Гаплоидные клетки: процесс образование и количество хромосом. Хромосомы. Гаплоидный и диплоидный набор хромосом Что такое диплоидный набор

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Хромосомы – органоиды делящегося клеточного ядра, являются носителями генов. Основа хромосом - непрерывная двухцепочная молекула ДНК, связана гистонами в нуклеопротеид. В хромосоме две сложенные по пдлине хроматиды соединены посередине первичной перетяжкой (центромерой). В зоне первичной перетяжки находится кинетахор – особая белковая структура для прикрепления микротрубочек, веретена деления и последующего расхождения хроматид в анафазе митоза.

Кариотип – совок-ость признаков хромосомного набора, т.е. число, размер, форма хр-сом, характ-ных для того или иного типа.

Функция хромосом: в хромосомах заключена наследственная информация. В хромосоме в линейном порядке расположены гены, самоудвоение и закономерное распределение хромосом в дочерней клетке при клеточном делении обеспечивает передачу наследственных свойств организма от поколения к поколению.

Гаплоидный набор хромосом. Он представляет собой скопление совершенно разных хромосом, т.е. в организме-гаплоиде есть несколько этих нуклеопротеидных структур, непохожих друг на друга. Гаплоидный набор хромосом характерен для растений, водорослей и грибов.

Диплоидный набор хромосом. Этот набор является таким собранием хромосом, при котором у каждой из них есть двойник, т.е. эти нуклепротеидные структуры расположены попарно. Диплоидный набор хромосом характерен для всех животных, в том числе и человека.

Удвоение хромосом эукариотов является сложным процессом, поскольку включает не только репликацию гигантских молекул ДНК, но также и синтез связанных с ДНК гистонов и негистоно-вых хромосомных белков. Конечным этапом является упаковка ДНК и гистонов в нуклеосомы. Считают, что удвоение хромосом также имеет полуконсервативный характер.

Репликационное поведение хромосом основывается на трех фундаментальных свойствах , а именно: непосредственно репликация, сегрегация хромосом при репликации ДНК и делении клеток, а также репликация и предохранение концов хромосом.

Вы никогда не задумывались о том, почему родившийся и подросший ребенок похож на своих родителей внешностью и привычками? "Генетика такая", - наверное, скажете вы. И многие знают, что у родителей и детей похожая ДНК. Вот ее и содержат хромосомы. "А это еще что такое?" - недоуменно воскликнут девять человек из десяти, столкнувшихся с данным понятием. Существует несколько их схем расположения. Сегодня мы рассмотрим гаплоидный и диплоидный набор хромосом. Но давайте сначала разберемся, что это такое.

Определение понятия

Хромосома является нуклеопротеидной структурой, одной из составляющих ядра эукариотической клетки. Она хранит, реализует и передает наследственную информацию. Хромосомы можно различить с помощью микроскопа только в то время, когда происходит митотическое или мейотическое деление клетки. Кариотип, как называется совокупность всех хромосом клетки - видоспецифичный признак с относительно низким уровнем индивидуальной изменчивости. Эти содержащие ДНК структуры у эукариотических организмов имеются в митохондриях, ядре и пластидах. У прокариотических - в клетках без ядра. А хромосомами вирусов является ДНК- или РНК-молекула, находящаяся в капсиде.

История понятия

По наиболее распространенной версии, хромосомы были открыты в 1882 году немецким анатомом Вальтером Флемингом. Хотя "открыл" - это громко сказано, им лишь была собрана и упорядочена вся информация о них. В 1888 году немецкий гистолог Генрих Вальдейер впервые предложил называть новые структуры хромосомами. Трудно ответить, когда и кем были сделаны первые их описания и рисунки. Через пару лет после того, как были открыты законы Менделя, предположили, что хромосомы играют важную генетическую роль. Хромосомная теория была подтверждена в 1915 году людьми, основавшими классическую генетику. Ими стали Г. Мёллер, К. Бриджес, А. Стёртевант и Т. Морган. Последним в 1933-м была получена Нобелевская премия в области физиологии и медицины за то, что он обосновал роль хромосом в наследственности.

Плоидность

Общее количество одинаковых хромосом указывает на их плоидность. Существует гаплоидный, полиплоидный и диплоидный набор хромосом. Сейчас мы поговорим о первом и третьем.

Гаплоидный набор хромосом

Начнем с гаплоидного. Он представляет собой скопление совершенно разных хромосом, т.е. в организме-гаплоиде есть несколько этих нуклеопротеидных структур, непохожих друг на друга (фото). Гаплоидный набор хромосом характерен для растений, водорослей и грибов.

Диплоидный набор хромосом

Этот набор является таким собранием хромосом, при котором у каждой из них есть двойник, т.е. эти нуклепротеидные структуры расположены попарно (фото). Диплоидный набор хромосом характерен для всех животных, в том числе и человека. Кстати, о последнем. У здорового человека их 46, т.е. 23 пары. Однако его пол определяют всего две, называемые половыми, - Х и Y. Их расположение определяется еще в утробе матери. Если схема таких хромосом ХХ - родится девочка, если же они расположены в виде XY - родится мальчик. Однако могут наблюдаться и нарушения плоидности, ведущие к негативным изменениям в физическом и психическом состоянии организма, такие, как:

Эти болезни носят генетический характер и являются неизлечимыми. Дети и взрослые с одним из таких или многих похожих хромосомных синдромов ведут неполноценный образ жизни, а некоторые и вовсе не доживают до зрелого возраста.

Заключение

Видите, до чего важны хромосомы для всех организмов. У различных видов животных и растений разное количество и число наборов этих нуклеопротеидных структур.

Хромосомные наборы из соматических клеток мужских и женских особей каждого вида имеют отличие в одной паре хромосом. Эта пара - половые хромосомы, или гетерохромосомы. Все остальные пары хромосом, одинаковые у обоих полов, имеют общее название - аутосомы.

Например, в кариотипе человека пары хромосом, одинаковые у женщин и у мужчин - это аутосомы. Одна пара - двадцать третья - у мужчин и женщин определяет пол. Поэтому хромосомы, которые в нее входят, называются половыми. Эта пара у женщин - гомологичная (XX), а у мужчин -гетерологичная (ХУ). Именно поэтому половые хромосомы называют еще гетеросомами (от «гетеро» - разный).

Правила хромосом

1. Правило постоянства числа хромосом. Число хромосом в клетке постоянно у каждого вида. То есть, число хромосом и характерные особенности их строения - видовой признак. Например, у человека -46, шимпанзе - 48, мушки дрозофилы- 8 хромосом (общая формула -2а).

2. Правило парности хромосом. Хромосомы в диплоидном наборе образуют пары. Те хромосомы, которые относятся к одной паре, называются гомологичными. Эти хромосомы сходны по размерам, форме, по расположению центромер и по набору входящих в них генов. В каждой паре одна хромосома - от матери, другая - от отца.

3. Правило индивидуальности. Хромосомы разных пар отличаются друг от друга: по размеру; форме; месту расположения перетяжек; по исчерченности, выявляемой специальной окраской - ДОХ (дифференциальное окрашивание хромосом); по набору входящих в них генов. Набор генов одной пары больше не повторяется ни в какой другой паре.

4. Правило непрерывности хромосом. Каждое новое поколение имеет такое же строение и форму хромосом, как и предыдущее, т.е., хромосомы из поколения в поколение сохраняют относительно постоянную форму и строение. Это возможно, так как ДНК способна к редупликации (самоудвоению).

Таким образом, можно дать еще одно определение кариотипа: кариотип - это совокупность хромосом соматической клетки, которая характеризуется постоянным для вида числом хромосом, их размером, формой и расположением в них центромер.

Единственным способом образования новых клеток является деление предшествующих клеток.

Жизненный, или клеточный, цикл - это время от возникновения клетки до ее смерти или образования из нее новых клеток, то есть - это ее онтогенез.

Митотический цикл - это жизнь клетки от момента ее появления до конца ее деления с образованием двух новых клеток. (Это один из вариантов клеточного цикла).

Есть клетки, у которых жизненный цикл совпадает с митотическим циклом. Это клетки, которые все время делятся. Например, клетки кожного эпидермиса, семенников (обновляющиеся клеточные комплексы). Существуют клетки, у которых отсутствует митотический цикл (стабильные клеточные комплексы). Эти клетки теряют способность делиться (например, эритроциты, нейроны). Но было доказано, что такое состояние может быть обратимым. Например, если из яйцеклетки лягушки удалить ядро и пересадить туда ядро нервной клетки, оно начинает делиться. Исходя из этого, можно сделать вывод, что цитоплазма яйцеклетки содержит вещества, которые активируют митоз.

Описано три способа деления эукариотических клеток :

Амитоз (прямое деление);

Митоз (непрямое деление);

Мейоз (редукционное деление).

Амитоз - это деление, при котором интерфазное ядро делится путем перетяжки. Конденсация хромосом при этом отсутствует. Иногда после деления ядер цитоплазма не делится и образуются двуядерные клетки. Амитоз описан в клетках скелетной мускулатуры, клетках кожного эпителия, а также в патологически измененных клетках (клетках опухолей).

Митоз - это деление, при котором из одной клетки с диплоидным набором хромосом образуются две клетки также с диплоидным набором каждая. Этот способ деления является универсальным для эукариотических клеток. Он лежит в основе бесполого размножения организмов. За счет митоза идет рост тканей и целого организма.

Митоз является частью митотического цикла. Весь митотический цикл состоит из интерфазы (подготовка клетки к делению) + митоз (собственно деление).

Интерфаза имеет три периода:

1. Пресинтетический - в 1

2. Синтетический - Б

3. Постсинтетический - 0 2

Пресинтетический период - клетка растет, накапливает АТФ, РНК, белки, необходимые для образования клеточных органоидов. В этот период клетка приобретает черты, свойственные данной ткани. В этом периоде клетка имеет 2п,2с (п - гаплоидный набор хромосом, с - количество ДНК в одной хроматиде): т.е., двойной набор однохроматидных хромосом.

Синтетический период - происходит редупликация ДНК, продолжает снтезироваться РНК, синтезируются белки-гистоны. В конце этого периода клетка имеет 2n,4c: _ т.е., двойной набор двухроматидных хромосом. (Число хромосом не изменяется, но каждая хромосома состоит уже из двух хроматид).

Постсинтетический период - синтезируются РНК, белки, необходимые для процесса деления, АТФ, ДНК митохондрий. Удваивается число митохондрий, пластид, центриолей. В этом периоде клетка имеет 2п,4с.,

В интерфазе ядро округлое, с четкими границами. В нем видны одно или несколько ядрышек, Хромосомы - в виде хроматина, находятся в кариоплазме.

Митоз делят на четыре основные фазы:

1.профаза;

2.метафаза;

3.анафаза;

4.телофаза.

Профаза. Ядро заметно увеличено. Исчезают ядрышки. Происходит. спирализация (конденсация, или укладка) хромосом: в начале профазы они тонкие и длинные, в конце - толстые и короткие. Центриоли расходятся к полюсам клетки, начинает образовываться веретено деления. В конце профазы видно что каждая хромосома состоит из 2-х хроматид. Профаза считается оконченной, когда оболочка ядра распадается на фрагменты и хромосомы выходят в цитоплазму. В этом периоде клетка имеет 2п,4с. В каждой хромосоме - две хроматиды.

Между профазой и метафазой можно еще выделять прометафазу, когда идет движение хромосом в сторону экватора.

Метафаза. Хромосомы располагаются на экваторе клетки. К каждой кроматиде в области центромеры прикрепляется нить веретена деления. Хроматиды каждой хромосомы остаются соединенными только в области центромеры. В этом периоде клетка имеет 2п,4с (диплоидный набор двухроматидных хромосом).

Анафаза . Хроматиды каждой хромосомы отсоединяются друг от друга в области центромеры. Нити веретена деления сокращаются и растягивают хроматиды (теперь они называются дочерними хромосомами) к разным полюсам клетки. В этом периоде клетка имеет 4п,4с (тетраплоидный набор однохроматидных хромосом).

Рис. Фазы митоза

Телофаза. В начале фазы происходит деспирализация (раскручивание) хромосом. Вокруг каждого скопления хромосом образуется ядерная оболочка. Появляются ядрышки. Ядра приобретают вид интерфазных ядер. Постепенно исчезает веретено деления. В конце телофазы происходит цитокинез, или цитотомия (деление цитоплазмы материнской клетки). Из одной материнской клетки образуются две дочерние. Они переходят в интерфазное состояние. В этом периоде каждая новая клетка имеет 2п,2с (двойной набор и однохроматидных хромосом). Т.е., начиная с анафазы и до S-периода интерфазы каждая хромосома состоит из одной хроматиды.

Биологическое значение митоза

1.Сохранение постоянного числа хромосом в дочерних клетках (каждая новая клетка имеет такой же набор хромосом, как и исходная - 2п).

2.Равномерное распределение наследственной информации между дочерними клетками.

3. Рост нового организма при бесполом размножении за счет появления новых клеток тела.

4. Регенерация (восстановление) утраченных клеток и органов.

Мейоз - это процесс, состоящий из двух последовательных делений. Из одной клетки с диплоидным набором хромосом (2п,4с) образуются четыре гаплоидные клетки (п, с). То есть, во время мейоза в клетке происходит редукция (уменьшение) числа хромосом.

В каждом из делений мейоза выделяют те же фазы, что и в митозе: профазу (I и II), метафазу (I иІІ), анафазу (I и II) и телофазу (I и II). Но продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от митоза. Главные отличия такие:

1. Профаза I - самая продолжительная. Поэтому ее делят на пять стадий:

Лептотена: хромосомы начинают спирализоваться;

Зиготена: гомологичные хромосомы конъюгируют (плотно прилегают друг к другу по всей длине). Такие пары называются бивалентами;

Пахитена: конъюгация завершается полностью. Между конъюгирующими хромосомами может произойти обмен гомологичными участками (содержащими одни и те же гены) - кроссинговер (или рекомбинация). Участки обмена называются хиазмами;

Диплотена: между гомологичными хромосомами возникают силы отталкивания сначала в области центромер, а затем в других участках. Становится заметным, что эти фигуры состоят из четырех элементов. То есть биваленты превращаются в тетрады. Хроматиды в тетрадах сцеплены в области теломер и хиазм;

Диакинез: хромосомы максимально спирализованы, биваленты обосабливаются и размещаются их по периферии ядра. Тетрады укорачиваются, исчезают ядрышки.

Мейоз напоминает митоз, но имеет свои особенности:

а) В профазе первого мейоза в отличие от митоза происходит конъюгация Гомологичных хромосом. Между гомологичными хромосомами происходит обмен гомологичными участками, генами (кроссинговер).

о) В метафазе I на экваторе клетки находятся соединенные парами (одна напротив другой) гомологичные хромосомы (рис. 34,метафаза I).

в) Во время анафазы расходятся к полюсам не хроматиды (как при митозе), а двухроматидные гомологи (рис. 34, анафаза I). Поэтому, после первого мейотического деления дочерние клетки (овоцит П и одно полярное тельце при овогенезе и сперматоциты II при сперматогенезе) имеют гаплоидный набор хромосом, но каждая хромосома состоит из двух хроматид.

г) Интерфаза II очень короткая, т.к редупликация ДНК не нужна (хромосомы - двухроматидные).

Остальные фазы мейоза II проходят довольно быстро, не отличаясь от митотического деления. В анафазе парные сестринские хроматиды расходятся по одной в дочерние клетки. Таким образом, при мейозе из одной исходной клетки (2п,4с) образуются четыре клетки - каждая с гаплоидным набором однохроматидных хромосом (п,с).

Биологическое значение мейоза

1. Во время мейоза в новых клетках образуется гаплоидный набор хромосом. А при оплодотворении (слиянии гамет) восстанавливается диплоидный набор хромосом. Таким образом, у всех организмов сохраняется постоянство числа хромосом из поколения в поколение.

2. Во время двух делений мейоза происходит перекомбинация

генетического материала вследствие

а) кроссинговера;

б)независимого расхождения отцовских и материнских хромосом. Возникает комбинативная изменчивость - это дает разнообразный материал для эволюции.

3 ОСОБЕННОСТИ СТРОЕНИЯ ПОЛОВЫХ КЛЕТОК (ГАМЕТ)

Яйцеклетки неподвижны, обычно имеют шаровидную форму. Они содержат все клеточные органоиды, характерные для соматических клеток. Но в яйцеклетках содержатся вещества (например, желток), необходимые для развития зародыша. В зависимости от количества желтка яйцеклетки делят на разные типы. Например, изолецитальная яйцеклетка: в ней желтка мало и он равномерно распределяется по всей цитоплазме (яйцеклетка ланцетника, человека). У рептилий и птиц желтка очень много (телолецитальная яйцеклетка) и он находится у одного из полюсов клетки. Этот полюс называется вегетативным (питающим). Противоположный полюс, где желтка мало, несет ядро клетки и называется анимальным. От количества и распределения желтка зависит тип дробления зиготы.

Самая крупная яйцеклетка - у акул (50 - 70 мм в диаметре), у курицы -более 30 мм(без белковых оболочек), у коровы - 100 мкм, у человека - 130-200 мкм.

Яйцеклетки покрыты оболочками, которые выполняют защитную и другие функции (например, у плацентарных млекопитающих - для врастания зародыша в стенку матки).

Сперматозоиды - мелкие клетки (у человека имеют длину 50-70 мкм) состоят из головки, шейки и хвоста. В головке находится ядро и небольшое количество цитоплазмы. На переднем конце головки располагается акросома. Это видоизмененный комплекс Гольджи. В нем находятся ферменты, которые разрушают оболочки яйца при оплодотворении. В шейке расположены митохондрии и центриоли. Одна центриоль проксимальная (ближняя), она вместе с головкой проникает в яйцеклетку. Другая - дистальная (дальняя), к ней прикрепляется хвост. Митохондрии шейки обеспечивают его энергией. В состав хвоста входят микротрубочки.

Особенности половых клеток:

Имеют гаплоидный набор хромосом.

В половых клетках по сравнению с соматическими отмечается менее интесивный метаболизм. В яйцеклетках накапливаются вещества, необходимые для развития зародыша.

Сперматозоиды никогда не делятся, а яйцеклетка после внедрения в нее сперматозоида отделяет вторичный полоцит (т.е., только теперь в ней завершается второе деление мейоза).

Детям по наследству от родителей передаются определенные гены. Как известно, младшее поколение "берет" от старшего форму лица, особенности головы, рук, цвет волос и др.). За передачу признаков детям от родителей в организме отвечает такое вещество, как Это уникальное вещество содержит информацию биологического характера об изменчивости. Оно записано в виде кода. Его хранит хромосома.

В человеческой клетке содержится двадцать три пары таких структурно-функциональных единиц, как хромосомы. В каждом таком "дуэте" содержится по две абсолютно одинаковых структурно-функциональных единицы. Различие в том, что эти пары отличаются друг от друга. Хромосомы под номерами сорок пять и сорок шесть являются половыми. При этом этот дуэт является одинаковым только у девушек, у мужчин же они разные. Все структурно-функциональные единицы, за исключением половых, носят название "аутосомы". Следует отметить, что хромосомы по большей мере состоят из таких элементов, как белки. Они различны по внешнему виду: некоторые из них являются более тонкими, другие - несколько короче остальных, но каждая из них имеет близнеца. Хромосомный набор (или, как его еще называют, кариотип) человека является генетической структурой, которая несет ответственность за передачу наследственности. Рассмотреть такие структурно-функциональные единицы под микроскопом лучше во время (стадия метафазы). В этот период хромосомы формируются из такого вещества, как хроматин, и уже начинают приобретать какое-то количество, т.е. плоидность.

Как уже отмечалось выше, клетка человека имеет двадцать три пары важных структурно-функциональных элементов. У живых организмов своя индивидуальная плоидность.

Гаплоидный и диплоидный набор хромосом. Понятие плоидности определяется как количество хромосомных наборов в клетках (преимущественно) в ядрах. У живых организмов хромосомы могут быть непарными и парными. В клетках человека образуется диплоидный набор хромосом, то естиь двойной. Такой набор структурно-функциональных элементов характерен для всех соматических клеток. Стоит отметить, что у каждого человека диплоидный набор хромосом состоит из 44-х аутосом и 2-х половых хромосом. Гаплоидный набор хромосом является одинарным набором непарных структурно-функциональных элементов Данный набор содержит двадцать две аутосомы и только одну половую хромосому. Гаплоидный набор и диплоидный набор хромосом могут присутствовать в одно и то же время. Это происходит преимущественно при половом процессе. В этот момент гаплоидная и диплоидная фазы чередуются. С помощью деления полный набор образует одинарный. После этого два одинарных соединяются и образуют полный набор структурно-функциональных элементов и т.д.

Диплоидный набор хромосом является совокупностью хромосом, которая присуща всем соматическим клеткам. В ней все хромосомы, которые характерны для данного биологического вида, представлены в парах. У каждого человека диплоидный набор хромосом способен содержать сорок четыре аутосомы и две половых структурно-функциональные элемента. Диплоидный набор хромосом характерен для зиготы и всех соматических клеток, кроме анзуплоидных, гаплоидных и полиплоидных клеток.

Бывает и такое, что происходит нарушение набора структурно-функциональных единиц. Сбои могут повлиять на образование (например, Синдром Дауна - образование триосомии, т.е. нарушения в двадцать первой паре и появление (третьей)). Изучение хромосом очень важно, так как данные элементы оказывают очень серьезное воздействие на человеческий организм.

№ 35 Наследственность и изменчивость – фундаментальные свойства живого, их диалектическое единство. Общие понятия о генетическом материале и его свойствах: хранение, изменение, репарация, передача, реализация генетической информации. Характеристика диплоидного и гаплоидного набора хромосом.

Наследственность и изменчивость.

Наследственность – это свойство организмов передавать следующему поколению свои признаки и особенности развития, т.е. воспроизводить себе подобных. Наследственность – неотъемлемое свойство живой материи. Она обусловлена относительной стабильностью (т.е. постоянством строения) молекул ДНК.

Изменчивость – свойство живых систем приобретать изменения и существовать в различных вариантах. Продолжительное существование живой природы во времени на фоне меняющихся условий было бы невозможным, если бы живые системы не обладали способностью к приобретению и сохранению некоторых изменений, полезных в новых условиях среды.

Генетический материал.

Принципы наследственности едины для всего живого, но детали строения наследственного материала и характер его организации могут варьировать от группы к группе. Все клеточные организмы по уровню сложности устройства их клеток подразделяют на прокариотов и эукариотов.

Генетический материал прокариотов представлен единственной кольцевой молекулой ДНК. ДНК эукариотов имеет линейную форму и связана с особыми белками - гистонами, играющими важную роль в компактизации нуклеиновой кислоты. Комплекс ДНК и белков носит название хромосомы .

В ядре - структуре эукариотической клетки , специализирующейся на хранении и передаче потомкам наследственной информации, - находится несколько хромосом. Кроме того, у эукариотов существует так называемая нехромосомная наследственность , связанная с тем, что некоторое количество ДНК содержится в полуавтономных структурах цитоплазмы - митохондриях и пластидах. Значительная часть эукариотов на протяжении большей части своего жизненного цикла диплоидна : их клетки несут два гомологичных набора хромосом. В процессе образования половых клеток происходит редукционное деление - мейоз - в результате которого гаметы становятся гаплоидны , т.е. они несут лишь один набор хромосом. При оплодотворении диплоидность восстанавливается, в дальнейшем зигота делится посредством митоза - без редукции числа хромосом.

При половом размножении происходит циклическое чередование диплоидного и гаплоидного состояний : диплоидная клетка делится путем мейоза, порождая гаплоидные клетки, а гаплоидные клетки сливаются при оплодотворении и образуют новые диплоидные клетки. Во время этого процесса происходит перемешивание и рекомбинация геномов, в результате чего появляются особи с новыми наборами генов. Высшие растения и животные большую часть жизненного цикла проводят в диплоидной фазе, а гаплоидная фаза у них очень короткая. Вероятно, процесс эволюции благоприятствовал половому размножению, так как случайная генетическая рекомбинация увеличивала шансы организмов на то, что хотя бы некоторые из их потомков выживут в непредсказуемо изменчивом мире.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии