Эндотелий кровеносных сосудов как эндокринная ткань. Сосудистый эндотелий как эндокринная сеть. Что такое эндотелий

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Эндотелий - это слой уплощенных клеток мезенхимного происхождения, выстилающий стенки кровеносных и лимфатических сосудов и капилляров, обеспечивающий процессы обмена между кровью и тканями. Представляет собой непрерывную мембрану, состоящую из слоя эндотелиальных клеток, связанных межклеточным «цементом». Эндотелий кровеносных капилляров некоторых органов прерывается благодаря наличию субмикроскопических внутриклеточных «пор» (в почках, эндокринных железах, кишечнике) или широких межклеточных щелей (в печени, селезенке, костном мозге).


Плоскостный препарат внутренней оболочки артерии мышечного типа: 1 - клетки эндотелия; 2 - клетки подэндотелиального слоя; 3 - границы между эндотелиальными клетками (по Щелкунову).

Эндотелий [от греч. endon - внутри + (эпи)телий] - слой уплощенных клеток мезенхимного происхождения, выстилающий стенки кровеносных и лимфатических сосудов. В эмбриогенезе эндотелий впервые возникает в результате особой дифференцировки клеток мезенхимы, образующих замкнутый однослойный пласт клеток в виде кровяных островков, располагающихся в стенке желточного мешка и хорионе на 2-3-й неделе внутриутробного развития. Большинство авторов считает эндотелий продуктом особо дифференцированных клеток мезенхимы. Некоторые авторы относят эндотелий к своеобразному высокоспецифическому типу эпителиальных тканей (ангиодермальному). Клетки эндотелия представляют собой тонкие пластинки, тесно прилегающие друг к другу и образующие сплошной однослойный пласт (рис.). Длина клеток эндотелия от 5 мк до 175 мк, толщина в околоядерных участках от 200 Å до 1-2 мк. Извилистые границы клеток хорошо импрегнируются азотнокислым серебром. Полигональная форма клеток разнообразна, зависит от размера сосуда и степени его растяжения. Ядра клеток эндотелия овальной формы, длинным диаметром располагаются вдоль длинника сосуда.

Клетки эндотелия чаще содержат одно ядро, иногда 2-3, встречаются симпласты с 10 и более ядрами. В клетках эндотелия обнаружены пиноцитозные пузырьки диаметром 500-1000 Å, располагающиеся около наружной и внутренней поверхности. На поверхности эндотелия, обращенной к току крови, расположены субмикроскопические ворсинки. В цитоплазме эндотелия выявлена эндоплазматическая сеть с многочисленными гранулами РНК на ее мембранах, мелкие митохондрии. Межклеточные промежутки шириной в 100 Å межклеточного цемента не содержат. Наблюдается чешуйчатое перекрытие двух соседних клеток эндотелия. Микропоры диаметром 300-400 Å обнаружены в эндотелии капилляров клубочков почки, ворсин кишечника, эндокринных желез. Эндотелий кровеносных капилляров окружен базальной мембраной, отсутствующей в эндотелии лимфатических капилляров. В эндотелии выявлены гликоген, витамин С, щелочная фосфатаза. Наиболее дифференцирован эндотелий эндокарда и крупных сосудов, менее - эндотелий капилляров. Клетки эндотелия делятся путем митоза и амитоза. При репаративной регенерации восстановление эндотелия происходит путем митотического деления его клеток на краю раны и наползания их на поврежденную поверхность. Восстановление эндотелия также совершается из мало дифференцированных мезенхимных элементов, расположенных в субэндотелиальном слое. Новообразование капилляров происходит благодаря слиянию почкообразных выростов эндотелия друг с другом. Эндотелий, выстилающий синусоидные капилляры печени, костного мозга, селезенки и синусы лимфатических узлов, обладает ярко выраженной способностью к накоплению чужеродных коллоидов из крови и лимфы. Этот эндотелий относится к элементам ретикулоэндотелиальной системы (см.). Через эндотелий совершается обмен веществ между кровью (или лимфой) и тканевой жидкостью.

Подробности

Эндотелий - интима сосудов. Он выполняет ряд важных функций, в том числе: регулирует тонус сосудов, способствует изменению их диаметра, является сенсором повреждения сосудистой стенки и может запускать механизм свертывания крови.

1. Общий план строения сосудистой стенки.

2. Основные функции эндотелия сосудов.

  • Регуляция величины сосудистого тонуса и сосудистого сопротивления
  • Регуляция текучести крови
  • Регуляция ангиогенеза
  • Реализация процесса воспаления

3. Основные функции эндотелия реализуются:

1) Сдвигом секреторной функции эндотелия в сторону сосудорасширительных факторов (90% приходится на оксид азота).

2) Ингибированием:

  • Агрегации тромбоцитов
  • Адгезии белых клеток крови
  • Пролиферации гладких мышц

Основные функции эндотелиального слоя сосудистой клетки определяются его синтетическим фенотипом – набором вазоактивных факторов, синтезируемых эндотелием.

4. При дисфункции эндотелия наблюдается:

1) Сдвиг секреторной функции эндотелия в сторону сосудосуживающих факторов

2) Усиление:

  • агрегации тромбоцитов
  • адгезии белых клеток крови
  • пролиферации клеток гладких мышц

Что приводит к уменьшению сосудистого просвета, тромбообразованию, появлению очага воспаления и гипертрофии сосудистой стенки.

5. Регуляция текучести крови при участии эндотелия в норме.

6. Сдвиг синтетической активности эндотелиальной клетки в сторону прокоагулянтного фенотипа при нарушении целостности эндотелия или возникновении воспалительного процесса.

7. ЭНДОТЕЛИЙ СОСУДИСТОЙ СТЕНКИСИНТЕЗИРУЕТ И ВЫДЕЛЯЯЕТ СУЖИВАЮЩИЕ И РАСШИРИТЕЛЬНЫЕ ВАЗОАКТИВНЫЕ ФАКТОРЫ:

8. Типы действий вазоактивных факторов, синтезируемых эндотелием сосудистой стенки.

9. Основные пути метаболизма арахидоновой кислоты.

Циклооксигеназный путь
Липоксигеназный путь
Эпоксигеназный путь
Трансацилазный (мембранный) путь

Активация фосфолипазы А2 (брадикинином) стимулирует выход арахидоновой кислоты в растворимую часть клетки и ее метаболизм

10. Кооперативный способ активации арахидоновой кислоты.

11. Метаболизм арахидоновой кислоты (АА) при участии фосфолипазы А2 (PLA2).

==>>Воспаление.

12. Метаболиты арахидоновой кислоты по циклооксигеназному пути.

13. Механизм действия нестероидных противоспалительных препаратов с анальгетическим действием.

14. Типы циклооксигеназ. Их стимуляция и ингибирование.

Циклооксигеназа I типа (ингибируется парацетамолом) и II типа (ингибируется диклофенаком)

15. Механизм реализации действия простациклина (PG2) на гладкой мышце сосуда.

16. Схема синтеза эндогенных каннабиноидов.

Эндогенные каннабиноиды(NAEs) –(анандамид) метаболизируются с образованием арахидоновой кислоты и ее последующей деградации.

Механизм действия эндогенного каннабиноида – анандамида на сосудистую стенку:

Быстрая деградация в эндотелии уменьшает расширительный потенциал эндоканнабиноидов.

Влияние анандамида на сопротивление перфузируемого сосудистого русла кишечник (А) и изолированного резистивного мезентериального сосуда (В).

Схема возможного пути метаболизма анандамида, ингибирующего его прямое вазодилятаторное действие на гладкую мышцу сосудов.

17. Эндотелий-зависимое расширение сосудов.

Синтез оксида азота: ключевой элемент - NO-синтаза (конститутивная - работает всегда и индуцибельная - активируется под воздействием определенных факторов)

18. Изоформы NO-синтаз: нейрональная, индуцибильная, эндотелиальная и митохондриальная.

Структура изоформ синтаз оксида азота:

mtNOS –альфа форма nNOS, отличающаяся фосфорилированным С-концом и двумя измененными аминокислотными остатками.

19. Роль NO-синтаз в регуляции различных функций организма.

20. Схема активации синтеза NO и cGMP в эндотелиальной клетке.

21. Физиологические и гуморальные факторы, активирующие эндотелиальную форму NO-синтазы.

Факторы, определяющие биодоступность оксида азота.

Участие оксида азота в реакции окислительного стресса.

Влияние пироксинитрита на белки и ферменты клетки.

22. Синтез оксида азота эндотелиальной клеткой и механизм расширения гладкой мышцы сосудов.

23. Гуанилатциклаза – фермент, катализирующий образование цГМФ из ГТФ, структура и регуляция. Механизм расширения сосуда при участии цГМФ.

24. Ингибирование цГМФ Rho-киназного пути сокращения гладких мышц сосудов.

25. Вазоактивные факторы, синтезируемые эндотелием и пути реализации их воздействия на гладкую мышцу сосуда.

26. Открытие эндотелина – эндогенного пептида, обладающего вазоактивными свойствами.

Эндотелин – эндогенный пептид, синтезируемый эндотелиальными клетками сосудистой системы.

Эндотелин – 21 –членный пептид, обладающий вазоконстрикторными свойствами.

Структура эндотелина-1, Семейство эндотелинов: ЭТ-1, ЭТ-2, ЭТ-3.

Эндотелин:

Экспрессия разных форм пептида в тканях:

  • Эндотелин-1 (эндотелий и гладкая мышца сосудов, сердечные миоциты, почка и т.д.)
  • Эндотелин -2 (почка, мозг, ж-кишечный тракт и т.д.)
  • Эндотелин-3 (кишечник, надпочечники)

Механизм синтеза в тканях: три разных гена -
Препроэндотелин-->биг эндотелин-->эндотелины
*фурин-подобная эндопепт. эндотелинпревр. ферм.
(клеточная поверхн., внутрикл. визикулы)
Типы рецепторов и эффектов :
Ета (гладкая мышца - сокращение)
Етв (эндотелий-выделение эндотелий-зав. расш. фак. гладкая мышца- сокращение)
Содержание в тканях и крови: фм/мл
увеличение в 2-10 раз при сердечной недостаточности, легочной гипертензии, почечной недостаточности, субарахноидальной геморрагии и т.д.

27. Синтез эндотелина эндотелиальной клеткой и механизм сокращения гладкой мышцы сосуда.

28. Механизм реализации действия эндотелина на гладкую мышцу сосуда в норме и патологии.

29. Патологическая роль эндотелина.

  • вазоконстрикция
  • гипертрофия
  • фиброз
  • воспаление

30. Основные факторы гуморальной регуляции сосудистого тонуса, опосредующие свое действие через изменение секреторной функции эндотелия.

  • Катехоламины (адреналин и норадреналин)
  • Ангиотезин-рениновая система
  • Семейство эндотелинов
  • АТФ, АДФ
  • Гистамин
  • Брадикинин
  • Тромбин
  • Вазопрессин
  • Вазоактивный интенстинальный пептид
  • Кольцитонин генсвязывающий пептид
  • Натрийуретический пептид
  • Оксид азота

Эндотелиальные клетки, выстилающие кровеносные сосуды , обладают удивительной способностью изменять свою численность и расположение в соответствии с локальными требованиями. Почти все ткани нуждаются в кровоснабжении , а оно в свою очередь зависит от эндотелиальных клеток. Эти клетки создают способную к гибкой адаптации систему жизнеобеспечения с разветвлениями во всех областях тела. Если бы не эта способность эндотелиальных клеток расширять и восстанавливать сеть кровеносных сосудов, рост тканей и процессы заживления были бы невозможны.

Самые крупные кровеносные сосуды - это артерии и вены , имеющие толстую прочную стенку из соединительной ткани и гладкой мускулатуры ( рис. 17-11,А). Эта стенка выстлана изнутри чрезвычайно тонким одиночным слоем эндотелиальных клеток, который отделен от окружающих слоев базальной мембраной . Толщина соединительнотканного и мышечного слоев стенки варьирует в зависимости от диаметра и функции сосуда, но эндотелиальная выстилка имеется всегда. Стенки тончайших разветвлений сосудистого дерева - капилляров и синусоидов - состоят только из эндотелиальных клеток и базальной мембраны.

Таким образом, эндотелиальные клетки выстилают всю сосудистую систему - от сердца до мельчайших капилляров - и управляют переходом веществ (а также лейкоцитов) из тканей в кровь и обратно. Более того, изучение эмбрионов показало, что сами артерии и вены развиваются из простых малых сосудов, построенных исключительно из эндотелиальных клеток и базальной мембраны: соединительная ткань и гладкая мускулатура там, где это нужно, добавляются позднее под действием сигналов от эндотелиальных клеток.

Эндотелиальные клетки экспрессируют молекулы, способные узнавать циркулирующие с кровотоком лейкоциты , обеспечивая таким образом их адгезию , а также распределение в сосудистом ложе.

Эндотелиальные клетки обладают мощным антикоагулянтным потенциалом. Они синтезируют простациклин , который ингибирует активацию тромбоцитов и вызывает вазодилятацию. На поверхности клеток расположены гепаринсодержащие протеогликаны, которые ускоряют зависимую от антитромбина III нейтрализацию многих сериновых протеиназ каскада свертывания крови .

Эндотелиальными клетками синтезируется и секретируется активатор плазминогена , инициирующий процессы растворения (лизиса) фибрина ( фибринолиз). Они содержат белок тромбомодулин , специфически связывающий фермент тромбин и инициирующий антикоагулянтный механизм активации белка СИ .

В то же время эндотелиальные клетки способны проявлять и прокоагулянтные свойства. Эти свойства проявляются в их способности продуцировать фактор активации тромбоцитов ( PAF - Platelet activating factor), ингибиторы активаторов плазминогена и тканевый фактор , который экспрессируется на поверхности активированного эндотелия. Он стимулирует активацию

743 0

Нарушение апоптоза эндотелиальных клеток

Как уже отмечалось, апоптоз рассматривается как активный процесс гибели клеток, который морфологически отличается от некроза.

Он встречается как в норме, так и на фоне разнообразных патологических процессов.

Полагают, что нарушение этого процесса вносит существенный вклад не только в развитие аутоиммунных болезней, но и играет важную роль в патогенезе сосудистых заболеваний человека (атеросклероз , антифосфолипидный синдром (АФС) , системные васкулиты и др.) .

Ряд веществ, играющих ключевые роли в развитии воспалительных и аутоиммунных реакций, также вызывают апоптоз эндотелия сосудов. Показано, что введение липополисахаридов (ЛПС) экспериментальным животным приводит к массивной гибели эндотелиальных клеток (ЭК) аорты . Этот феномен рассматривается как самое раннее проявление апоптоза, предшествующее фрагментации ДНК и нарушению целостности мембраны клетки .

Известно, что при активации тромбоцитов экспонирование ФС приводит к запуску свертывания крови . Отрицательно заряженные фосфолипиды принимают участие в фактор VIII и IХа-зависимои активации фактора X на ЭК. Аннексии V полностью ингибирует эту реакцию .

Подвергнутые апоптозу эндотелиальные клетки способны увеличивать скорость активации фактора X. При этом на их поверхности появляется ФС . Подобным образом происходит увеличение числа молекул анионных фосфолипидов на мембране моноцитов, которое сопровождается увеличением активности протромбиназного комплекса .

По данным ряда авторов, эндоксинстимулированные ЭК и тканевые факторы, продуцирующиеся моноцитами в процессе развития апоптоза этих клеток, обладают прокоагулянтной активностью . Важно отметить, что провоспалительные цитокины, эндотоксины, гипоксия, гомоцистеинемия подавляют активность тромбомодулина и гепарансульфата на поверхности эндотелия. В то же время они индуцируют апоптоз ЭК .

Все это свидетельствует о том, что нарушение нормальных механизмов апоптоза ЭК может иметь важное значение в развитии нарушений свертывания крови у больных системными васкулитами, атеросклеротическим поражением сосудов и особенно АФС .

В недавних исследованиях было показано, что плазма от больных с тромботической тромбоцитопенической пурпурой и гемолитико-уремическим синдромом вызывает апоптоз клеток микрососудистого эндотелия, полученных из кожи, почек и мозга .

Данный феномен сопровождался появлением на их мембране Fas (CD95) - молекулы, ассоциированной с апоптозом. Напротив, в эндотелиальных клетках легочных и печеночных микрососудов не наблюдалось подобных изменений. Эти данные позволяют обсуждать причины редкого поражения сосудов почек и легких при этих состояниях, а возможно и при некоторых формах васкулитов и антифосфолипидном синдроме.

Нарушение антикоагулянтной активности эндотелиальных клеток

В норме сосудистый эндотелий обладает мощной антикоагулянтной активностью. Подавление процесса свертывания крови происходит за счет нескольких механизмов.

Благодаря наличию на его поверхности: тромбомодулина и белка S, способствующих активации белка С ; гепарансульфата, который через активацию антитромбина III ускоряет образование тромбина

За счет синтеза: ингибиторов тканевых факторов, блокирующих образование комплекса тканевой фактор - VIIa-Xa ; аннексина V, предотвращающего связывания факторов свертывания ; тканевого активатора плазминогена.

Под влиянием разнообразных воздействий, включающих провоспалительные цитокины (ИЛ-1, ФНО-а), ЛПС, атерогенные субстанции (ЛП(а), гомоцистеин), гипоксию, гипертермию, инфекции, аутоантитела и иммунные комплексы (ИК) , ЭК быстро теряют свой антикоагулянтный потенциал и переходят в протромботическое состояние (рис. 3.1).

Рис. 3.1. Связь между воспалением и гиперкоагуляцией

Изменение при активации или апоптозе функциональных свойств ЭК, нарушение целостности эндотелиального слоя и связанные с ними тромботические и/или окклюзионные изменения в сосудах имеют большое значение в патогенезе отдельных клинических синдромов (нефрит), а также некоторых форм системных васкулитов (геморрагическиай васкулит, артериит Такаясу, гигантоклеточный артериит (ГКА) , болезнь Кавасаки и др.).

Так, по данным J.D.Costing и соавт. (1992), при СКВ мишенью для аФЛ могут являться отдельные компоненты коагуляционного каскада, такие, как белок С и белок S, экспрессирующиеся на мембране эндотелия. Антитела к фосфолипидам, как и а-нДНК, могут перекрестно связываться с отрицательно заряженными эпитопами гликозаминогликана, являющегося основным компонентом нетромбогенного выстилающего слоя сосудистого эндотелия, и ингибировать гепаринзависимую активацию антитромбина III .

Низкая концентрации в плазме крови общего белка S обнаружена у больных с артериитом Такаясу, лейкоцитокластическим и геморрагическим васкулитами [А.А.Баранов и соавт., 1996; K.V.Salojin et al.,1996]. В активную фазу системных васкулитов отмечается снижение выработки эндотелием тканевого активатора плазминогена .

В то же время ЭК начинают синтезировать ряд прокоагулянтных субстанций. К ним относятся тканевые факторы, фактор V, ФАТ, фактор фон Виллебранда, ингибитор тканевого активатора плазминогена . Эти вещества также принимают участие в патогенезе васкулитов.

Ингибитор тканевого активатора плазминогена

Нарушение антикоагулянтной активности эндотелиальных клеток при васкулитах также может быть опосредовано через нарушение процесса фибринолиза.

Известно, что в норме разрушение фибрина происходит при участии протеолитического фермента - плазмина, который в свою очередь получается из плазминогена под воздействием урокиназы или тканевого активатора плазминогена. Тканевой активатор плазминогена наиболее важен для этого процесса.

Он вырабатывается в ЭК и высвобождается из них в кровоток. Его дальнейший метаболизм происходит по трем направлениям. Так, одна часть тканевого активатора плазминогена подвергается разрушению в клетках печени, другая соединяется с депозитами фибрина и активирует плазминоген, а третья необратимо инактивируется его ингибитором. При высокой концентрации последнего вещества в плазме крови быстрой (менее чем за 1) инактивации подвергается большое количество циркулирующего тканевого активатора плазминогена.

Как отмечалось выше, при системных васкулитах на фоне высокой активности воспалительного процесса в плазме крови выявляется низкий уровень тканевого активатора плазминогена. В некоторых случаях это происходит на фоне увеличения синтеза эндотелием его ингибитора . Причем данные нарушения регистрируются в течение длительного периода времени даже у клинически неактивных больных .

Фактор фон Виллебранда и антиген фактора фон Виллебранда

Многими исследователями при системных васкулитах отмечено увеличение концентрации в сыворотке крови фактора фон Виллебранда (ФВ) и антигена фактора фон Виллебранда (ФВ:Аг) [А.А.Баранов и соавт., 1993; A.D.Woolf et al., 1987; B.Bliel et al., 1991; A.D.Blann,1993].

Однако в настоящее время неясно, имеет ли этот феномен какое-либо патогенетическое значение, или он отражает лишь степень выраженности эндотелиальной дисфункции при этих заболеваниях.

Участие ФВ в развитии системных васкулитов и сосудистой патологии при диффузных заболеваниях соединительной ткани, по-видимому, непосредственно связано с его биологической ролью в организме человека. Известно, что ФВ участвует в адгезии тромбоцитов к субэндотелию в зоне сосудистого повреждения.

Он обеспечивает связь между мембранными гликопротеинами не активированных (GPIb-IX) тромбоцитов и субэндотелиальными молекулами (коллаген типа I и III и гепарансульфат); взаимодействуя с GPIIb/IIIa рецепторами, усиливает агрегацию тромбоцитов, а также способствует активации фактора VIII тромбином .

В плазме ФВ:Аг в основном представлен пулом, синтезированным эндотелием, который в норме циркулирует в виде мультимеров, однако наряду с ним встречается и незначительное количество необычно больших форм этого гликопротеида. Последние обладают способностью более эффективно связываться с рецепторами тромбоцитов (GPIb-IX, GPIIb-IIIa). В плазме также присутствуют субстанции, которые расщепляют большие формы ФВ:Аг до маленьких, не действуя, однако, на его фракцию, находящуюся в субэндотелии .

Полагают, что при постоянной выработке клетками эндотелия антигена фактора фон Виллебранда имеет нормальную структуру . Стимуляция эндотелия (окислительный стресс, механическая травма, гистамин, мембраноатакующий комплекс комплемента и др.) сопровождается как усилением синтеза этого гликопротеида, так и его высвобождением из компонентов цитоплазмы эндотелия (тельца Weibel - Palade).

В последних хранятся мультимеры ФВ:Аг, обладающие высокой функциональной активностью в отношении связывания с мембранными рецепторами неактивированных тромбоцитов и адгезии последних к субэндотелию .

Усиление выработки ФВ:Аг отмечено при инфекциях, стимуляции ЭК эндотоксином и провоспалительными цитокинами ИЛ-1, ИФ-у, ФНО-а .

Высокая концентрация ФВ:Аг обнаружена у больных гранулематозом Вегенера и ГКА, имеющих сопутствующие инфекции [Т.В.Бекетова и соавт.,1996; M.C.Cid et al.,1996]. Способностью индуцировать его продукцию в культуре эндотелия обладают фракции IgG, выделенные из сывороток больных АФС или содержащие а-нДНК с активностью антител к эндотелиальным клеткам (АЭКА) .

Возможное участие антигена фактора фон Виллебранда в развитии системных васкулитов находит свое объяснение на примере гемолитико-уремического синдрома и тромботической тромбоцитопенической пурпуры (ТТП) , при которых увеличение в сыворотке крови макромолекулярной формы этого гликопротеида рассматривается в качестве одного из основных патогенетических механизмов данных заболеваний . При системных васкулитах также обнаружена продукция эндотелием подобных субстанций .

Известно, что основные морфологические изменения при ТТП и гемолитико-уремическом синдроме характеризуются тромботической васкулопатией . Наблюдаются сегментарные окклюзии артериол, капилляров и венул гиалиновыми тромбами. Наиболее выраженные изменения отмечаются в головном мозге, почках, сердце, селезенке.

На ранних стадиях заболевания тромбы в артериолах и капиллярах состоят преимущественно из тромбоцитов, без периваскулярной инфильтрации, в которых при иммуногистохимическом анализе обнаруживается большое количество ФВ:Аг и немного фибриногена или фибрина .

При первичном и вторичном антифосфолипидном синдроме в почках наблюдаются сходные изменения [З.С.Алекберова и соавт., 1995; Н.Л.Козловская и соавт.,1995; Е.Л.Насонов и соавт.,1995; M.A.Byron et al., 1987], а у больных СКВ описаны гломерулярные тромбы и депозиция фибрина при нефрите . Кроме того, при этом заболевании высокий уровень ФВ:Аг в сыворотке крови четко ассоциируется с поражением почек.

Подобная клинико-лабораторная взаимосвязь прослеживается и при некоторых формах васкулитов (гранулематоз Вегенера, узелковый полиартериит (УП) , геморрагический васкулит) [А.А.Баранов и соавт., 1993]. Не исключается, что в этих случаях изменения в микрососудах почек могут быть опосредованы через механизмы, сходные с таковыми при гемолитико-уремическом синдроме и ТТП.

В последнее время на мембранах молодых эритроцитов открыты рецепторы, подобные тромбоцитарным, с которыми могут взаимодействовать мультиформы фактора фон Виллебранда. Подобные структуры обнаружены и на мембранах эндотелия . Таким образом, ретикулоциты и другие юные формы эритроцитов могут прикрепляться к эндотелиальным клеткам через мультимеры ФВ, а затем участвовать в тромбообразовании.

Создается впечатление, что при определенном круге патологических состояний повышенный уровень антигена фактора фон Виллебранда может рассматриваться не только как маркер тяжелого поражения сосудов кожи и почек, но и принимать активное участие в их развитии.

Возможно, что поступление в кровоток избыточного количества аномальных форм ФВ:Аг, способных более эффективно связываться с мембранными рецепторами тромбоцитов, эритроцитов, и формирование затем тромбов в микрососудах усиливают уже имеющиеся при некоторых системных васкулитах нарушения реологии крови (криоглобулины, циркулирующие иммунные комплексы (ЦИК) ) и способствуют дальнейшему прогрессированию ишемических изменений в тканях.

Важно отметить, что при системных васкулитах, а также при системной красной волчанке в активную фазу болезни высокий уровень ФВ:Аг нередко сочетается с нарушением фибринолитической активности плазмы крови .

Насонов Е.Л., Баранов А.А., Шилкина Н.П.

Октябрь 30, 2017 Нет комментариев

Стенка интактных артерий состоит из трех оболочек: интимы (tunica intima), медиа (tunica media) и адвентиции (tunica externa).

1. Интима, т.е. внутренняя оболочка, включает эндотелий, тонкий субэндотелиальный слой и внутреннюю эластическую мембрану на границе с медиа - средней оболочкой. Эндотелий представляет собой монослой удлиненных клеток, ориентированных вдоль продольной оси сосуда. Эндотелиальный слой непрочен, его целостность легко нарушается при различных физических воздействиях, а восстановление происходит благодаря митотическому делению эндотелиоцитов под влиянием определенных стимулов со стороны окружающей соединительной ткани и эндотелиоцитов.

2. Медиа представлена циркулярными пучками гладкомышечных клеток, которые отделяются от наружного слоя эластической мембраной, состоящей из продольно ориентированных толстых эластических волокон и спирально расположенных пучков коллагеновых фибрилл.

3. Адвентиция - наружная оболочка сосудистой стенки состоит из рыхлой соединительной ткани, содержащей большое количество фибробластов, и сливается с окружением сосуда. Важной особенностью адвентипии является наличие в ней нервных окончаний и vasa vasorum - сосудов, питающих стенку артерий. Эластические волокна создают резистивное сопротивление, которое повышается при увеличении кровяного давления и тем самым противодействует расширению сосуда.

Эластическое сопротивление определяет базальный компонент сосудистого тонуса - это филогенетически древний механизм ауторегуляции сосудистого тонуса, обеспечивающий сохранность структурной целостности сосудов в условиях их растяжения давлением крови. Гладкомышечные волокна под влиянием нейро-гуморальных факторов создают активное напряжение сосудистой стенки (вазомоторнный компонент сосудистого тонуса) и, соответственно, определенную величину просвета сосуда (объем кровотока) в «интересах» организма. Соотношение между базальным и вазомоторным компонентами сосудистого тонуса различны в разных органах и тканях.

Наибольшую значимость для функционирования сосудов имеют гладкомышечные и эндотелиальные клетки. Особое внимание в современной медицине привлекает эндотелий, который, как оказалось, способен синтезировать весьма большой спектр биологически активных веществ на границе «кровь - клетки тканей/органов» и таким образом выполнять функцию «таможенника» на этой границе.

Эндотелий – эндокринный орган сердечно-сосудистой системы

Совокупность всех эндотелиоцитов (специализированных клеток мезенхимного происхождения) образует эндотелиальную выстилку - однослойный пласт клеток, выстилающий изнутри все «сердечно-сосудистое дерево»: кровеносные сосуды, полости сердца, а также лимфатические сосуды. У взрослого человека эндотелиальная выстилка имеет массу в пределах 1,5-1,8 кг, состоит примерно из одного триллиона клеток, которые способны синтезировать биологически активные молекулы с различными типами действия -аутокринным, паракринным и эндокринным.

Структурная организация эндотелиальной выстилки неодинакова в разных сосудах. Например, существуют рандомический и кластеризованный типы организации эндотелиального монослоя. Первый из них характеризуется относительно беспорядочным расположением эндотелиоцитов, а при втором - эндотелиоцигы примерно одинакового размера формируют кластеры (англ, cluster- группа). Гетерогенность эндотелия сопряжена с типом сосуда (артерии, артериолы, капилляры, венулы, вены), органом или тканью, которые они кровоснабжают.

Эндотелиальные клетки также неоднородны по своей структуре, которая зависит в основном от фибрилл цитоскелета: активных микрофиламетов, микротрубочек, промежуточных филаментов. Эти три типа фибрилл, имеющиеся во всех клетках, формируют различные варианты микроархитектуры эндотел ионитов. Типовые различия клеточной архитектоники обычно устойчивы - они сохраняются даже тогда, когда экспериментаторы выделяют клетки из ткани и культивируют in vitro.

Однако в последние годы было установлено, что эти различия не являются необратимыми: под влиянием определенных сигналов, действующих на клетки извне, или генных мутаций архитектоника эндотелиоцитов может коренным образом перестраиваться вплоть до того, что клетки одного типа могут трансформироваться в клетки другого типа с совершенно иной архитектурой цитоскелета. Процесс трансформации фенотипа клеток, в том числе эндотелиоцитов, в настоящее время включен в понятие, обозначаемое термином «репрограммирование».

Этот процесс привлекает все большее внимание в аспекте современного понимания патогенеза самых различных форм патологии. Неоднородность эндотелиоцитов выражается не только в структурных особенностях, но и в их генетической и биосинтетической специфичности. Так, например, эндотелиоциты коронарных, легочных и церебральных сосудов, несмотря на гистологическую схожесть, весьма существенно различаются по типам экспрессируемых рецепторов, спектру синтезируемых биологически активных молекул: ферментов, белков-регуляторов, белков-мессенджеров. Такая гетерогенность предопределяет неодинаковое участие различных популяций эндотелиоцитов в развитии атеросклероза, ишемической болезни сердца, воспаления и др. форм патологии.

Итак, эндотелий является не только основным структурным компонентом интимы, выполняющим роль барьера между кровью и базальной мембраной сосудистой стенки, но и активным регулятором многих жизненно важных процессов. Многообразие целевых эффектов «гормонального ответа» эндотелиоцитов базируется на их способности синтезировать биологически активные вещества являющиеся, в своем большинстве, функциональными антагонистами. В набор этих веществ входят вазоконстрикторы и вазодилататоры, проагреганты и антиагреганты, прокоагулянты и антикоагулянты, митогены и антимитогены.

«Гормональная» активность интактного эндотелия способствует вазодилатации, препятствует гемокоагуляции и тромбообразованию, ограничивает пролиферативый потенциал клеток сосудистой стенки. В условиях альтерации (alteratio; лат. - изменение), т.е. патогенетически значимого изменения эндотелия, его «гормональный» ответ, напротив, способствует вазоконстрик-ции, гемокоагуляции, тромбообразованию, пролиферативному процессу.

Эндотелиальная выстилка находится под постоянным «прессом» вне-и внутрисосудистых факторов, которые, по сути, являются регуляторами «гормонального ответа» эндотелиоцитов.

В конце прошлого столетия было выявлено два типа ответа эндотелиоцитов на возмущающие воздействия: один из них развивается незамедлительно (без изменения экспрессии генов) и выражается в выделении преформированных и депонированных биологически активных молекул (напр.: Р-селектина, фактора фон Виллебранда, тромбоцитарного активирующего фактора (PAF) из гранул эндотелиоцитов); другой - проявляется спустя 4-6 ч после начала действия возмущающего стимула и характеризуется изменением активности генов, детерминирующей de novo синтез адгезивных молекул (напр.: Е-селекгана, ICAM-1, VCAM-1; интерлейкинов IL-1 и IL-6; хемокинов - IL-8, МСР-1 и других веществ).

В обобщенном виде можно выделить 3 основные группы факторов, индуцирующих «гормональный ответ» эндотелия.

1. Гемодинамический фактор. Влияние этого фактора на функциональную активность эндотелия зависит от скорости кровотока, его характера, а также величины давления крови, обусловливающих развитие т.н. «напряжения сдвига» (англ, «shear stress»).

2. «Клеточные» (местно-образующиеся) биологически активные вещества, обладающие аутокринным или паракринным свойством. К ним относят факторы «реакции освобождения» - дегрануляции и лизиса адгезированных и агрегированных тромбоцитов: тромбопластин, фибриноген, фактор фон Виллебранда, тромбоцитарный фактор роста, фибронектин, серотонин, АДФ, кислые гидролазы, а также продукты переместившихся в краевое, пристеночное положение лейкоцитов (прежде всего нейтрофилов), которые при этом становятся интенсивными продуцентами адгезивных молекул, лизосомальных протеаз, активных форм кислорода, лейкотриенов, простагландинов группы Е и т.д.), а также активированных тучных клеток - источников гистамина, серотонина, лейкотриенов С4 и D4, фактора активации тромбоцитов, гепарина, протеолитических ферментов, хемотаксических и других факторов.

3. Циркулирующие (дистантно-образующиеся) биологически активные вещества, обладающие эндокринным свойством. К ним относят катехоламины, ваэопрессин, ацетилхолин, брадикинин, аденозин, гистамин и многие другие.

Действие медиаторов и нейрогормонов в основном реализуется через специфические рецепторы, расположенные на поверхности эндотелиальных клеток.

Повреждение эндотелия, т.е. патогенетически значимое репрограммирование его биосинтетической активности в условиях развития различных заболеваний, связывают прежде всего с существенным изменением «напряжения сдвига». «Напряжение сдвига» (механический фактор) по определению данного понятия - это внутренние силы, возникающие в деформируемом теле под влиянием внешних статических и динамических нагрузок.

Согласно закону Гука величина упругой деформации твердого тела пропорциональна приложенному механическому напряжению. Упругие свойства сосудистой стенки определяются количественными и качественными характеристиками ее структурных компонентов: соединительнотканных и гладкомышечных клеток, организованных в волокна.

Давление в кровеносном сосуде создает в его стенке «растягивающее (давление зависимое) напряжение сдвига», направленное по касательной к окружности сосуда, а скорость движения крови – «продольное (поток-зависимое) напряжение сдвига», ориентированное вдоль сосуда. Таким образом, напряжение сдвига - это прижимающие и скользящие механические силы воздействия на поверхность эндотелия.

Кроме указанных гемодинамических факторов, на величину напряжения сдвига оказывает влияние вязкость крови. Установлено, что артерии регулируют свой просвет соответственно изменению данного свойства крови: при повышении вязкости сосуды увеличивают свой диаметр, а при понижении - его уменьшают.

Выраженность и направленность регуляторного ответа артерий на изменения величины внутрисосудистого потока не всегда однозначны и зависят от исходного тонуса артерий.

Касаясь механизмов реализации изменений напряжения сдвига, прежде всего возникает вопрос о способности эндотелиоцитов воспринимать механические стимулы. Такое свойство эндотелиальных клеток было продемонстрировано in vivo и in vitro, в то время как вопрос о механосенсорах пока окончательно не решен.Тем не менее установлено, что изменения напряжения сдвига могут опосредованно, через ионоселективные каналы, влиять на мембранный потенциал эндотелиальных клеток и тем самым - на синтез и выделение NO.

Обнаружено также, что эндотелиоциты (включая их ядра) способны ориентироваться в направлении движения потока крови, изменяя при этом интенсивность экспрессии биологически активных веществ в зависимости от сдвиговых напряжений. Оказалось, что такую ориентацию могут предотвращать препараты, повышающие содержание внутриклеточного цАМФ.

Следует отметить, что многие аспекты достаточно сложной биомеханики сосудистой стенки, взаимоотношения кровяного давления и потока до сих пор находятся на этапе их изучения, но вместе с тем в настоящее время положение об активной роли эндотелия в регуляции и нарушениях кровообращения приняло характер парадигмы.

Физиологическое (умеренно выраженное) напряжение сдвига всегда способствует реализации защитно-приспособительных возможностей эндотелиальных клеток. Чрезмерность напряжения сдвига не всегда приводит к реализации защитно-приспособительного потенциала эндотелиальной активности.

Чаще всего значительные (по интенсивности или продолжительности) изменения гемодинамических параметров, главным образом потока и давления крови, сопровождаются истощением или неадекватным использованием функциональных возможностей эндотелия, т. е. развитием эндотелиальной дисфункции.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии