы и др.), так называемые миксомы.

В процессе онтогенеза происходит развитие половых различий - половая дифференцировка. Половая дифференцировка определяется генотипом, т.е. наследуемыми факторами, и онтогенетически - путем воздействия индукторов на формирование репродуктивной системы. Нарушения в этих сферах детерминации пола могут приводить к стерильности и интерсексуальности. Согласно концепции формирования пола, первичная его детерминация осуществляется геном короткого плеча Y-хромосомы, под влиянием которого индифферентная гонада превращается в семенник.

При отсутствии Y-хромосомы действие овариальных генов Х-хромосомы приводит к образованию яичника, который выделяет эстрогены и определяет образование женских половых органов из клеток мюллерова канала. Если происходит детерминация по мужского типу, гормоны семенника блокируют развитие производных мюллерова канала (клетки Сертоли семенника выделяют антимюллеровский фактор), а тестостерон, продуцируемый клетками Лейдига, и дегидротестостерон, образующийся из него, формируют мужской фенотип особи. Таким образом можно выделить первичные (хромосомные) и вторичные, индуцированные во внутриутробном периоде, механизмы формирования пола. Часть патологии детерминации пола (синдромы Клайнфелтера, Тернера-Шерешевского, трисомии X) связана с нерасхождением Х-хромосом при гаметогенезе и рассмотрена выше.

В случаях клеточного мозаицизма разные участки тела могут содержать неодинаковые наборы половых хромосом (XY/XO, XY/XX). Такие сочетания возникают в результате оплодотворения одной яйцеклетки с двумя ядрами двумя сперматозоидами, содержащими Х- или Y-хромосому, либо утраты Y-хромосомы клетками в раннем эмбриональном периоде. Индивиды обладают одновременно мужскими и женскими гонадами или одной, содержащей 2 вида тканей. Такое явление называется истинным гермафродитизмом. У больных наблюдаются иногда не полностью сформированные органы репродуктивной системы обоих полов, что, однако, поддается хирургической коррекции.

Хотите читать всё самое интересное о красоте и здоровье, подпишитесь на рассылку !

Отдельные гены, хромосомы и геном в целом постоянно претерпевают разнообразные изменения. Хотя существуют механизмы репарации (восстановления) ДНК, часть повреждений и ошибок сохраняется. Изменения в последовательности и числе нуклеотидов в ДНК обозначают как мутации.

IМутации - инициальное звено патогенеза наследственных заболеваний.

В широком смысле термином «мутация» обозначают любые изменения генетического материала (пара нуклеотидов, ген, аллели, хромосомы, ядерный и митохондриальный геном). В узком значении термин «мутация» соотносят с изменениями на уровне гена, то есть генные мутации. Мутагены - причины мутаций - факторы химической, физической или биологической природы. Мутагенез (мутационный процесс) - изменения, приводящие к возникновению мутаций. Различают генные, хромосомные и геномные мутации.

Мутации обнаруживают как в соматических клетках (фенотипически проявляются только в мутировавшей клетке или её потомстве), так и в половых клетках. Последние потенциально могут быть переданы по наследству и проявляться в фенотипе потомства, в том числе и в виде наследственных заболеваний.

Этиология и патогенез наследственных болезней

Генные мутации

♦ По характеру изменений гена различают делеции, дупликации, инверсии, вставки, транзиции, миссенс- и нонсенс-мутации.

♦ По последствиям генных мутаций их классифицируют на нейтральные, регуляторные и динамические.

Хромосомные мутации (аберрации) характеризуются изменением структуры отдельных хромосом. Последовательность нуклеотидов в генах обычно не меняется, но изменение числа или положения генов при аберрациях может привести к генетическому дисбалансу.

Различают внутрихромосомные, межхромосомные и изохромосомные аберрации.

Изменения генома. Геномные мутации характеризуются изменением числа отдельных хромосом (моносомии и полисомии) или их гаплоидного набора (анеуплоидии и полиплоидии).

Мутагены классифицируют по происхождению (источнику) на эндогенные и экзогенные, а по природе на физические, химические и биологические.

Экзогенные мутагены. К ним относятся многочисленные факторы внешней среды (например, радиационное излучение, алкилирующие агенты, окислители, многие вирусы).

Эндогенные мутагены образуются при жизнедеятельности организма (например, свободные радикалы).

Физические мутагены - ионизирующее излучение и температурный фактор.

Химические мутагены - сильные окислители или восстановители (например, нитраты, нитриты, активные формы кислорода), алкилирующие агенты, пестициды (например, гербициды, фунгициды); некоторые пищевые добавки (например, ароматические углеводороды, цикламаты), продукты переработки нефти, органические растворители, лекарственные средства (например, цитостатики, содержащие ртуть средства, иммунодепрессанты).

Биологические мутагены - вирусы (например, кори, краснухи, гриппа и др.); Аг некоторых микроорганизмов, транспозоны, онкогены.

Частота мутаций. Средняя частота возникновения мутаций в структурных локусах оценена в пределах от 10 -5 до 10 -6 на одну гамету за каждое поколение. Весь геном содержит 3х10 9 пар оснований, около 23 тыс. генов. Следовательно, каждое последующее поколение приобретает несколько десятков мутаций. В Каталоге наследственных заболеваний человека OMIM перечислено около 7000 моногенных болезней (вызываемых мутациями конкретного гена). Для значительного числа пора- жённых генов идентифицированы разные аллели, количество которых для некоторых болезней достигает десятков и сотен.

Наследственные формы патологии

Для наследственных форм патологии приняты определения, перечисленные ниже.

Наследственные - болезни, причиной которых является генная, хромосомная или геномная мутация. Они, как правило (но не всегда) передаются от родителей потомкам.

Генные - болезни, вызываемые генными мутациями.

Хромосомные - болезни, возникающие вследствие хромосомных

и геномных мутаций.

Болезни с наследственной предрасположенностью (мультифактори-

альные, многофакторные) - болезни, развивающиеся в результате взаимодействия определённых комбинаций аллелей разных локусов и воздействий факторов окружающей среды.

Генетические болезни соматических клеток: злокачественные ново-

образования (изменения в генетическом материале являются этиологическими для злокачественного роста) и врождённые пороки, развившиеся вследствие мутаций.

Семейные - болезни, наблюдающиеся у двух и более членов семьи в одном или нескольких поколениях. Термин применяют для нозологических единиц, когда с высокой степенью вероятности подозревают их наследуемую природу, но наличие генетического дефекта не установлено.

Врождённые - болезни, проявившиеся при рождении (они могут

быть наследственными и ненаследственными).

Врождённый порок развития - морфологический дефект органа, части его или большой области тела, возникший в результате нарушенного органогенеза. Врождённые пороки развития могут быть наследственными и приобретёнными (под действием тератогенов во внутриутробном периоде).

ГЕННЫЕ БОЛЕЗНИ

Типы наследования. Для любого моногенного заболевания существенной характеристикой является тип наследования: аутосомно-доминант- ный, аутосомно-рецессивный, сцепленный с хромосомой X (доминантный и рецессивный), голандрический (сцепленный с хромосомой Y) и митохондриальный.

♦ При заболеваниях с рецессивным типом наследования фенотип гетерозиготы может не отличаться от нормы (т.е. иметь слабые проявления заболевания или не иметь их).

♦ При заболеваниях с доминантным типом наследования пациенты в гетерозиготном состоянии имеют практически ту же клиническую картину, что и в гомозиготном состоянии, но проявления болезни у гомозигот тяжелее.

Аутосомно-доминантный тип наследования

Примеры: синдром Марфана, гемоглобиноз M, хорея Хантингтона, полипоз толстой кишки, семейная гиперхолестеринемия, нейрофиброматоз, полидактилия. Родословная с аутосомно-доминантным типом наследования (синдром Марфана в 5 поколениях) представлена на рис. 3-1А.

Рис. 3-1. Родословные с разными типами наследования заболеваний. А - аутосомно-доминантный; Б - аутосомно-рецессивный; В - доминантный Х-сцепленный; Г - рецессивный Х-сцепленный. Римские цифры - поколения. Кружок - пол женский, квадрат - пол мужской, тёмный кружок или квадрат - больной, наискось перечёркнутый тёмный кружок или квадрат - умерший больной. Стрелкой указан пробанд - больной или носитель изучаемого признака.

Особенности наследования: ❖ один из родителей пациента, как правило, болен; ❖ выраженность и количество проявлений зависят от действия факторов среды; ❖ частота патологии у лиц мужского и женского пола одинакова; ❖ в каждом поколении имеются больные (так называемый вертикальный характер распределения болезни); ❖ вероятность рождения больного ребёнка равна 50% (независимо от пола ребёнка и количества родов); ❖ непоражённые члены семьи, как правило, имеют здоровых потомков (поскольку не имеют мутантного гена).

Аутосомно-рецессивный тип наследования

Примеры: фенилкетонурия, адреногенитальный синдром, кожно-глазной альбинизм, галактоземия, гликогенозы, гиперлипопротеинемии, муковисцидоз. Родословная с аутосомно-рецессивным типом наследования (муковисцидоз в 4 поколениях) представлена на рис. 3-1Б. Особенности наследования: ❖ родители больного, как правило, здоровы; заболевание может обнаруживаться у других родственников (например, у двоюродных или троюродных братьев/сестёр больного);

❖ однообразные проявления болезни (в связи с высокой пенетрантностью); ❖ симптомы болезни обычно выявляются уже в детском возрасте; ❖ частота патологии у лиц мужского и женского пола равная; ❖ в родословной патология проявляется по горизонтали, часто у сибсов; ❖ заболевание отсутствует у единокровных (дети одного отца от разных матерей) и единоутробных (дети одной матери от разных отцов) братьев и сестёр; ❖ появление аутосомно-рецессивной патологии более вероятно при кровнородственных браках за счёт большей вероятности встречи двух супругов, гетерозиготных по одному и тому же патологическому аллелю, полученному от их общего предка.

Сцепленное с хромосомой X доминантное наследование

Примеры: одна из форм гипофосфатемии - витамин D-резистент- ный рахит, болезнь Шарко-Мари-Тута X-сцепленная доминантная, рото-лице-пальцевой синдром типа I. Родословная с доминантным X-сцепленным типом наследования витамин D-резистентного рахита в четырёх поколениях представлена на рис. 3-1В. Особенности наследования: ❖ поражение лиц мужского и женского пола;

❖ у мужчин более тяжёлое течение заболевания; ❖ передача больным мужчиной патологического аллеля только дочерям, но не сыновьям (сыновья получают от отца хромосому Y); ❖ передача больной женщиной заболевания и сыновьям, и дочерям с равной вероятностью.

Сцепленное с хромосомой X рецессивное наследование

Примеры заболеваний: гемофилия A, гемофилия B, дальтонизм, мышечная дистрофия Дюшенна-Беккера, болезнь Хантера (мукопо-

лисахаридоз типа II), гипогаммаглобулинемия брутоновского типа. Родословная с рецессивным X-сцепленным типом наследования (гемофилия A в 4 поколениях) представлена на рис. 3-1Г. Признаки заболевания: ❖ больные рождаются в браке фенотипически здоровых родителей; ❖ заболевание наблюдается исключительно у лиц мужского пола; ❖ матери больных - облигатные носительницы патологического гена; ❖ сын никогда не наследует заболевание от отца;

❖ у носительницы мутантного гена вероятность рождения больного ребёнка равна 25% (50% родившихся мальчиков - больные).

Голандрический, или сцепленный с хромосомой Y, тип наследования

Примеры: гипертрихоз ушных раковин, избыточный рост волос на средних фалангах пальцев кистей, азооспермия.

Особенности наследования: ❖ передача признака от отца всем сыновьям (только сыновьям, дочери никогда не наследуют признак от отца);

❖ «вертикальный» характер наследования признака; ❖ вероятность наследования для лиц мужского пола равна 100%;

Митохондриальное наследование

Примеры заболеваний («митохондриальные болезни»): атрофия зрительного нерва Лебера, синдромы Лея (митохондриальная миоэнцефалопатия), MERRF (миоклоническая эпилепсия), кардиомиопатия дилатационная семейная.

Особенности наследования: ❖ наличие патологии у всех детей больной матери; ❖ рождение здоровых детей у больного отца и здоровой матери (объясняется тем, что митохондриальные гены наследуются от матери).

ХРОМОСОМНЫЕ БОЛЕЗНИ

Хромосомные болезни выявляются у новорождённых с частотой около 6:1000. Инициальное звено патогенеза - геномная или хромосомная мутация. Тяжесть нарушений обычно прямо коррелирует со степенью хромосомного дисбаланса: чем больше хромосомного материала вовлечено в аберрацию, тем раньше проявляется хромосомный дисбаланс в онтогенезе и тем значительнее нарушения физического и психического развития индивида.

Особенности: ❖ большинство геномных мутаций (полиплоидии, трисомии по крупным хромосомам [рис. 3-2], моносомии по аутосомам) летальны; ❖ мутации в гаметах приводят к развитию так называемых полных форм хромосомных болезней, когда изменения кариотипа выявляются во всех клетках организма; ❖ мутации в соматических клетках на ранних этапах эмбриогенеза приводят к развитию мозаи-

Рис. 3-2. Характеристика наиболее частых аутосомных трисомий [по 4].

цизма: часть клеток организма имеет нормальный кариотип, а другая часть - аномальный.

Аномалии половых хромосом. Нарушение расхождения половых хромосом приводит к образованию аномальных гамет: у женщин - XX и 0 (в последнем случае гамета не содержит половых хромосом); у мужчин - XY и 0. При слиянии половых клеток в подобных случаях возникают количественные нарушения половых хромосом. При болезнях, вызванных дефицитом или избытком Х хромосом, нередко наблюдается мозаицизм.

Синдром Кляйнфелтера: Частота: 2-2,5 на 1000 новорождённых мальчиков. ❖ Кариотип: разнообразные цитогенетические варианты (47,XXY; 48,XXXY; 49,XXXXY и др.), но чаще встречается вариант 47,XXY. ❖ Проявления: высокий рост, непропорционально длинные конечности, отложение жира по женскому типу, евнухоидное телосложение, скудное оволосение, гинекомастия, гипогенитализм, бесплодие (в результате нарушения сперматогенеза, снижения продукции тестостерона и увеличения продукции женских половых гормонов), снижение интеллекта (чем больше в кариотипе добавочных хромосом, тем более выражено). ❖ Лечение мужскими половыми гормонами направлено на коррекцию вторичных половых признаков, но и после терапии больные остаются бесплодными.

Трисомия X - наиболее частый синдром из группы полисомий X; частота 1:1000 новорождённых девочек, кариотип 47,XXX; пол -

женский, фенотип женский; как правило, физическое и психическое развитие у женщин с этим синдромом не имеет отклонений от нормы.

Синдром Шерешевского-Тёрнера. Частота синдрома: 1:3000 но- ворождённых девочек ❖ Кариотип: 45,Х0, но встречаются и другие варианты. ❖ Проявления: низкий рост, короткая шея с избытком кожи или крыловидной складкой, широкая, часто деформированная грудная клетка, деформация локтевых суставов, недоразвитие первичных и вторичных половых признаков, бесплодие. ❖ Раннее лечение женскими половыми гормонами может оказаться эффективным.

БОЛЕЗНИ С НАСЛЕДСТВЕННЫМ ПРЕДРАСПОЛОЖЕНИЕМ

Болезни с наследственным предрасположением называют также многофакторными (мультифакториальными), так как их возникновение определяется взаимодействием наследственных факторов и факторов внешней среды. К болезням с наследственным предрасположением относятся ишемическая болезнь сердца (ИБС), гипертоническая болезнь, бронхиальная астма, психические заболевания, СД, ревматические болезни, язвенная болезнь желудка, врождённые пороки развития (ВПР) и многие другие. Болезни с наследственным предрасположением классифицируют - в зависимости от числа генов, определяющих предрасположенность, - на моногенные и полигенные.

Моногенные болезни с наследственным предрасположением детерминируются одним мутантным геном и возникают при действии конкретного и обязательного фактора внешней среды. Пример - непереносимость лактозы: при мутантной форме гена лактазы употребление молока приводит к развитию кишечного дискомфорта и поноса.

Полигенные болезни. Предрасположенность к развитию полигенных болезней детерминируется взаимодействием нормальных и изменён- ных (мутировавших) генов, хотя каждый из них по отдельности не приводит к развитию заболевания. Индивид с такой комбинацией генов под действием определённого фактора окружающей среды достигает «порога возникновения» болезни и заболевает.

Характеристика многофакторных болезней: ❖ наследование не отвечает менделевским закономерностям; ❖ патогенез зависит от «удельного вклада» генетических и средовых факторов; эта зависимость различна как для разных заболеваний, так и для каждого человека; ❖ характерно наличие большого числа клинических вариантов; ❖ наблюдается более высокая конкордантность по заболеванию у монозиготных близнецов в сравнении с дизиготными.

Врождённые пороки развития

Аномалии развития (в том числе врождённые пороки - ВПР) и их причины изучает тератология. Распространённость ВПР составляет 2-3% от общего количества родившихся живыми детей.

Типы ВПР. В зависимости от времени воздействия повреждающих факторов выделяют гаметопатии, бластопатии, эмбриопатии и фетопатии.

Гаметопатии - результат воздействия на половые клетки (в основе лежат мутации в половых клетках).

Бластопатии - следствие поражения бластоцисты - зародыша первых 15 сут после оплодотворения (до завершения формирования зародышевых листков). Результатом бластопатий являются двойниковые пороки (сросшиеся близнецы), циклопия (наличие одного или двух слившихся глазных яблок в единственной орбите по срединной линии лица).

Эмбриопатии - результат воздействия тератогенного фактора на эмбрион в период с 16-го дня до 8 недели беременности. К этой группе относятся талидомидные, диабетические, алкогольные и некоторые медикаментозные эмбриопатии, а также ВПР, развившиеся под влиянием вируса краснухи.

Фетопатии - следствие повреждения плода от 9-й недели до момента рождения. К фетопатиям относятся, например, крипторхизм, открытый боталлов проток или пренатальная гипоплазия какого-либо органа или плода в целом.

агенезия - полное отсутствие органа (например, тимуса, почки, глаз);

аплазия и гипоплазия - отсутствие или значительное недоразвитие органа при наличии его сосудистой ножки и нервов (например, одной почки, селезёнки, лёгкого, кишечника);

атрезия - полное отсутствие канала или естественного отверстия (например, атрезия наружного слухового прохода, пищевода, ануса);

гетеротопия - перемещение клеток, тканей или части органа в другую ткань (например, клеток поджелудочной железы в дивертикул Меккеля, хромаффинных клеток в ткань лёгких);

персистирование - сохранение эмбриональных структур, исчезающих в норме к определённому этапу развития (например, открытый артериальный проток у годовалого ребёнка, крипторхизм);

стеноз - сужение просвета отверстия или канала (например, клапанного отверстия сердца, привратника желудка, фрагмента кишечника);

удвоение (утроение) - увеличение числа органов или его части (например, удвоение матки, мочеточников);

эктопия - необычное расположение органа (например, почки в малом тазу, сердца - вне грудной клетки).

Уродства (как правило, дефекты морфогенеза) - наиболее тяжёлые проявления ВПР.

Дисплазии (мальформации, деформации, дизрупции) - морфологические врождённые изменения, выходящие за пределы общепринятой нормы.

Малые аномалии развития (стигмы дизэмбриогенеза: синдактилия, ямочки на щеках, аномалии ушных раковин, искривление мизинца и др.) - врождённые дефекты, не требующие косметической или медицинской коррекции.

Клинически значимые пороки развития - врождённые аномалии, требующие тех или иных форм медицинского вмешательства (квалифицированной диагностики, медицинской коррекции). Степень тяжести врождённого порока может быть различной: от малых аномалий (например, полидактилия) до очень тяжёлых системных поражений (гидроцефалия, болезнь Дауна).

ЭТИОЛОГИЯ И ПАТОГЕНЕЗ

На развитие организма оказывают влияние как генетические факторы, так и факторы окружающей среды. Факторы, приводящие к развитию ВПР, обозначают как тератогены. Большинство врождённых пороков обусловлено воздействием факторов внешней среды, генетическими дефектами или их сочетанием (табл. 3-1). В ряде случаев не удаётся установить причину врождённого дефекта (спорадические болезни).

Таблица 3-1. Причины врождённых аномалий

Тератогенные агенты

Ионизирующее излучение. Доза облучения и срок гестации определяют степень и характер аномалий плода. Так у детей, рождён- ных после атомных взрывов в Хиросиме и Нагасаки (внутриутробное облучение), наблюдали различные аномалии ЦНС и лейкозы. Однако, эти поражения возникали в случаях, когда плод подвергался облучению до 16 недель гестации, в период органогенеза; при облучении на более поздних сроках происходит задержка роста на фоне нормального умственного развития.

Стадия внутриутробного развития плода (рис. 3-3). Степень воздействия на эмбрион зависит от срока беременности на момент воздействия: ❖ 2-4 нед. после оплодотворения: плод либо развивается нормально, либо гибнет; ❖ 4-12 нед.: возникают микроцефалия, умственная отсталость, катаракта, задержка роста, микрофтальмия; ❖ 12-16 нед: развивается умственная отсталость или задержка роста; ❖ после 20 нед: повреждение волосяных фолликулов, поражение кожи и слизистых оболочек, угнетение красного костного мозга.

Доза: ❖ дозу облучения 5-10 рад считают нетератогенной; ❖ 10- 25 рад - возможно повреждающее действие на плод; ❖ более 25 рад - часто возникают структурные пороки развития, задержка роста и гибель плода. После воздействия такой дозы рекомендуют прерывание беременности (медицинский аборт).

Лекарственные препараты (ЛС). Американская Федеральная Комиссия по пищевым продуктам и ЛС (FDA) предложила все ЛС подразделять на 5 категорий:

A. ЛС совершенно безвредны для плода (например, витамины).

B. Опыты на животных не выявили тератогенности, но нет контрольных исследований на беременных. В эту категорию также входят ЛС, оказывающие повреждающее воздействие на животных, но не на человека (например, пенициллин, дигоксин, адреналин, тербуталин).

C. Исследования на животных показали или тератогенное, или эмбриотоксическое воздействие ЛС на плод, но исследования на людях не проводились. Эти ЛС можно применять только в тех случаях, когда польза от их применения перевешивает потенциальный риск для плода (фуросемид, гуанидин, верапамил).

D. Есть доказательства тератогенности ЛС. Однако, польза от его применения при определённых обстоятельствах превышает риск для плода (например, фенитоин).

X. Исследования на животных и людях выявили очевидную опасность для плода. ЛС этой категории противопоказаны беремен-

Рис. 3-3. Критические сроки развития возможных пороков развития по системам органов, [по 4].

ным или женщинам, желающим забеременеть (например, изотретиноин).

Алкоголь - один из наиболее распространённых тератогенов. Количество употребляемого алкоголя коррелирует со степенью вредного воздействия на плод. Выраженность поражения (сильная, слабая или её отсутствие) во многом зависит от генетической предрасположенности. В настоящее время нет данных о безопасной дозе потребления алкоголя во время беременности. В связи с этим рекомендован полный отказ от алкоголя во время беременности.

Наркотики:

Марихуана. У женщин, курящих марихуану во время беременности, повышена частота выкидышей и преждевременных родов.

Героин. Побочные продукты синтеза, встречающиеся в недостаточно очищенном героине, часто обладают выраженным тератогенным эффектом. Основное неблагоприятное действие на плод при употреблении героина состоит в развитии выраженного «синдрома отмены» у новорождённого, что в 3-5% случаев приводит к гибели ребёнка. Метадон (аналог героина) обладает такими же свойствами.

Фенилциклидин (ангельская пыль) иногда вызывает развитие дефектов лица у плода.

Кокаин. При употреблении беременной кокаина увеличивается риск развития врождённых аномалий, гибели плода и рождения детей с малой массой тела.

Гипертермия. Длительный подъём температуры (до 38,9 °С и выше) у женщины в период с 4 по 14 нед. беременности обладает большим тератогенным эффектом, чем кратковременные подъёмы до тех же цифр.

Вещества, загрязняющие окружающую среду, можно рассматривать как тератогены, хотя изучение их влияния представляет большие трудности.

Вирус краснухи. При заражении краснухой на первом месяце беременности вероятность развития аномалий плода составляет 50%. Риск снижается до 22% при инфицировании на втором месяце и до 6-10% на третьем-четвёртом месяце беременности.

Цитомегаловирус поражает плод в 1-2% случаев всех беременностей. От 1 до 3 из 10 000 новорождённых страдает серьёзными пороками развития.

Вирус простого герпеса 2-го типа. Хотя герпетическая инфекция встречается довольно часто, её передача от больной беременной плоду происходит менее чем в 0,02% случаев. Ещё реже возникают пороки развития, возможно из-за того, что инфицирование плода в I триместре беременности обычно приводит к его гибели.

Токсоплазма. Количество детей с врождённым токсоплазмозом колеблется от 1 до 6 на 1 000 новорождённых. Внутриутробное заражение плода происходит у 30% инфицированных беременных.

Treponema pallidum способна проходить через плацентарный барьер на любом сроке беременности, но заражение плода редко происходит до 16-18 нед. гестации. Последствия внутриутробного инфицирования: преждевременные роды или выкидыш, гибель плода, смерть 50% заражённых новорождённых, врождённый сифилис.

Вирус ветряной оспы. Первичное инфицирование проявляется в виде ветряной оспы, рецидив заболевания называют опоясывающим лишаем. Во время беременности трансплацентарная передача вируса плоду в 5% случаев происходит в I триместре беременности и приблизительно в 24% случаев, если заражение женщины произошло на последнем месяце беременности. При опоясывающем лишае инфицирования плода не происходит.

Энтеровирусы. Инфицирование матери вирусом Коксаки вызывает пороки развития или гибель плода в 40% случаев.

Методы диагностики

Клинико-синдромологический метод позволяет выявлять морфологические, биохимические и функциональные признаки наследственных форм патологии (например, дефицит плазменного фактора VIII при подозрении на гемофилию A; кариотип 45,Х0 при подозрении на синдром Шерешевского-Тёрнера; поражения скелета, сердечнососудистой системы и глаз при подозрении на синдром Марфана).

Клинико-генеалогический метод позволяет выявить патологические признаки и проследить особенности их передачи в поколениях при составлении родословной.

Составление родословной начинают со сбора сведений о семье консультирующегося или пробанда. Терминология: пробанд - больной или носитель изучаемого признака, сибсы (братья и сёс- тры) - дети одной родительской пары, семья - в узком смысле родительская пара и их дети, но иногда и более широкий круг кровных родственников, хотя в последнем случае лучше применять термин род.

Близнецовый метод базируется на сравнительном анализе частоты определённого признака в разных группах близнецов, а также в сопоставлении с партнёрами монозиготных пар между собой и общей популяцией. Идентичность близнецов по анализируемому признаку обозначают как конкордантность, а отличие - как дискордантность. Роль наследственности и факторов среды в возникновении патологии у близнецов оценивают по специальным формулам.

Цитогенетическая диагностика основана на микроскопическом изучении хромосом с целью выявления структурных нарушений в хромосомном наборе (кариотипирование). В качестве материала используют тканевые культуры с большим числом делящихся клеток, чаще лимфоциты периферической крови. Хромосомы на стадии метафазы изучают при помощи специальных методов окрашивания и составляют идиограммы (систематизированные кариотипы с расположением хромосом от наибольшей к наименьшей), что позволяет выявлять геномные и хромосомные мутации.

Биохимическая диагностика базируется на изучении биохимических показателей, отражающих сущность болезни (например, активность ферментов, наличие патологических метаболитов, концентрация компонентов ферментативной реакции).

Молекулярная диагностика. При помощи методов ДНК-диагностики устанавливают последовательность расположения отдельных нуклеотидов, выделяют гены и их фрагменты, устанавливают их наличие в изучаемых клетках. К числу наиболее эффективных методов относятся гибридизация ДНК, клонирование ДНК, полимеразная цепная реакция.

Гибридизация ДНК. Для определения порядка расположения нуклеотидов в исследуемом генетическом материале изучаемую ДНК помещают в специальную среду, где происходит контакт ДНК с нитями другой нуклеиновой кислоты. В случае комплементарности каких-либо двух нитей происходит их «сшивка». При специальных исследованиях используют генетические «зонды» - фрагменты меченной радиоактивным изотопом однонитевой ДНК с известной последовательностью нуклеотидов.

Блот-гибридизация. Для выявления интересующих (в том числе мутантных) генов ДНК подвергают рестрикции, разделяют по молекулярной массе, денатурируют и переносят на носитель (нейлоновую или иную мембрану). Фиксированную на носителе в виде пятна ДНК гибридизируют с меченым радиоактивным изотопом ДНКили РНК-зондом. В результате определяют положение аномального фрагмента ДНК.

Клонирование ДНК. С помощью специализированных ферментов (ДНК-рестриктаз) подразделяют нить ДНК на отдельные группы генов или на единичные гены. Для изучения признаков (в том числе патологических), кодируемых данными генами, особенностей транскрипции и трансляции создают нужное количество копий данного гена.

Полимеразная цепная реакция (специфическая амплификация ДНК). Применяют для изучения локусов предполагаемых мутаций и других особенностей структуры ДНК. Для исследования можно использовать любой биологический материал, содержащий ДНК (например, кусочек ткани, капля или пятно крови, смыв полости рта, луковица корня волос). На первом этапе исследуемую ДНК подвергают отжигу: расщепляют на две нити при нагревании до 95-98 °C. Затем одну из нитей гибридизируют и стимулируют синтез последовательности, комплементарной исследуемой ДНК (с помощью ДНК-полимеразы). В первом цикле полимеразной цепной реакции гибридизацию выполняют с исследуемым фрагментом ДНК, а в последующих - с вновь синтезированными. При каждом цикле реакции число синтезированных копий участка ДНК увеличивается двукратно. Циклы повторяют до накопления нужного количества ДНК.

Принципы лечения

Лечение наследственных болезней базируется на трёх принципах: этиотропном, патогенетическом и симптоматическом.

Этиотропная терапия направлена на устранение причины заболевания. С этой целью разрабатываются, апробируются и частично могут быть применены методы коррекции генетических дефектов, называемые генной терапией.

Патогенетическая терапия имеет целью разрыв звеньев патогенеза. Для достижения этой цели применяют несколько методов.

Заместительная терапия - введение в организм дефицитного вещества (не синтезирующегося в связи с аномалией гена, который контролирует продукцию данного вещества; например, инсулина при СД, антигемофильного глобулина человека при гемофилии).

Коррекция метаболизма путём: ❖ ограничения попадания в организм веществ, метаболически не усваивающихся (например, фенилаланина или лактозы); ❖ выведения из организма метаболитов, накапливающихся в нём в избытке (например, фенилпировиноградной кислоты или холестерина); ❖ регуляции активности ферментов (например, подавление активности КФК при

отдельных видах миодистрофий, активация липопротеинлипазы крови при гиперхолестеринемии). ♦ Хирургическая коррекция дефектов (например, создание шунта между нижней полой и воротной венами у пациентов с «гепатотропными» гликогенозами).

Симптоматическая терапия. Направлена на устранение симпто-

мов, усугубляющих состояние пациента (например, применение веществ, снижающих вязкость секретов экзокринных желёз при муковисцидозе; хирургическое удаление дополнительных пальцев и перемычек кожи между ними при поли- и синдактилии; выполнение пластических операций при дефектах лица, пороках сердца и крупных сосудов).

Профилактика

Всем семьям, имеющим случаи наследственных заболеваний, т.е. при повышенной вероятности рождения ребёнка с патологией необходимо проводить медико-генетическое консультирование, задачи которого - выявление генетических заболеваний и определение возвратного риска.

Выявление генетических заболеваний. В первую очередь необходима

точная диагностика, позволяющая определить природу заболевания и отдифференцировать состояния, имеющие сходную клиническую картину.

Определение возвратного риска. При установлении точного диагноза

Анализ родословной (см. рис. 3-1) - первый этап медико-генетичес-

кого консультирования. Необходимо собрать полную информацию о состоянии здоровья всех членов семьи (не менее четырёх поколений).



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии